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1. Introduction 

Liquid crystal phases exhibit unique electric properties. 

In the radio-frequency range, they manifest different 

relaxations [1]. Some of them are molecular relaxations, 

well seen in isotropic liquid or nematic phases [2], while 

some are called collective modes and are well seen in 

smectic phases [3, 4]. Simple molecular modes are usually 

described by the Debye model of relaxation [5], while 

collective modes are usually described by more 

complicated models: Cole-Cole [6], Davidson-Cole [7], or 

Havriliak-Negami [8]. When the impedance of a measuring 

cell is measured with an impedance analyser, the electric 

properties of the measured medium, called electric 

permittivity (or permittivity) can be calculated. Usually, the 

permittivity is the complex number 𝜀∗ [9–11]. In this paper, 

the opposite situation is shown: when the electric properties 

of a liquid crystal (dispersion of its electric permittivity) 

can influence a simple electric circuit property: a low-

frequency resistor-capacitor (RC) filter. This paper presents 

the electric response of a low-frequency filter numerically 

created for three different liquid crystals (with low, 

average, and high dielectric strength 𝛿𝜀) placed in a 

capacitor in an RC filter.  

2. 𝐑𝐂 filter with an empty capacitor  

The low-pass RC filter consists of the resistance 𝑅 and 

the capacitance 𝐶0 of the empty capacitor serially 

connected (Fig. 1). 

When the differential equation (derived from the 

Kirchhoff second law) describing the electric charge 𝑞(𝑡) 

in 𝑅𝐶0 circuit, forced by the harmonic electric field 

𝑈𝑖𝑛(𝑡) = 𝑈0𝑒𝑗𝜔𝑡: 

𝑑𝑞

𝑑𝑡
+ 𝜔𝑅𝐶𝑞 =

𝑈0

𝑅
𝑒𝑗𝜔𝑡  , (1) 
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Fig. 1. The low-pass RC filter as a serial connection of the 

resistance 𝑅 and the capacitance 𝐶0 of the empty capacitor. 

In-signal [𝑈𝑖𝑛(𝑡)] generates the current [𝐼(𝑡)]. And the 

current generates the out-signal [𝑈𝑜𝑢𝑡(𝑡)]. 

 

The solid dielectrics  used in  the  capacitors  exhibit rather high-frequency relaxations.  This 

means  that  in  the  radio-frequency  range,  the  capacitors  exhibit  a  constant  capacity. When

liquid crystal is put into  the  capacitors,  it is observed  that  in  the  radio-frequency range  the 

capacity  changes  (decreases  with  frequency).  This  is  due  to  the  fact  that  liquid  crystals 

exhibit relaxation  in  the  radio-frequency range.  In this paper, the formulas for  the  electric

response  of  a  low-frequency  RC  filter  with liquid crystal characterized by  complex  electric 

permittivity  are  derived.  One  Debye-type  relaxation  is  assumed  in  the  calculations.  The 

influence of  strengths and  relaxation  time (frequency)  of relaxation mode  in liquid crystal

on  the  electric response of  low-frequency  filters  is  discussed.
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where 𝜔𝑅𝐶 =
1

𝑅𝐶0
 stands for the cut-off angular frequency 

of 𝑅𝐶0 circuit, is analysed, then the stationary solution 𝑞(𝑡) 

takes the following form: 

𝑞(𝑡) = 𝑈0𝑒𝑗𝜔𝑡𝐶0 (
1

1 + Ω𝑅𝐶
2 − 𝑗

Ω𝑅𝐶

1 + Ω𝑅𝐶
2 )

 (2) 

where coefficient Ω𝑅𝐶 =
𝜔

𝜔𝑅𝐶
 is the frequency normalized 

to the cut-off frequency 𝜔𝑅𝐶  of 𝑅𝐶0 circuit. 

Analysing (2), it can be concluded that the capacitor 𝐶0 

together with the resistor 𝑅 behave as a “complex” capaci-

tance of 𝐶 = 𝐶0(𝜀𝑅𝐶
′ − 𝑗𝜀𝑅𝐶

′′ ) = 𝐶0 (
1

1+Ω𝑅𝐶
2 − 𝑗

Ω𝑅𝐶

1+Ω𝑅𝐶
2 ).  

When the resistor 𝑅 is small, then 𝜔𝑅𝐶  goes to infinity, 

Ω𝑅𝐶  goes to zero, and 𝐶 is close to 𝐶0 (low-frequency 

capacitance limit). When 𝑅 exhibits a limit value, for high 

frequencies, the effective capacitance 𝐶 disappears because 

𝜔𝑅𝐶  becomes a limit value, and Ω𝑅𝐶  goes up. It means that 

the effective capacitor 𝐶 does not work properly at high 

frequencies and no charge can be seen on the capacitor at 

high frequencies. The capacitor becomes a shortcut for high 

frequencies. Knowing 𝜀𝑅𝐶
′  and 𝜀𝑅𝐶

′′  from the measurement, 

the cut-off angular frequency 𝜔𝑅𝐶  of 𝑅𝐶0 circuit can be 

found. Both the parameters 𝜀𝑅𝐶
′  and 𝜀𝑅𝐶

′′  have nothing to do 

with the electric permittivity. These are the parameters 

describing the 𝑅𝐶0 circuit. 

It is known that the impedance analyser measures the 

current 𝐼(𝑡) as the result of applying the electric harmonic 

voltage 𝑈0𝑒𝑗𝜔𝑡. To calculate this current, both sides of (2) 

should be differentiated: 

𝐼(𝑡) =
𝑑

𝑑𝑡
𝑞(𝑡) =

𝑑

𝑑𝑡
𝑈0𝑒𝑗𝜔𝑡𝐶0 (

1

1 + Ω𝑅𝐶
2 − 𝑗

Ω𝑅𝐶

1 + Ω𝑅𝐶
2 )

= 𝑗𝜔𝑈0𝑒𝑗𝜔𝑡𝐶0(𝜀𝑅𝐶
′ − 𝑗𝜀𝑅𝐶

′′ )

= 𝜀𝑅𝐶
′ 𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

) − 𝑗𝜀𝑅𝐶
′′ 𝜔𝐶0𝑈0𝑗𝑒𝑗𝜔𝑡𝑈0𝑒𝑗𝜔𝑡

𝜋
2   

The first part of the current 𝐼(𝑡) leads the AC voltage 

by 


2
 rad, while the second part of the current 𝐼(𝑡) is in 

phase with the electric voltage. 

When the current 𝐼(𝑡) and impedance of the capacitor 

𝑋𝐶0 = −𝑗
1

𝜔𝐶0
 are multiplied, the electric voltage 𝑈𝑜𝑢𝑡(𝑡) 

on the capacitor (vs. time) is obtained: 

𝑈𝑜𝑢𝑡(𝑡) = 𝐼(𝑡) ∙ 𝑋𝐶0

= (𝜀𝑅𝐶
′ 𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

) + 𝜀𝑅𝐶
′′ 𝜔𝐶0𝑈0𝑒𝑗𝜔𝑡) (−𝑗

1

𝜔𝐶0

)

= (𝜀𝑅𝐶
′ 𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

) + 𝜀𝑅𝐶
′′ 𝜔𝐶0𝑈0𝑒𝑗𝜔𝑡) (

1

𝜔𝐶0

𝑒−𝑗
𝜋
2)

= 𝜀𝑅𝐶
′ 𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

)𝑒−𝑗
𝜋
2 + 𝜀𝑅𝐶

′′ 𝑈0𝑒𝑗𝜔𝑡𝑒−𝑗
𝜋
2

= 𝜀𝑅𝐶
′ 𝑈0𝑒𝑗𝜔𝑡 + 𝜀𝑅𝐶

′′ 𝑈0𝑒𝑗(𝜔𝑡−
𝜋
2

)

=
1

1 + Ω𝑅𝐶
2 𝑈0𝑒𝑗𝜔𝑡 +

Ω𝑅𝐶

1 + Ω𝑅𝐶
2 𝑈0𝑒𝑗(𝜔𝑡−

𝜋
2

) =

= 𝑈𝐶0(0)𝑒𝑗𝜔𝑡 + 𝑈
𝐶0(−

𝜋
2

)
𝑒𝑗(𝜔𝑡−

𝜋
2

)                            (4) 

It is seen that the first part [𝑈𝐶0(0)] of (4) is in phase 

with the in-signal, while the second part [𝑈
𝐶0(−

𝜋

2
)
] lags the 

in-signal by 
𝜋

2
. Equation (4) can be expressed as a function 

of the angular frequency 𝜔: 

𝑈𝑜𝑢𝑡(𝑡) = 𝑈0𝑒𝑗𝜔𝑡 (
1

1 + (
𝜔

𝜔𝑅𝐶
)

2 +

𝜔
𝜔𝑅𝐶

1 + (
𝜔

𝜔𝑅𝐶
)

2 𝑒−𝑗
𝜋
2)

= 𝑈0𝑒𝑗𝜔𝑡 (
1

1 + (
𝜔

𝜔𝑅𝐶
)

2 −

𝜔
𝜔𝑅𝐶

1 + (
𝜔

𝜔𝑅𝐶
)

2 𝑒+𝑗
𝜋
2) . (5) 

   

    

𝑈𝑜𝑢𝑡(𝑡) = 𝑈0𝑒𝑗(𝜔𝑡−𝜑)√(
1

1 + (
𝜔

𝜔𝑅𝐶
)

2)

2

+ (

𝜔
𝜔𝑅𝐶

1 + (
𝜔

𝜔𝑅𝐶
)

2 )

2

= 𝑈0√
1 + (

𝜔
𝜔𝑅𝐶

)
2

(1 + (
𝜔

𝜔𝑅𝐶
)

2

)
2 𝑒𝑗(𝜔𝑡−𝜑) = 𝑈𝐶0𝑎𝑚𝑒𝑗(𝜔𝑡−𝜑) , 

(6) 

where 𝑈𝐶0𝑎𝑚 =
𝑈0

√1+(
𝜔

𝜔𝑅𝐶
)

2
 is the amplitude of out-signal 

while sin 𝜑 =

𝜔

𝜔𝑅𝐶

1+(
𝜔

𝜔𝑅𝐶
)

2 √1 + (
𝜔

𝜔𝑅𝐶
)

2

=

𝜔

𝜔𝑅𝐶

√1+(
𝜔

𝜔𝑅𝐶
)

2
 defines 

the phase shift of out-signal. 

In Fig. 2, the amplitude 𝑈𝐶0𝑎𝑚 of out-signal is shown, 

while in Fig. 3, the normalised phase shift 𝜑/𝜋 for low-

pass RC filter vs. angular frequency is presented. It is seen 

that the amplitude of the out-signal 𝑈𝐶0𝑎𝑚, as well as the 

phase shift 𝜑 depend on the angular frequency 𝜔. When the 

frequency is low (
𝜔

𝜔𝑅𝐶
→ 0), then the amplitude of the out-

voltage is the same as the amplitude of the in-voltage 

(𝑈𝐶0𝑎𝑚 → 𝑈0). The phase shift is 𝜑 → 0. When 
𝜔

𝜔𝑅𝐶
= 1, 

then 𝑈𝐶0𝑎𝑚 =
𝑈0

√2
 and the phase shift is 𝜑 =

𝜋

4
 rad. When 

𝜔

𝜔𝑅𝐶
→ ∞, then 𝑈𝐶0𝑎𝑚 → 0 and at the same time 𝜑 →

𝜋

2
 rad.  

 

Fig. 2. Amplitude 𝑈𝐶0𝑎𝑚 of out-signal for low-pass RC filter vs. 

angular frequency (𝑈0 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s).  

 

=  𝑈0𝑒𝑗𝜔𝑡𝐶0(𝜀𝑅
′  

𝐶  −  𝑗𝜀𝑅
′  

𝐶
′  )  =  𝑈0𝑒𝑗𝜔𝑡𝐶 ,

=  𝜀𝑅
′  

𝐶𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+  )  +  𝜀𝑅
′  

𝐶
′  𝜔𝐶0𝑈0𝑒𝑗𝜔𝑡.  (3)

.

  Equation  (5)  can be rewritten  by  finding  the  amplitude 

of  𝑈𝐶0𝑎𝑚  and  the  phase shift  𝜑:

https://doi.org/10.24425/opelre.2022.141949
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In Fig. 4, the in-phase component [𝑈𝐶0(0)] of the 

voltage [𝑈𝑜𝑢𝑡(𝑡)] on the capacitor 𝐶0 is presented. It can be 

seen that at 𝜔𝑅𝐶 = 1000 rad/s: 𝑈𝐶0(0) =
1

2
𝑈0. In Fig. 5, 

−
𝜋

2
 shifted component [𝑈

𝐶0(−
𝜋

2
)
] of the voltage [𝑈𝑜𝑢𝑡(𝑡)] 

on the capacitor 𝐶0 is presented. It can be concluded that at 

𝜔𝑅𝐶 = 1000 rad/s 𝑈
𝐶0(−

𝜋

2
)

=
1

2
𝑈0. In Fig. 6, the Cole-

Cole plot for 𝑈
𝐶0(−

𝜋

2
)
 vs. 𝑈𝐶0(0) is shown. It is seen how the 

electric voltage 𝑈𝑜𝑢𝑡 on the capacitor 𝐶0 changes and how 

the phase shift 𝜑 changes with the angular frequency. 

3. 𝐑𝐂 filter with the capacitor filled with the liquid 

crystal 

When the liquid crystal (LC) is placed inside the capaci-

tor (Fig. 7), then the electric response of the 𝑅𝐶 circuit 

changes in comparison with the response of the 𝑅𝐶0 circuit.  

To solve this problem, the solution of the differential 

equation describing the charge 𝑞(𝑡) in the 𝑅𝐶 circuit when 

the capacitor is filled with a liquid crystal characterized by 

the complex permittivity 𝜀∗ = 𝜀′ − 𝑗𝜀′′:  

𝑑𝑞

𝑑𝑡
+ 𝜔𝑅𝐶

∗𝑞 =
𝑈0

𝑅
𝑒𝑗𝜔𝑡 (7) 

should be found. In (7), 𝜔𝑅𝐶
∗ =

𝜔𝑅𝐶

𝜀∗ =
1

𝜀∗𝑅𝐶0
 stands for the 

complex relaxation angular frequency of the 𝑅𝐶 circuit. 

The solution of this differential equation expresses the 

charge 𝑞(𝑡) as a time function : 

𝑞(𝑡)

= 𝑈0𝑒𝑗𝜔𝑡𝐶0 (
𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2

− 𝑗 
Ω𝑅𝐶 +  𝜓′′

𝜓′2 + (Ω𝑅𝐶 +  𝜓′′)2
  

(8) 

where 𝜓′ =
𝜀′

𝜀′2
+𝜀′′2 =

𝜀′

|𝜀∗|2, while 𝜓′′ =
𝜀′′

𝜀′2
+𝜀′′2 =

𝜀′′

|𝜀∗|2 and 

Ω𝑅𝐶 =
𝜔

𝜔𝑅𝐶
. When the cell is considered empty, then (8) 

modifies into the shape of (2): 

𝑞(𝑡) = 𝑈0𝑒𝑗𝜔𝑡𝐶0 (
1

1 + Ω𝑅𝐶
2 − 𝑗

Ω𝑅𝐶

1 + Ω𝑅𝐶
2   

It should be remembered that the impedance analyser 

measures the current 𝐼(𝑡) as a result of applying the electric 

harmonic voltage 𝑈0𝑒𝑗𝜔𝑡 . To calculate this current, both 

 

Fig. 3. Normalised phase shift 𝜑/𝜋 for low-pass RC filter vs. 

angular frequency (𝑈0 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s). 

 

 

Fig. 4. In-phase component [𝑈𝐶0(0)] of voltage 𝑈𝐶0 on empty 

capacitor 𝐶0 (𝑈0 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s) vs. angular 

frequency 𝜔. 

 

Fig. 5. −
𝜋

2
-shifted component [𝑈

𝐶0(−
𝜋

2
)
] of voltage 𝑈𝐶0 on 

empty capacitor 𝐶0 (𝑈0 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s) vs. 

angular frequency 𝜔. 

 

 

 

 

 

Fig. 6.  −
𝜋

2
- [componentshifted 𝑈

𝐶0(−
𝜋

2
)
] vs in. -phase 

component [𝑈𝐶0(0)] on empty capacitor 𝐶0 (𝑈0 = 10 V, 

𝜔𝑅𝐶 = 1000 rad/s) – the Cole-Cole plot. The amplitude 

𝑈𝐶0𝑎𝑚, as well as the shift-angle 𝜑 are shown. 

 

Fig. 7. Low-pass RC filter consists of the resistance 𝑅 and the 

capacitor 𝐶 filed with the LC characterized by complex 

permittivity: 𝜀∗ = 𝜀′ − 𝑗𝜀′′. In-signal [𝑈𝑖𝑛(𝑡)] generates 

the current [𝐼(𝑡)]. And the current generates the out-

signal [𝑈𝑜𝑢𝑡(𝑡)]. 

 

)  =  𝑈0𝑒𝑗𝜔𝑡𝐶0(𝜀𝐸
′  

𝐹  −  𝑗  𝜀𝐸
′  

𝐹
′  ) ,

) .

https://doi.org/10.24425/opelre.2022.141949
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sides of (8) should be differentiated. The following formula 

for the current is derived: 

𝐼(𝑡) = 
𝑑

𝑑𝑡
𝑞(𝑡) =

𝑑

𝑑𝑡
𝑈0𝑒𝑗𝜔𝑡𝐶0 (

𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
 

− 𝑗 
Ω𝑅𝐶 +  𝜓′′

𝜓′2 + (Ω𝑅𝐶 +  𝜓′′)2
) = 𝑗𝜔𝑈0𝑒𝑗𝜔𝑡𝐶0(𝜀𝐸𝐹

′ − 𝑗 𝜀𝐸𝐹
′′ )

= 𝜀𝐸𝐹
′ 𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

) − 𝑗𝜀𝐸𝐹
′′ 𝜔𝐶0𝑈0𝑗𝑒𝑗𝜔𝑡

= 𝜀𝐸𝐹
′ 𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

) + 𝜀𝐸𝐹
′′ 𝜔𝐶0𝑈0𝑒𝑗𝜔𝑡  . (9) 

The first part of the current 𝐼(𝑡) leads the AC voltage 

by 


2
 rad, while the second part of the current 𝐼(𝑡) is in 

phase with the electric voltage. 

When the current 𝐼(𝑡) and the impedance of the 

capacitor 𝑋𝐶 = −𝑗
1

𝜔𝜀∗𝐶0
 are multiplied, the electric voltage 

𝑈𝑜𝑢𝑡(𝑡) on the capacitor (vs. time) is calculated: 

𝑈𝑜𝑢𝑡(𝑡) = 𝐼(𝑡) ∙ 𝑋𝐶

= (𝜀𝐸𝐹
′ 𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

) + 𝜀𝐸𝐹
′′ 𝜔𝐶0𝑈0𝑒𝑗𝜔𝑡) (−𝑗

1

𝜔𝜀∗𝐶0

)

= (𝜀𝐸𝐹
′ 𝜔𝐶0𝑈0𝑒𝑗(𝜔𝑡+

𝜋
2

)

+ 𝜀𝐸𝐹
′′ 𝜔𝐶0𝑈0𝑒𝑗𝜔𝑡) (−𝑗

1

𝜔(𝜀′ − 𝑗𝜀′′)𝐶0

)

= −𝑗𝑈0 (
𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗(𝜔𝑡+

𝜋
2

)

+
Ω𝑅𝐶 + 𝜓′′

𝜓′2 + (Ω𝑅𝐶 +  𝜓′′)2
𝑒𝑗𝜔𝑡) (

𝜀′

𝜀′2 + 𝜀′′2 + 𝑗
𝜀′′

𝜀′2 + 𝜀′′2)

= −𝑗𝑈0 (
𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗(𝜔𝑡+

𝜋
2

)

+
Ω𝑅𝐶 +  𝜓′′

𝜓′2 + (Ω𝑅𝐶 +  𝜓′′)2
𝑒𝑗𝜔𝑡) (𝜓′ + 𝑗𝜓′′), (10)

 

where 𝜓′ =
𝜀′

𝜀′2
+𝜀′′2 and 𝜓′′ =

𝜀′′

𝜀′2
+𝜀′′2 .  

After multiplication in (10): 

𝑈𝑜𝑢𝑡(𝑡)

= −𝑗𝑈0 [(
𝜓′𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒

𝑗(𝜔𝑡+
𝜋
2

)

+
(Ω𝑅𝐶 + 𝜓′′)𝜓′

𝜓′2 + (Ω𝑅𝐶 +  𝜓′′)2
𝑒𝑗𝜔𝑡) + (

𝜓′𝑗𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒

𝑗(𝜔𝑡+
𝜋
2

)

+
(Ω𝑅𝐶 + 𝜓′′)𝑗𝜓′′

𝜓′2 + (Ω𝑅𝐶 +  𝜓′′)2
𝑒𝑗𝜔𝑡)]

= 𝑒−𝑗
𝜋
2𝑈0𝑒𝑗𝜔𝑡 (

𝜓′𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗𝜋

+
𝜓′𝜓′ + (Ω𝑅𝐶 + 𝜓′′)𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗

𝜋
2 +

(Ω𝑅𝐶 + 𝜓′′)𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′)2
)

= 𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗𝜋𝑒−𝑗

𝜋
2

+
𝜓′𝜓′ + (Ω𝑅𝐶  + 𝜓′′)𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗

𝜋
2𝑒−𝑗

𝜋
2   +  

(Ω𝑅𝐶 +  𝜓′′)𝜓′

𝜓′2+ (Ω𝑅𝐶 +  𝜓′′)2
𝑒−𝑗

𝜋
2)=

 

 

= 𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗

𝜋
2 +

𝜓′𝜓′ + (Ω𝑅𝐶 + 𝜓′′)𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2

+
(Ω𝑅𝐶 + 𝜓′′)𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′)2
𝑒−𝑗

𝜋
2)  = 𝑈0𝑒𝑗𝜔𝑡 (

𝜓′𝜓′ + (Ω𝑅𝐶 +  𝜓′′)𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2

+
𝜓′𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒𝑗

𝜋
2 −

(Ω𝑅𝐶 + 𝜓′′)𝜓′

𝜓′2 + (Ω𝑅𝐶 +  𝜓′′)2
𝑒𝑗

𝜋
2)

= 𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′+ (Ω𝑅𝐶 + 𝜓′′)𝜓′′

𝜓′2+ (Ω𝑅𝐶 + 𝜓′′

 

)2

+
𝜓′𝜓′′ − (Ω𝑅𝐶 + 𝜓′′)𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′  )2
𝑒+𝑗

𝜋
2)

= 𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′ +(Ω𝑅𝐶 + 𝜓′′)𝜓′′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
+

Ω𝑅𝐶𝜓′

𝜓′2 + (Ω𝑅𝐶 + 𝜓′′ )2
𝑒−𝑗

𝜋
2)

= 𝑈0𝑒𝑗𝜔𝑡 (𝑈𝐶(0) + 𝑈
𝐶(−

𝜋
2

)
𝑒−𝑗

𝜋
2). 

It is seen that the first part [𝑈𝐶(0)] of the solution 

𝑈𝑜𝑢𝑡(𝑡) is in phase with the in-signal, while the second part 

[𝑈
𝐶(−

𝜋

2
)
] lags the in-signal by 

𝜋

2
 rad.  

If no relaxation is assumed in the liquid crystal placed 

inside the capacitor (𝜓′′ = 0, 𝜓′ = const), then the output 

signal (11) takes the following form: 

𝑈𝑜𝑢𝑡(𝑡)

= 𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′ + (Ω𝑅𝐶 + 0)0

𝜓′2 + (Ω𝑅𝐶 + 0 )2
+

Ω𝑅𝐶𝜓′

𝜓′2 + (Ω𝑅𝐶 + 0 )2
𝑒−𝑗

𝜋
2)

= 𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′

𝜓′2 + Ω𝑅𝐶
2 +

Ω𝑅𝐶𝜓′

𝜓′2 + Ω𝑅𝐶
2 𝑒−𝑗

𝜋
2)

= 𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′

𝜓′2 + Ω𝑅𝐶
2 +

Ω𝑅𝐶𝜓′

𝜓′2 + Ω𝑅𝐶
2 𝑒−𝑗

𝜋
2). (12) 

In this case: 𝜓′ =
1

𝜀′. After the multiplication of 

nominators and denominators by 𝜀′2
, one can obtain: 

𝑈𝑜𝑢𝑡(𝑡) = 𝑈0𝑒𝑗𝜔𝑡 (

1

𝜀′2

1

𝜀′2 + Ω𝑅𝐶
2

+
Ω𝑅𝐶  

1
𝜀′

1

𝜀′2 + Ω𝑅𝐶
2

𝑒−𝑗
𝜋
2)

= 𝑈0𝑒𝑗𝜔𝑡 (
1

1 + (
𝜀′𝜔
𝜔𝑅𝐶

)
2 +

𝜀′𝜔
𝜔𝑅𝐶

1 + (
𝜀′𝜔
𝜔𝑅𝐶

)
2 𝑒−𝑗

𝜋
2). (13) 

If the amplitude/phase formula for 𝑈𝑜𝑢𝑡(𝑡) is 

considered, (13) can be rewritten: 

𝑈𝑜𝑢𝑡(𝑡)  = 𝑈0𝑒𝑗(𝜔𝑡−𝜑)√(
1

1 + (
𝜀′𝜔
𝜔𝑅𝐶

)
2)

2

+ (

𝜀′𝜔
𝜔𝑅𝐶

1 + (
𝜀′𝜔
𝜔𝑅𝐶

)
2 )

2

= 𝑈0𝑒𝑗(𝜔𝑡−𝜑)√

1 + (
𝜀′𝜔
𝜔𝑅𝐶

)
2

(1 + (
𝜀′𝜔
𝜔𝑅𝐶

)
2

)
2 = 𝑈𝐶𝑎𝑚𝑒𝑗(𝜔𝑡−𝜑) , 

(14) 

 (11)
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where 𝑈𝐶𝑎𝑚 =
𝑈0

√1+(
𝜀′𝜔

𝜔𝑅𝐶
)

2
=

𝑈0

√1+(𝜀′Ω𝑅𝐶)2
 and   

sin 𝜑 =

𝜀′𝜔

𝜔𝑅𝐶

√1+(
𝜀′𝜔

𝜔𝑅𝐶
)

2
=

𝜀′Ω𝑅𝐶

√1+(𝜀′Ω𝑅𝐶)2
. 

When (14) is compared with (6), true for the empty 

capacitor, it can be concluded that the maximum amplitude 

(𝑈0) is the same as for the empty capacitor, while the 

electric response for the capacitor with LC is shifted left in 

comparison with the empty capacitor response. The voltage 

𝑈𝑜𝑢𝑡(𝑡) on the capacitor lags AC external voltage 𝑈0𝑒𝑗𝜔𝑡 

by the phase 𝜑 and this phase shift depends on the angular 

frequency (𝜔) and the electric properties (𝜀′) of LC. 

Let us think about the general case when the LC 

exhibits relaxation close to the cut-off frequency of RC 

filter. Analysing (11): 

𝑈𝑜𝑢𝑡(𝑡)=𝑈0𝑒𝑗𝜔𝑡 (
𝜓′𝜓′+(Ω𝑅𝐶+ 𝜓′′)𝜓′′

𝜓′2
+(Ω𝑅𝐶+𝜓′′ )2

+
Ω𝑅𝐶𝜓′

𝜓′2
+(Ω𝑅𝐶+𝜓′′ )2

𝑒−𝑗
𝜋

2),  

it can be noticed that in the out-signal 𝑈𝑜𝑢𝑡(𝑡), there are 

two parts: part [
𝜓′𝜓′+(Ω𝑅𝐶+ 𝜓′′)𝜓′′

𝜓′2
+(Ω𝑅𝐶+𝜓′′ )2

] in phase with in-signal 

and part [
Ω𝑅𝐶𝜓′

𝜓′2
+(Ω𝑅𝐶+𝜓′′ )2

] which lags in-signal by 
𝜋

2
 rad. 

This formula can be rewritten in another way:  

𝑈𝑜𝑢𝑡(𝑡)  

= 𝑈0𝑒𝑗(𝜔𝑡−𝜑)√(
𝜓′𝜓′+(Ω𝑅𝐶+ 𝜓′′)𝜓′′

𝜓′2
+(Ω𝑅𝐶+𝜓′′ )2

)
2

+ (
Ω𝑅𝐶𝜓′

𝜓′2
+(Ω𝑅𝐶+𝜓′′ )2

)
2

  

= 𝑈0
√(𝜓′𝜓′+(Ω𝑅𝐶+ 𝜓′′)𝜓′′)2+(Ω𝑅𝐶𝜓′)2

𝜓′2
+(Ω𝑅𝐶+𝜓′′ )2

𝑒𝑗(𝜔𝑡−𝜑) 

= 𝑈𝐶𝑎𝑚𝑒𝑗(𝜔𝑡−𝜑),  (15) 

where 𝑈𝐶𝑎𝑚 = 𝑈0
√(𝜓′𝜓′+(Ω𝑅𝐶+ 𝜓′′)𝜓′′)2+(Ω𝑅𝐶𝜓′)2

𝜓′2
+(Ω𝑅𝐶+𝜓′′)2

 is the 

amplitude of the out-signal, while   

sin 𝜑 =
Ω𝑅𝐶𝜓′

√(𝜓′𝜓′+(Ω𝑅𝐶+ 𝜓′′)𝜓′′)2+(Ω𝑅𝐶𝜓′)2
 describes the phase 

shift of the out-signal. 

Equations (15) for 𝑈𝑜𝑢𝑡(𝑡), 𝑈𝐶𝑎𝑚, and sin 𝜑 are derived 

and true for any electric properties of LC which can be 

potentially put into the capacitor. Equations (15) transform 

into (6) when the empty capacitor is considered, and 

transform into (14) when the capacitor, filled with LC not 

showing relaxation, is considered.  

Let us now consider the nematic LC which exhibits one 

relaxation described by the Debye model [5], and its 

permittivity (vs. angular frequency) can be calculated using 

the formula: 

𝜀∗(𝜔) = 𝜀∞ +
𝜀𝑆 − 𝜀∞

1 + 𝑗𝜔𝜏

= (𝜀∞ +
𝜀𝑆 − 𝜀∞

1 + 𝜔2𝜏2
) − 𝑗 (

𝜀𝑆 − 𝜀∞

1 + 𝜔2𝜏2
𝜔𝜏) = 𝜀′ − 𝑗𝜀′′, 

(16) 

where 𝜀∞ is the high-frequency limit of permittivity, 𝜀𝑆 is 

the low-frequency limit of permittivity, 𝜏 is the relaxation 

time of the Debye mode. The typical spectrum of 

permittivity is shown in Fig. 8. To calculate it from (16), 

the following parameters were assumed 𝜀∞ = 3, 𝜀𝑆 = 50, 

𝜏 = 0.01 s, 𝜔𝑟 =
1

𝜏
= 100 rad/s. At low frequencies, the 

real part is constant (𝜀𝑆) and the imaginary part is around 

zero. When the angular frequency is approaching the 

relaxation frequency, the real part (𝜀′) goes down while the 

imaginary part (𝜀′′) reaches the maximum. At high 

frequencies again, the imaginary part is around zero while 

the real part stabilises at the value of 𝜀∞. 

Knowing the electric permittivity of liquid crystals 

[𝜀′(𝜔) and 𝜀′′(𝜔)] vs. the angular frequency (𝜔),  

both parameters can be calculated: 𝜓′(𝜔) =
𝜀′

|𝜀∗|2 and  

𝜓′′(𝜔) =
𝜀′′

|𝜀∗|2 vs. angular frequency. Knowing these 

parameters, the amplitude 𝑈𝐶𝑎𝑚 of out-signal and the phase 

shift 𝜑 can be obtained [using (15)].  

3.1. Liquid crystal with low electric strength 

Let us now consider that 𝑈𝑖𝑛=10 V, and  

𝜔𝑅𝐶 = 1000 rad/s. Relaxation time 𝜏 in the LC changes 

from 0.1 s to 0.0001 s. Additionally, 𝜀𝑆 = 10 and 𝜀∞ = 3 

(𝛿𝜀 = 𝜀𝑆 − 𝜀∞ = 7) are assumed. It means that a nematic 

LC with the low electric strength (𝛿𝜀) are shown in this 

case. The amplitude 𝑈𝐶𝑎𝑚 and the phase shift 𝜑 of out-

signal can be calculated using (15) at assumed parameters. 

In Fig. 9, the amplitude of the out-voltage 𝑈𝐶𝑎𝑚 vs. the 

angular frequency 𝜔 is presented. It can be seen that filling 

the capacitor 𝐶0 with the LC always shifts left the plot 

𝑈𝐶0𝑎𝑚(𝜔). For the empty capacitor, the cut-off frequency 

is exactly 𝜔𝑅𝐶 = 1000 rad/s (plot empty). For the liquid 

crystal with a very long relaxation time (low relaxation 

 

Fig. 9. Amplitude of out-voltage 𝑈𝐶𝑎𝑚 vs. angular frequency 𝜔 

(angular frequency in logarithmic scale). 𝑈𝑖𝑛 = 10 V, 

𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 10, and 𝜀∞ = 3. Relaxation 

times (shown in the legend) change from long [no D(3)] 

to short [no D(10)] values. 

 

 

Fig. 8. Real (𝜀′) and imaginary (𝜀′′) parts of permittivity of 

liquid crystal calculated from the Debye model (16) using 

the following parameters: 𝜀∞ = 3, 𝜀𝑆 = 50, 𝜏 = 0.01 s, 

𝜔𝑟 =
1

𝜏
= 100 rad/s. 
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frequency), the cut-off frequency is 𝜔𝑐𝑜=333 rad/s [plot no 

D(3)]. For the LC with a very short relaxation time (high 

relaxation frequency), the cut-off frequency is 𝜔𝑐𝑜 =
100 rad/s [plot no D(10)]. For intermediate values of 

relaxation time (assumed in the LC), it is difficult to define 

𝜔𝑐𝑜. For shorter relaxation times, the plots differ from plot 

no D(3) at lower frequencies while for higher frequencies, 

the plots of 0.1 s and 0.05 s (longer relaxation times) are 

identical to plot no D(3). For longer relaxation times, the 

plots differ from plot no D(10) at higher frequencies while 

for lower frequencies plots 0.002 s and 0.001 s (shorter 

relaxation times) are identical to plot no D(10). 

Figure 10 seems to be more interesting. The normalized 

phase shift 𝜑/𝜋 vs. the angular frequency 𝜔 is presented 

here. It can be seen that for the empty capacitor (plot 

empty), for cells filled with the LC exhibiting a very long 

relaxation time [plot no D(3)], and for cells filled with the 

LC showing a very short relaxation time [plot no D (10)], 

the phase shift 𝜑 vs. the angular frequency 𝜔 increases 

monotonically. For shorter relaxation times (shorter than 

0.005 s), the plot 𝜑 vs. the angular frequency 𝜔 exhibits the 

local maximum at the angular frequency 𝜔𝑚𝑎𝑥 . It can also 

be seen that 𝜔𝑚𝑎𝑥  increases when the relaxation time 

decreases. Additionally, a local minimum can be observed 

at the angular frequency 𝜔𝑚𝑖𝑛. Moreover, it is seen that 

𝜔𝑚𝑖𝑛  increases when the relaxation time decreases. Phase 

shift 𝜑/𝜋 for an empty capacitor reaches a value of  

0.5 (𝜑 =
𝜋

2
 rad) practically at an angular frequency of 

100 krad/s, while for a filled capacitor with the LC  

(𝜏 = 0.0001 s), the phase shift 𝜑/𝜋 reaches the value of 

0.5 practically at an angular frequency of 1 mrad/s.  

In Figs. 11 and 12, two components of the amplitude 

𝑈𝐶𝑎𝑚 are shown respectively: in-phase component 𝑈𝐶(0) 

and −
𝜋

2
-phase component 𝑈

𝐶(−
𝜋

2
)
. To calculate them, (11) 

was used. It means that 𝑈𝐶0(0) is in phase with the external 

in-signal 𝑈𝑖𝑛 while 𝑈
𝐶0(−

𝜋

2
)
 lags the external in-signal by 

𝜋

2
 rad. In Fig. 13, plots of the  −

𝜋

2
-shifted component 

[𝑈
𝐶(−

𝜋

2
)
] vs. the in-phase component [𝑈𝐶(0)] on the 

capacitor 𝐶0 filled with LCs with different values of relaxa-

tion times are shown. 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s.  

It is seen that the picture of the electric response of the 

RC filter is much more complicated for a capacitor filled 

with the LC with low dielectric strength than for an empty 

capacitor (Figs. 4–6). 

3.2. Liquid crystal with average electric strength 

Knowing the electric response for the RC filter with the 

capacitor filled with the LC with low electric strength 

(𝛿𝜀 = 7), it can be assumed now that 𝜀𝑆 = 50 and 𝜀∞ = 3 

(𝛿𝜀 = 47 – average electric strength). Relaxation time 𝜏 in 

the LC changes from 1 s to 0.0001 s. As it was before: 

𝑈𝑖𝑛 = 10 V, and 𝜔𝑅𝐶 = 1000 rad/s. Knowing these 

parameters, the amplitude 𝑈𝐶𝑎𝑚 and the phase shift 𝜑 of 

out-signal can be calculated using (15) at assumed 

parameters. 

 

Fig. 10. Normalised phase shift 𝜑/𝜋 vs. angular frequency 𝜔 

(angular frequency in logarithmic scale). 𝑈𝑖𝑛 = 10 V, 

𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 10, and 𝜀∞ = 3. Relaxation 

times (shown in the legend) change from long [no D(3)] 

to short [no D(10)] values.  

 

 

Fig. 11. Amplitude of in-phase 𝑈𝐶(0) component of amplitude 

𝑈𝐶 of out-signal vs. angular frequency 𝜔 (angular 

frequency in logarithmic scale) for the capacitor filled 

with the LCs with different values of relaxation times 

(shown in the legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 

𝜀𝑆 = 10, and 𝜀∞ = 3.  

 

Fig. 12. Amplitude of −
𝜋

2
-phase 𝑈

𝐶(−
𝜋

2
)
 component of amplitude 

𝑈𝐶 of out-signal vs. angular frequency 𝜔 (angular 

frequency in logarithmic scale) for the cell filled with the 

LCs with different values of relaxation times (shown in 

the legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 10, 
and 𝜀∞ = 3. 

 

Fig. 13.  −
𝜋

2
-shifted component (𝑈

𝐶(−
𝜋

2
)
) vs. in-phase 

component [𝑈𝐶(0)] on capacitor 𝐶0 filled with the LCs 

with different values of relaxation times (shown in the 

legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 10, and 

𝜀∞ = 3. 
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In Fig. 14, the amplitude of out-voltage 𝑈𝐶𝑎𝑚 vs. the 

angular frequency 𝜔 is presented. It can be seen that filling 

the capacitor 𝐶0 with the LC with average electric strength 

shifts left the plot 𝑈𝐶𝑎𝑚(𝜔) in comparison with Fig. 9. For 

the empty capacitor, the cut-off frequency is exactly 𝜔𝑅𝐶 =
1000 rad/s (plot empty). For the LC with a very long 

relaxation time (low relaxation frequency), the cut-off 

frequency is 𝜔𝑐𝑜 = 333 rad/s [plot no D(3)]. For the LC 

with a very short relaxation time (high relaxation 

frequency), the cut-off frequency is 𝜔𝑐𝑜 = 20 rad/s [plot no 

D(50)]. For intermediate values of relaxation time 

(assumed in liquid crystal), it is difficult to define 𝜔𝑐𝑜. For 

shorter relaxation times, the plots differ from plot no D(3) 

at lower frequencies, while for higher frequencies the plots 

of 1 s and 0.5 s (longer relaxation times) are identical to 

plot no D(3). For longer relaxation times, the plots differ 

from plot no D(50) at higher frequencies, while for lower 

frequencies, the plots of 0.005 s and 0.002 s (shorter 

relaxation times) are identical to plot no D(50). The 

frequency range of the electric response modification is 

wider than in the case of the LC with low dielectric 

strength.  

Figure 15 seems to be more interesting. The normalized 

phase shift 𝜑/𝜋 vs. the angular frequency 𝜔 is presented 

here. It can be seen that for the empty capacitor (plot 

empty), for cells filled with the LC showing a very long 

relaxation time [plot no D(3)], and for cells filled with the 

LC exhibiting a very short relaxation time [plot no D(50)], 

the phase shift 𝜑 vs. the angular frequency 𝜔 increases 

monotonically. For capacitors filled with the LC showing 

average relaxation times, the plot 𝜑 vs. the angular 

frequency 𝜔 exhibits the local maximum at the angular 

frequency 𝜔𝑚𝑎𝑥 . It can be observed that 𝜔𝑚𝑎𝑥 increases 

when the relaxation time decreases. Additionally, a local 

minimum can be observed at the angular frequency 𝜔𝑚𝑖𝑛 . 

And again, 𝜔𝑚𝑖𝑛 increases when the relaxation time 

decreases. Phase shift 𝜑/𝜋 for an empty cell reaches a 

value of 0.5 (𝜑 =
𝜋

2
 rad) practically at an angular 

frequency of 100 krad/s. For a filled capacitor with the LC 

(𝜏 = 0.0001s), the phase shift 𝜑/𝜋 reaches a value of 0.5 

practically at an angular frequency of 10 mrad/s. It is seen 

(Fig. 15) that the modulation depth of 𝜑 is larger in this 

case than for the liquid crystal with low electric strength 

(Fig. 10).  

In Figs. 16 and 17, two components of the amplitude 

𝑈𝐶𝑎𝑚  are shown respectively: in-phase component 𝑈𝐶(0) 

and −
𝜋

2
-phase component 𝑈

𝐶(−
𝜋

2
)
. To calculate them, (11) 

was used. It means that 𝑈𝐶0(0) is in phase with the external 

in-signal 𝑈𝑖𝑛 while 𝑈
𝐶0(−

𝜋

2
)
 lags the external in-signal by 

𝜋

2
 rad.  

In Fig. 18, plots of the −
𝜋

2
-shifted component [𝑈

𝐶(−
𝜋

2
)
] 

vs. the in-phase component [𝑈𝐶(0)] on the capacitor 𝐶0 

filled with the LCs with different values of relaxation times 

are shown. 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s. It is observed 

that the picture of the electric response of the RC filter is 

much more complicated for the capacitor filled with the LC 

medium with average dielectric strength than for the empty 

 

Fig. 16. Amplitude of in-phase 𝑈𝐶0(0) component of amplitude 

𝑈𝐶𝑎𝑚 of out-signal vs. angular frequency 𝜔 (angular 

frequency in logarithmic scale) for the cell filled with 

the LCs with different values of relaxation times 

(shown in the legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 

𝜀𝑆 = 50, and 𝜀∞ = 3. 

 

Fig. 17. Amplitude of −
𝜋

2
-phase 𝑈

𝐶(−
𝜋

2
)
 component of 

amplitude 𝑈𝐶𝑎𝑚 of out-signal vs. angular frequency 𝜔 

(angular frequency in logarithmic scale) for the cell 

filled with the LCs with different values of relaxation 

times (shown in the legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 =
1000 rad/s, 𝜀𝑆 = 50, and 𝜀∞ = 3. 

 

 

 

 

Fig. 14. Amplitude of out-voltage 𝑈𝐶𝑎𝑚 vs. angular frequency 𝜔 

(angular frequency in logarithmic scale). 𝑈𝑖𝑛 = 10 V, 

𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 50, and 𝜀∞ = 3. Relaxation 

times (shown in the legend) change from long [no D(3)] 

to short [no D(50)] values. 

 

Fig. 15. Normalised phase shift 𝜑/𝜋 vs. angular frequency 𝜔 

(angular frequency in logarithmic scale). 𝑈𝑖𝑛 = 10 V, 

𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 50, and 𝜀∞ = 3. Relaxation 

times (shown in the legend) change from long [no D(3)] 

to short [no D(50)] values.  
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capacitor (Fig. 6), as well as for the capacitor filled with the 

LC medium with low dielectric strength (Fig. 13). 

3.3. Liquid crystal with high electric strength  

Knowing the electric response for the RC filter with the 

capacitor filled with the LC with average electric strength 

(𝛿𝜀 = 47), it can be assumed now that 𝜀𝑆 = 100 and  
𝜀∞ = 3 (𝛿𝜀 = 97 – high electric strength). Relaxation time 

𝜏 in the LC changes from 2 s to 0.0001 s. As it was before: 

𝑈𝑖𝑛 = 10 V and 𝜔𝑅𝐶 = 1000 rad/s. Knowing these 

parameters, the amplitude 𝑈𝐶𝑎𝑚 can be calculated at the 

phase shift 𝜑 of out-signal using (15).  

In Fig. 19, the amplitude of the out-voltage UCam vs. the 

angular frequency 𝜔 is presented. It is seen that filling the 

capacitor 𝐶0 with the LC with high electric strength shifts 

left the plot 𝑈𝐶𝑎𝑚(𝜔) in comparison with Fig. 14. For  

the empty capacitor, the cut-off frequency is exactly  
𝜔𝑅𝐶 = 1000 rad/s (plot empty). For the LC with a very 

long relaxation time (low relaxation frequency), the cut-off 

frequency is 𝜔𝑐𝑜 = 333 rad/s [plot no D(3)]. For the LC 

with a very short relaxation time (high relaxation 

frequency), the cut-off frequency is 𝜔𝑐𝑜 = 10 rad/s [plot no 

D(100)]. For intermediate values of relaxation time 

(assumed in the liquid crystal), it is difficult to define 𝜔𝑐𝑜. 

For shorter relaxation times, the plots differ from plot no 

D(3) at lower frequencies while for higher frequencies 

plots of 2 s and 1 s (longer relaxation times) are identical to 

plot no D(3). For longer relaxation times, the plots differ 

from plot no D(100) at higher frequencies while for lower 

frequencies plots of 0.005 s, 0.01 s, and 0.02 s (shorter 

relaxation times) are identical to plot no D(100). The 

frequency range of the electric response modification is 

wider than in the case of the LC with average and low 

dielectric strength.  

Figure 20 seems to be more interesting. The normalized 

phase shift 𝜑/𝜋 vs. the angular frequency 𝜔 is presented 

here. It can be seen that for the empty capacitor (plot 

empty), for cells filled with a liquid crystal showing a very 

long relaxation time [plot no D(3)], and for cells filled with 

a liquid crystal showing a very short relaxation time [plot 

no D(100)], the phase shift 𝜑 vs. the angular frequency 𝜔 

increases monotonically. For cells filled with the LC for 

average relaxation times, the plot 𝜑 vs. angular frequency 

𝜔 exhibits the local maximum at the angular frequency 

𝜔𝑚𝑎𝑥 . It is seen that 𝜔𝑚𝑎𝑥  increases when the relaxation 

time decreases. Additionally, the local minimum at the 

angular frequency 𝜔𝑚𝑖𝑛can be observed. Moreover, it can 

be noticed that 𝜔𝑚𝑖𝑛 increases when the relaxation time 

decreases. Phase shift 𝜑/𝜋 for an empty cell reaches a 

value of 0.5 (𝜑 =
𝜋

2
 rad) practically at an angular frequency 

of 100 krad/s, while for a filled cell with a liquid crystal 

(𝜏 = 0.0001 s), the phase shift 𝜑/𝜋 reaches a value of 0.5 

practically at an angular frequency around 100 mrad/s. It is 

seen that the modulation depth of 𝜑 is larger in this case 

than for the LC with average electric strength (Fig. 15).  

In Figs. 21 and 22, two components of the amplitude 𝑈𝐶𝑎𝑚 

are shown respectively: in-phase component 𝑈𝐶(0) and  

−
𝜋

2
-phase component 𝑈

𝐶(−
𝜋

2
)
. Equation (11) was used to 

calculate them. It means that 𝑈𝐶0(0) is in phase with the 

external in-signal 𝑈𝑖𝑛 while 𝑈
𝐶0(−

𝜋

2
)
 lags the external in-

signal by 
𝜋

2
 rad. In Fig. 23, plots of −

𝜋

2
-shifted component 

[𝑈
𝐶(−

𝜋

2
)
] vs. the in-phase component [𝑈𝐶(0)] on the 

capacitor 𝐶0 filled with the LCs with different values of 

relaxation times are shown. 𝑈𝑖𝑛= 10 V, 𝜔𝑅𝐶  = 1000 rad/s. 

The picture of the electric response of the RC filter is much 

more complicated for the capacitor filled with the LC 

medium with high dielectric strength than for the empty 

capacitor (Fig. 6), as well as the capacitor filled with the 

LC medium with low (Fig. 13) and average (Fig. 18) 

dielectric strength.  

 

Fig. 19. Amplitude of out-voltage 𝑈𝐶𝑎𝑚 vs. angular frequency 𝜔 

(angular frequency in logarithmic scale). 𝑈𝑖𝑛 = 10 V, 

𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 100, and 𝜀∞ = 3. Relaxation 

times (shown in the legend) change from long [no D(3)] 

to short [no D(100)] values. 

 

 

Fig. 20. Normalised phase shift 𝜑/𝜋 vs. angular frequency 𝜔 

(angular frequency in logarithmic scale). 𝑈𝑖𝑛 = 10 V, 

𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 100, and 𝜀∞ = 3. Relaxation 

times (shown in the legend) change from long [no D(3)] 

to short [no D(100)] values.  

 

 

Fig. 18. −
𝜋

2
-shifted component [𝑈

𝐶(−
𝜋

2
)
] vs. in-phase 

component [𝑈𝐶(0)] on capacitor 𝐶0 filled with the LCs 

with different values of relaxation times (shown in the 

legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 50, and 

𝜀∞ = 3. 
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4. Conclusions  

When the results shown in Figs. 2–6 obtained for  

the empty cell are compared with the results shown in  

Figs. 9–13, in Figs. 14–18, and in Figs. 19–23 obtained for 

nematic LC with low electric strength (𝛿𝜀 = 7), with 

average electric strength (𝛿𝜀 = 47) and with high electric 

strength (𝛿𝜀 = 97) respectively, it can be concluded that 

the LC with different electric strength significantly 

modifies the electric response of the low-pass RC filter.  

It is not only related to a shift of the electric response into 

the lower frequency range, but also the phase shift 𝜑 starts 

to change non-monotonically (in contrast to a classical  

low-pass RC filter).  

Equations (11) and (15) derived in this paper describe 

the properties of the low-pass RC filter for any electric 

properties of the LC. The cases presented in this paper are 

the simplest ones. Only one Debye relaxation is assumed, 

and any additional effects are not taken into account. It is 

worth stressing that the effect considered in this paper can 

be more complicated. For example, two relaxations could 

be presented in the analysed LC. Not only Debye relaxation 

but also Cole-Cole, Cole-Davisson, or Havriliak-Negami 

ones can be considered in the analysed medium. The 

relaxations observed in the LCs usually depend on 

temperature. When the temperature increases, the 

relaxation frequency usually increases according to the 

Arrhenius law. Additionally, it can be assumed that 

nematic LCs can be reoriented using an electric field with 

the proper frequency and strength. This reorientation called 

the Fréedericksz transition is triggered by the electric 

anisotropy ∆𝜀 of the aligned nematic phase. For the 

reorientation, an electric field existing in the capacitor in a 

low-pass RC filter can be used. The reorientation in the 

capacitor makes the LC a completely different medium 

from an electric point of view. This makes the potential 

influence of LC properties on the low-pass RC filter 

properties richer than shown in this paper. Additionally, the 

electric strength analysed in this paper is limited to 100. It 

seems that for a typical nematic LC, it is the highest 

possible value [13]. But the discovery of ferroelectricity in 

nematics [14–18] shifts this limit even to 8000. This can 

expand the application of LCs also as dielectric materials 

for electronics. 

Acknowledgements 

This work was sponsored by Military University of 

Technology grant no. UGB 22-793 (funds for 2022). 

References  

[1] Relaxation Phenomena. (eds. Wróbel, S & Haase, W) (Springer-
Verlag Berlin, 2003). https://doi.org/10.1007/978-3-662-09747-2  

[2] Dunmur, D. & Toriyama, K. Dielectric propreties in Physical 
properties of liquid crystals (eds. Demus, D., Goodby, J., Gray, 
G. W., Spiess, H. W. & Vill, V.) 129–150 (Wiley-VCH Weinheim, 
1999) 

[3] Lagerwall, S. T. Ferroelectric and Antiferroelectric Luquid 
Crystals. (Wiley-VCH Weinheim 1999) 

[4] Buivydas, M. et al. Collective and non-collective excitations in 
antiferroelectric and ferrielectric liquid crystals studied by dielectric 
relaxation spectroscopy and electro-optic measurements. Liq. Cryst. 
23, 723–739 (1997). https://doi.org/10.1080/026782997208000   

[5] Holtzer, A. M. The Collected Papers of Peter J. W. Debye. 
(Interscience, New York – London, 1954).  
https://doi.org/10.1002/pol.1954.120137203  

[6] Cole, K. S. & Cole, R. H. Dispersion and absorption in dielectrics. 
Alternating current characteristics. J. Chem. Phys. 9, 341–351 
(1941). https://doi.org/10.1063/1.1750906 

[7] Davidson, D. W. & Cole, R. H. Dielectric relaxation in glycerol, 
propylene glycol and n-propanol. J. Chem. Phys. 19, 1484–1491 
(1951). https://doi.org/10.1063/1.1748105  

[8] Havriliak, S. & Negami, S. A complex plane representation of diele-
ctric and mechanical relaxation processes in some polymers. Polymer 
8, 161–210 (1967). https://doi.org/10.1016/0032-3861(67)90021-3  

[9] Perkowski, P. Dielectric spectroscopy of liquid crystals. Theoretical 
model of ITO electrodes influence on dielectric measurements. 

 

Fig. 21. Amplitude of in-phase 𝑈𝐶0(0) component of amplitude 

𝑈𝐶𝑎𝑚 of out-signal vs. angular frequency 𝜔 (angular 

frequency in logarithmic scale) for the cell filled with the 

LC with different values of relaxation times (shown in 

the legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 100, 

and 𝜀∞ = 3. 

 

Fig. 22. Amplitude of −
𝜋

2
-phase 𝑈

𝐶(−
𝜋

2
)
 component of amplitude 

𝑈𝐶𝑎𝑚 of out-signal vs. angular frequency 𝜔 (angular 

frequency in logarithmic scale) for the cell filled with the 

LC with different values of relaxation times (shown in 

the legend). 𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 100, 

and 𝜀∞ = 3.  

 

Fig. 23. −
𝜋

2
-shifted component [𝑈

𝐶(−
𝜋

2
)
] vs. in-phase component 

[𝑈𝐶(0)] on capacitor 𝐶0 filled with the LCs with different 

values of relaxation times (shown in the legend). 

𝑈𝑖𝑛 = 10 V, 𝜔𝑅𝐶 = 1000 rad/s, 𝜀𝑆 = 100, and 𝜀∞ = 3. 

 

https://doi.org/10.24425/opelre.2022.141949
https://doi.org/10.1007/978-3-662-09747-2
https://doi.org/10.1080/026782997208000
https://doi.org/10.1002/pol.1954.120137203
https://doi.org/10.1063/1.1750906
https://doi.org/10.1063/1.1748105
https://doi.org/10.1016/0032-3861(67)90021-3


 Paweł J. Perkowski /Opto-Electronics Review 30 (2022) e141949 10 

 

Opto-Electron. Rev. 17, 180–186 (2009).  
https://doi.org/10.2478/s11772-008-0062-8  

[10] Perkowski, P. Dielectric spectroscopy of liquid crystals. Electrodes 
resistivity and connecting wires inductance influence on dielectric 
measurements, Opto-Electron. Rev. 20, 79–86 (2012).  
https://doi.org/10.2478/s11772-012-0004-3  

[11] Perkowski, P. The parasitic effects in high-frequency dielectric 
spectroscopy of liquid crystals – the review. Liq. Crys. 48, 767–793 
(2021). https://doi.org/10.1080/02678292.2020.1852619  

[12] Fréedericksz, V. & Repiewa, A. Theoretisches und Experimentelles 
zur Frage nach der Natur der anisotropen Flüssigkeiten. Zeitschrift 
für Physik 42, 532–546 (1927). https://doi.org/10.1007/BF01397711 
[in German] 

[13] Mrukiewicz, M., Perkowski, P., Strzeżysz, O., Węgłowska, D. & 
Piecek. W. Pretransitional effects in a mesogenic mixture under an 
electric field, Phys. Rev. E. 97, 052704 (2018).  
https://doi.org/10.1103/PhysRevE.97.052704 

[14] Li, J. et al. Development of ferroelectric nematic fluids with giant-ε 
dielectricity and nonlinear optical properties. Sci. Adv. 7, abf5047 
(2021). https://doi.org/10.1126/sciadv.abf5047 

[15] Chen, X., Korblova, E., Dong, D. & Clark, N. A. First-principles 
experimental demonstration of ferroelectricity in a thermotropic 
nematic liquid crystal: Polar domains and striking electro-optics. 
Proc. Natl. Acad. Sci. USA (PNAS) 117, 14021–14031 (2020). 
https://doi.org/10.1073/pnas.2002290117  

[16] Mandle, R. J., Cowling, S. J. & Goodby, J. W. Rational design of 
rod-like liquid crystals exhibiting two nematic phases. Chem. Eur. J. 
23, 14554–14562 (2017). https://doi.org/10.1002/chem.201702742  

[17] Mandle, R. J., Cowling, S. J. & Goodby, J. W. A nematic to nematic 
transformation exhibited by a rod-like liquid crystal. Phys. Chem. 
Chem. Phys. 19, 11429–11435 (2017).  
https://doi.org/10.1039/C7CP00456G  

[18] Sebastián, N. et al. Ferroelectric-ferroelastic phase transition in a 
nematic liquid crystal. Phys. Rev. Lett. 124, 037801 (2020).  
https://doi.org/10.1103/PhysRevLett.124.037801  

 

https://doi.org/10.24425/opelre.2022.141949
https://doi.org/10.2478/s11772-008-0062-8
https://doi.org/10.2478/s11772-012-0004-3
https://doi.org/10.1080/02678292.2020.1852619
https://doi.org/10.1007/BF01397711
https://doi.org/10.1103/PhysRevE.97.052704
https://doi.org/10.1126/sciadv.abf5047
https://doi.org/10.1073/pnas.2002290117
https://doi.org/10.1002/chem.201702742
https://doi.org/10.1039/C7CP00456G
https://doi.org/10.1103/PhysRevLett.124.037801

	1. Introduction
	2. 𝐑𝐂 filter with an empty capacitor
	3. 𝐑𝐂 filter with the capacitor filled with the liquid crystal
	3.1. Liquid crystal with low electric strength
	3.2. Liquid crystal with average electric strength
	3.3. Liquid crystal with high electric strength

	4. Conclusions
	Acknowledgements
	References

