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Abstract. Large sets of articles are evaluated by predefined measures such as the article numbers and h-indexes. All of these indicators are
scalars and refer rather to one discipline or the comprehensive science. Thus, according to disciplinary categories in scientific databases, the
distribution has become too rigid for current science needs, dynamically growing towards inter- and trans-disciplinarity. We propose a new
method of calculating the impact on knowledge of articles and their citations, creating citation networks, and using one of the optimistic fuzzy
aggregation norms to estimate the contribution to the knowledge considering the citation inheritance of citing papers to cited papers (paper-
children to the paper-parents). Due to this method, we produced the contribution vectors for various disciplines/subdisciplines based on articles
and their citations of publications belonging to the considered disciplines. We can prepare the scientific profiles of papers and disciplines based
on the contribution vectors. Moreover, we can evaluate how much citations matter in the development of science. Applying this method, we
can estimate the contribution to the considered research field caused by papers and their citations from different areas of science. The proposed
method might be applicable in the assessment of developing concepts.
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1. INTRODUCTION
The dissemination scope of scientific ideas is assumed to be
measured by citations of the original publication – novel con-
ceptions sources and carriers. Besides citation numbers, another
measure such as the h-index has become an essential parame-
ter for measuring scholarly impact since the beginning of the
XXI century. The h-index can be applied to evaluate the pro-
ductivity and citation impact of a group of scientists employed
at one department, university, or even country. Many datasets
classify articles to scientific disciplines, and a few bibliometric
and scientometric measures have been developed based on the
categorical membership of scientific articles.

Scientometricians try to estimate the scientists’ achievement
by applying selected measures, while others study their useful-
ness to describe the development of disciplines or research ar-
eas. Since the tremendous scientific accomplishments appeared
suddenly and revolutionary [1], the proposed measures could
notice them only after some time by analyzing their citations
and the numbers of people following their methods. Moreover,
when authorities of research institutes choose measures to eval-
uate the attainments, this causes the researchers to try to reach
high levels of these measures and sometimes may lead some
scientists to unethical behavior [2].
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In the current paper, we consider the evolution of a scien-
tific field displayed by the publications appearing in the area
and endowed by the corresponding references with focus on un-
derstanding the overall knowledge dissemination process. As is
well-known, the distribution of publications according to disci-
plinary categories in appropriate databases poorly reflects cur-
rent scholars’ needs, which are dynamically growing towards
inter-, trans- and multidisciplinarity [3, 4]. The two global bib-
liographic databases, Web of Science (WoS) and Scopus use a
general classification system of the journals indexed. WoS cat-
egories reveal just the higher-level systematic domains, but the
Scopus classification exposes the research areas and research
disciplines. Similarly, the national and local databases function
by grouping the journals into one or two levels of hierarchy.
However, these distributions are not sufficiently informative to
understand the knowledge being disseminated and the predic-
tion of its development.

This paper proposes a new method for constructing and eval-
uating citation trees. The approach is based on a novel fuzzy
logic attitude constructing a diagram for each given paper with
follow-up encapsulation into a discipline general distribution.
In recursive tree building, fuzzy aggregation norms are applied
and confronted with the other currently used bibliometric mea-
sures. A comparative study defines the essential differences in
the progress of the scientific field and might therefore be used
to predict potential changes and tendencies in the development
of science. The hierarchical citation inheritance from article-
parent to articles-children is taken into account employing a
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model using citation trees. Assuming that both the publication
of the article and its citations add some small unit of knowl-
edge, we propose to aggregate all of these units of knowledge
with one of the fuzzy aggregation norms along with the cita-
tion trees concerning the research fields receiving the vectors
of the contribution of this publication to the considered re-
search fields. Based on these vectors, using the fuzzy aggre-
gation norm, we estimated the contribution-to-knowledge vec-
tors, the components of which are contributions to the con-
sidered research fields. Through the application of these vec-
tors, we can also include the contribution to knowledge of the
citations of publications not indexed to the chosen research
field.

2. STATE OF THE ART
The majority of scholars’ evaluation metrics are based on an
analysis of the citations received by scientific publications. Bib-
liographic databases, including reference data and primarily
global indexes, such as WoS, Scopus, or Google Scholar, are
the essential source for this study. Citation-based indicators (for
example, journal impact factor or h-index) may provide infor-
mation about the impact of an individual publication and publi-
cations corpora.

One of the critical subjects in scientific knowledge studies
consists of evaluating a possible influence of the information
derived from the bibliography or research characteristics on
citation “output” [5]. In this connection, co-authors’ attitudes
can normalize citation occurrences to obtain a general view
on scholarly output like conditions, collaborations, or fund-
ing. Citations can also serve as a multi-perspective vision on
the knowledge transfer in science and technology. Additionally,
due to significant differences in the citation count in various
disciplines, a problem of “a limited understanding of how dis-
ciplinary knowledge is used and diffused” is still perceptible
(see also [6]).

The mentioned paper [5] splits the fundamental citation in-
dicators into size-dependent and size-independent. The first
group includes three matters: the total number of citations, the
highly cited publications number, and h-index of a scientist
or scholar’s publication. Obviously, these measures do not de-
crease with the addition of the following publication. The sec-
ond group highly depends on dataset modification because it
consists of factors like the average citations per publication and
the proportion of highly cited publications. These factors fa-
cilitate comparative analysis between a small and an extensive
research group or a small and prominent institution after an ap-
propriate normalisation. Bibliometricians use the first group to
estimate the scientific achievements of researchers. However,
the h-index may be modified, e.g., the departmental h-index, to
evaluate groups of researchers’ activities [7]. Lazaridis [8] uses
the averages of the academics’ h-indexes to express university
department ranks.

Lipitakis et al. [9] suggest citation rates (CR) of research ar-
eas (yearly averages of citations per paper) during 2008-2014,
concluding that in 2012, CR of Molecular Biology and Genet-
ics articles possess the highest (24.29) value. In comparison, the

CR of Math publications is significantly smaller (4.16). Aiming
to make it possible to compare different disciplines, the WoS
database developer proposed in 2018 Category Expected Cita-
tions (CEC) as the “average cites to items of the same document
type (article), year, and category” [10]. This factor used for ex-
tensive and longitudinal bibliographic data analysis is involved
in micro and macro studies based on WoS data (Expected cita-
tion rates, half-life, and impact ratio, 1994).

Citations characteristics of a particular discipline or research
field are served by InCites Benchmarking and Analytics [11],
that is an analytics module demonstrating a significant dis-
crepancy in normalized citation values. A few publications are
highly cited, but most of them (poorly cited) compose a long tail
in the citation distribution. Researchers also report the lack of
stability of normalized citation indicators on aggregation level
of classification, such as, for example, well-known WoS cate-
gories [5, 12, 13].

A new evaluation concerning mainly paper reassignments ac-
cording to the multidisciplinary thematic is given in [3, 12].
Milojević [4] proposes reclassifying WoS articles based on the
references and adapting them towards citations. Another direc-
tion uses matching citation normalisation metrics to classifica-
tion. The idea was to examine whether some metrics (average,
median) are stabilized during the articles’ diminishing clusters.
Kostoff and Martinez [14] showed that “the citation character-
istics became increasingly stratified,” and normalisation studies
start losing their credibility.

Thus, the connection between citation information and pub-
lication classification was not used sufficiently during the sci-
ence macrostructure study, particularly in multi- and interdis-
ciplinary research. The reason may lie in divergent levels of
generated information: more top or more down of documents
organization-level making these data hardly compatible. Unlike
thematic study or paper classification, most citation models rely
more on data about future publications than other scientomet-
ric research methods. As was mentioned earlier in this paper,
a fuzzy logic-based approach is applied. A WoS query (“scien-
tometric” or “bibliometric”) AND “fuzzy” returns 123 records.
Simultaneously, the “Result Analysis” module of WoS demon-
strates a continuous growth in the number of publications using
fuzzy methods [15], from 3 in 2011 to 38 in 2020. Most of
these papers relate to bibliometric studies in the fuzzy sets al-
gorithms (see e.g., “Bibliometric Analysis of Fuzzy Logic Re-
search” ( [16]). The fuzzy methods serve to analyze citation
networks presenting the relations between information sciences
and fuzzy systems [17, 18].

3. MATERIALS AND METHODS
3.1. Optimistic fuzzy aggregation norms
Fuzzy logic is a kind of the general many-valued logic allow-
ing the truth value to take values in interval [0, 1] in contrast
to classical Boolean logic where this value can be just 0 or 1.
Lotfi Zadeh [19] introduced this term in 1965 within the pro-
posed fuzzy set theory. Let 𝑋 be the universal suite (a set under
consideration). A fuzzy set 𝐴 given on 𝑋 is conveyed as or-
dered pairs (𝑥, 𝜇𝐴(𝑥)), where 𝜇𝐴(𝑥) : 𝑋 → [0, 1] is a member-
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ship function. The value 𝜇𝐴(𝑥) embodies the degree to which 𝑥
belongs to 𝐴. Fuzzy sets and relations (fuzzy sets in a Carte-
sian product of spaces) are applied in many scientific disci-
plines and practical applications. For example, this idea is used
to search for tools for assessing some quantities levels in social
sciences. For instance, we can use it to analyze levels of learn-
ing outcomes [20] or design tools for the assessment of gait
problems [21].

When a set consists of several values, one of the aggrega-
tion functions might be used to calculate one summary value.
However, when the impact of a chosen article is estimated, the
more significant the number of papers citing the chosen one, the
higher the impact on the knowledge or discipline. Let A be a set
of papers. For each paper 𝐴 from A, we assign the membership
function indicating the level of contribution of 𝐴 to the chosen
discipline. Thus, we have looked for an aggregation function
with a unique property such that the result is more significant
than the arguments indicating the level of contribution of the set
of papers to the discipline. We have decided to use optimistic
fuzzy aggregation norms [22] since we assume that each new
paper and each citation add value to scientific fields.

Let us introduce optimistic fuzzy aggregation norms. The
function 𝑆 : [0, 1] × [0, 1] → [0, 1] is called an optimistic fuzzy
aggregation norm if, for each 𝑥, 𝑦 ∈ [0, 1], it fulfills the follow-
ing conditions:

(S1) 𝑆(0, 0) = 0 (border condition),
(S2) 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥) (commutativity),
(S3) 𝑆(𝑥, 𝑦) > max{𝑥, 𝑦} if 𝑥, 𝑦 ∉ {0, 1} and 𝑆(𝑥, 𝑦) ≥

max{𝑥, 𝑦} (optimism).
We will use such functions to study the knowledge disper-

sion between scientific fields, considering the publications and
their citations. From this standpoint, the variables 𝑥, 𝑦 are in-
deed values of membership functions representing the devel-
opment of the scientific field or the estimation of the impor-
tance of the publications and their citations to this scientific
field’s growth. According to our optimistic suggestion, a func-
tion intended for aggregation must return a value more signif-
icant than both 𝑥 and 𝑦, presuming that more citations of an
article in any field increase the contribution to the applicable
discipline. We will apply these functions to aggregate values
of a membership function to calculate the impact of articles
on the scientific field and determine the impact of one paper
considering its citations. There are many functions fulfilling
conditions (S1)–S(3), for example, 𝑆(0,0) = 0 and 𝑆(𝑥, 𝑦) =

ln
(
(𝑒−1) ·min

{√︃
𝑥2 + 𝑦2,

min{𝑥, 𝑦}
max{𝑥, 𝑦}

}
+1

)
for 0 < 𝑥 ≤ 1 and

0 < 𝑦 ≤ 1. However, because of simplicity, we prefer to deal
with the function

𝑆(𝑥, 𝑦) = 𝑥 + 𝑦− 𝑥𝑦 (1)

for 𝑥, 𝑦 ∈ [0, 1] to aggregate values. This function admits a nat-
ural interpretation connected to its probabilistic meaning as the
“probability” of unity of two independent events. On the other
hand, it is simple and can be efficiently implemented to create
fuzzy citation trees.

3.2. Impact on the scientific field caused
by affiliation values

Let 𝐴 ∈ A, where A denotes a space of papers from a chosen
database, and 𝐴 is a paper. Let 𝐹 represent the scientific field.
Article 𝐴 can add importance to 𝐹 in two ways - by its publi-
cation and citations - so let the membership function indicating
the impact of a paper assigned to 𝐹 at the time of its publica-
tion be called the affiliation function. Its values are denoted by
𝐴 𝑓 (𝐴,𝐹).

Let 𝑎 ∈ (0, 1) be a small value representing the impact of
one published article. Moreover, we assume that at the time of
publication, the membership value of each article is the same,
and is equal to 𝑎. Hence, we can apply the optimistic fuzzy ag-
gregation norm to calculate the impact of two or more articles
to 𝐹. Let 𝐴 𝑓 (𝐹) denote the value of the membership function
representing the impact on scientific field 𝐹 caused by the pub-
lication of some articles assigned to 𝐹.

Consider the example, let 𝑎 = 0.01 and assume that in one
year, three articles 𝐴1, 𝐴2, and 𝐴3, assigned to scientific field 𝐹
are published, so 𝐴 𝑓 (𝐴𝑖 , 𝐹) = 𝑎 for 𝑖 = 1,2,3. Let 𝐴 𝑓 (𝐹) = 0.
Thus, using (1), we can calculate the impact of articles 𝐴1,
𝐴2, and 𝐴3 on 𝐹. Hence, after the publication of 𝐴1, we
have 𝐴 𝑓 (𝐹) = 𝑆(𝐴 𝑓 (𝐹), 𝐴 𝑓 (𝐴1, 𝐹)) = 𝑆(0, 𝑎) = 0.01. Next,
after publishing paper 𝐴2, 𝐴 𝑓 (𝐹) = 𝑆(𝐴 𝑓 (𝐹), 𝐴 𝑓 (𝐴2, 𝐹)) =
0.01999. Similarly, we can show that the impact on 𝐹 calcu-
lated after the publication of the considered three papers equals
𝐴 𝑓 (𝐹) = 𝑆(𝐴 𝑓 (𝐹), 𝐴 𝑓 (𝐴3, 𝐹)) = 0.02997. Thus, assuming af-
filiation values for the set of articles assigned to considered sci-
entific field 𝐹, we can estimate their impact on 𝐹. Because of
the properties of function 𝑆, 𝐴 𝑓 (𝐹) ∈ [0,1]. Moreover, when
the following paper is published, 𝐴 𝑓 (𝐹) will be more signifi-
cant.

3.3. Contribution to scientific field caused by papers
and their citations

Next, we can apply function 𝑆 to estimate the impact to 𝐹

caused by publication paper 𝐴 and its citations.
Let 𝐴, 𝐴1, ..., 𝐴𝑛 ∈ A be papers assigned to 𝐹 such that

𝐴1, ..., 𝐴𝑛 cite 𝐴. The membership function indicating the im-
pact of an article and its citations to 𝐹 be called the con-
tribution function. Its values are denoted by 𝐶 (𝐴,𝐹). At the
time of publication, the following relationship is fulfilled –
𝐶 (𝐴,𝐹) = 𝐴 𝑓 (𝐴,𝐹). Let the depth 𝑑𝑖 (𝑖 = 1,2, . . . , 𝑛) be de-
fined as follows 𝑑𝑖 = 1 if 𝐴𝑖 is published in the same period as
𝐴 and 𝑑𝑖 = 𝑘 + 1 if 𝐴𝑖 is published 𝑘 periods after 𝐴. Let us
assume that each citation adds to 𝐹 the value 𝑎; however, the
more years lapse between papers 𝐴 and 𝐴𝑖 being published, the
less significant the contribution to 𝐹 of 𝐴 caused by the citation
of 𝐴𝑖 . Thus, we can propose the following formula

𝐶 (𝐴,𝐹) = 𝑆
(
𝐶 (𝐴,𝐹), 𝑎

𝑑𝑖

)
for 𝑖 = 1,2, . . . , 𝑛. (2)

Consider an example: assume that three papers cite 𝐴, the
first one in the following year, the second one – after three
years, and the last one – after five years. In the year of publica-
tion, the contribution of 𝐴 to 𝐹 equals 𝐶 (𝐴,𝐹) = 𝐴 𝑓 (𝐴,𝐹) =
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0.01. After one year, paper 𝐴1 cites 𝐴, so 𝑑1 = 2 and, by

(2), we have 𝐶 (𝐴,𝐹) = 𝑆

(
𝐶 (𝐴,𝐹), 𝑎

𝑑1

)
= 0.014995. After

three years, article 𝐴2 is published, so 𝑑2 = 4 and 𝐶 (𝐴,𝐹) =

𝑆

(
𝐶 (𝐴,𝐹), 𝑎

𝑑2

)
= 0.02498. After five years, article 𝐴3 is pub-

lished, so 𝑑3 = 6, and 𝐶 (𝐴,𝐹) = 𝑆
(
𝐶 (𝐴,𝐹), 𝑎

𝑑3

)
= 0.0266425.

Thus, we can apply the optimistic fuzzy aggregation norm to
find the contribution to 𝐹 caused by a paper and its citations
considering the number of periods between the publication and
its citations.

3.4. The citation tree
We have considered two simple situations where we consider
only the affiliation values of articles or one article with several
citations. However, the citation tree, including a paper and its
citations, may be much more complicated.

Let us recall some definitions connected with trees, which,
in the computer sciences, are an important way of storing and
presenting hierarchically ordered non-linear data (comp. Fig. 1
and Fig. 2). Tree components are named after natural tree ele-
ments: roots, branches, and leaves; however, the root is placed
at the top of the tree. A node stores a component of data, and it
consists of two parts: one is the name of the stored data and the
other consists of links (edges) to other nodes. The node where
the tree starts is called the root. The nodes placed below others
in the tree are children; the ones that are above the others are
called parents. The nodes that have no children are leaves. You
can walk the tree only from parents to children; these ways are
called paths. The number of nodes (excluding the considered
node) on the path is called the depth.

Let us choose one paper as the root of a tree as it has been
cited by a few articles at different depths. The set of second-
level publications cites this first-level article. The longer the pe-
riod we choose, the more complicated the tree becomes. More-
over, papers from different scientific fields can cite articles from
our tree, so citations facilitate the data aggregation in the con-
text of knowledge growth. Fuzzy logic methods enable and sim-
plify calculations of the contribution to disciplines. Thanks to
the normalisation of the fuzzy aggregation norms, the results
belong to interval [0, 1].

Now let A be a space of articles that are assigned to one
of the predefined 𝑛 scientific fields 𝐹𝑖 (𝑖 = 1,2, . . . , 𝑛). Hence,
for each article 𝐴 ∈ A, we assign a vector of length n such
that its components are contribution values to scientific fields
𝐹𝑖 . Assume that 𝐹 = {𝐹𝑖 , 𝑖 = 1,2, . . . , 𝑛} is a discipline. Then
𝐶 (𝐴,𝐹) = [𝐶 (𝐴,𝐹1),𝐶 (𝐴,𝐹2), . . . ,𝐶 (𝐴,𝐹𝑛)] is called a con-
tribution vector of article 𝐴 to discipline 𝐹. Moreover, let 𝐶 (𝐹)
denote the contribution vector of discipline 𝐹 to the knowl-
edge. Thus, if root 𝐴 ∈ A is a cited article, we can build the
citation tree. For each child and finally the root, we calcu-
late the contribution vectors as follows: For each node (and
the root as well), we assign the affiliation vector such that
[𝐴 𝑓 (𝐴,𝐹1), 𝐴 𝑓 (𝐴,𝐹2), ..., 𝐴 𝑓 (𝐴,𝐹𝑛)], where 𝐴 𝑓 (𝐴,𝐹𝑖) = 𝑎 if
an article is set to scientific field 𝐹𝑖 and 0 otherwise (𝑖 =
1,2, . . . , 𝑛). For all leaves, the contribution vectors and affili-

ation vectors are equal. For all parents, we use the optimistic
fuzzy aggregation norm to increase the contribution to all of
the scientific fields of the parent. Let us consider two cases:
• the child is a leaf on the depth 𝑑, then

𝐶 (parent, 𝑅𝑖) =


𝑆(𝑎,𝐶 (child, 𝐹𝑖)/𝑑) if parent is

assigned to 𝐹𝑖 ,

𝑆(0,𝐶 (child, 𝐹𝑖)/𝑑) otherwise

hence, 𝐶 (parent, 𝐹𝑖) = 𝑆(𝐴 𝑓 (parent, 𝐹𝑖),𝐶 (child, 𝐹𝑖)/𝑑),
• the parent (P) has got 𝐾 children {𝑐ℎ1, 𝑐ℎ2, . . . , 𝑐ℎ𝐾 } lo-

cated on the depths 𝑑1,𝑑2,. . .,𝑑𝐾 , respectively, then

𝐶 (𝑃,𝐹𝑖) = 𝑆
(
. . . 𝑆

(
𝑆

(
𝐴 𝑓 (𝑃,𝐹𝑖),

𝐶 (𝑐ℎ1, 𝐹𝑖)
𝑑1

)
,

𝐶 (𝑐ℎ2, 𝐹𝑖)
𝑑2

)
, . . . ,

𝐶 (𝑐ℎ𝐾 , 𝐹𝑖)
𝑑𝐾

)
.

Let us consider the following example. The database assigns
each article to one of the two scientific fields 𝐹1 and 𝐹2 (repre-
sented in Fig. 1 as grey and white colours). Paper 𝐴1 (the root
of the tree) was published in year 𝑋 and was classified as 𝐹1.
Assume that in the next year (𝑋 +1), two papers citing 𝐴1 were
published: 𝐴2 assigned to 𝐹1 and 𝐴3 classified to 𝐹2. In the fol-
lowing year (𝑋 +2), three articles were published: 𝐴4 citing 𝐴2
assigned to 𝐹1; 𝐴5 citing 𝐴3 classified to 𝐹2 and 𝐴6 citing 𝐴

assigned to 𝐹2.

Fig. 1. The citation tree of article 𝐴1 with contribution
vectors of articles

At the beginning, for each node, we assign the affiliation
vectors. Leaves represent articles 𝐴4, 𝐴5 and 𝐴6. Because
they are not cited, their contribution vectors are equal to the
affiliation vectors. Thus, 𝐶 (𝐴4, 𝐹) = [𝐶 (𝐴4, 𝐹1),𝐶 (𝐴4, 𝐹2)] =
[𝐴 𝑓 (𝐴4, 𝐹1), 𝐴 𝑓 (𝐴4, 𝐹2)] = [0.01,0],𝐶 (𝐴5, 𝐹) = [0.01,0]
and 𝐶 (𝐴6, 𝐹) = [0,0.01]. Next, for article 𝐴2, we
can notice that this article together with 𝐴4 are as-
signed to the same scientific field 𝐹1, so 𝐶 (𝐴2, 𝐹1) =

𝑆(0.01, 𝐴 𝑓 (𝐴4, 𝐹1)/3) = 𝑆(0.01,0.00333) = 0.0133 and
𝐶 (𝐴2, 𝐹2) = 𝑆(0,𝐶 (𝐴4, 𝐹2)/3) = 𝑆(0,0) = 0. Hence,
𝐶 (𝐴2, 𝐹) = [0.0133,0]. For article 𝐴3, we observe that
this article together with 𝐴5 are assigned to different research
areas. Thus, so 𝐶 (𝐴3, 𝐹1) = 0.0033 and 𝐶 (𝐴3, 𝐹2) = 0.01.
Hence, 𝐶 (𝐴3, 𝐹) = [0.0033,0.01]. Finally, we calculate the
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contribution of the root. The contribution is increased due
to the inclusion of article 𝐴2 and its citations, we have
𝐶 (𝐴1, 𝐹1) = 𝑆(0.01,𝐶 (𝐴2, 𝐹1)/2) = 𝑆(0.01,0.0133/2) =

0.01658 and 𝐶 (𝐴1, 𝐹2) = 𝑆(0,𝐶 (𝐴2, 𝐹2)/2) = 𝑆(0,0) = 0.
Next, we include the citation subtree of 𝐴3, hence 𝐶 (𝐴1, 𝐹1) =
𝑆(0.01658,𝐶 (𝐴3, 𝐹1)/2) = 𝑆(0.01658,0.0033/2) = 0.0182
and 𝐶 (𝐴1, 𝐹2) = 𝑆(0,𝐶 (𝐴3, 𝐹2)/2) = 𝑆(0,0.01/2) = 0.005.
Finally, we include article 𝐴6. Thus, 𝐶 (𝐴1, 𝐹1) = 0.0182 and
𝐶 (𝐴1, 𝐹2) = 0.0083. Hence, 𝐶 (𝐴1, 𝐹) = [0.0182,0.0083]. Let
us consider the next example (Fig. 2). The structure of this
citation tree is different than the previous one. In this case all
articles (apart from the root 𝐴1) cite directly 𝐴1 and they are all
leaves. Thus, 𝐶 (𝐴2, 𝐹) = 𝐶 (𝐴4, 𝐹) = 𝐶 (𝐴5, 𝐹) = [0.01,0] and
𝐶 (𝐴3, 𝐹) = 𝐶 (𝐴6, 𝐹) = [0,0.01]. After the similar calculation,
we get 𝐶 (𝐴1, 𝐹) = [0.02477,0.00998].

Fig. 2. The citation tree of article 𝐴1 with contribution
vectors of articles

Let us consider the next example (Fig. 2). The structure of
this citation tree is different than the previous one. In this case
all articles (apart from the root 𝐴1) cite directly 𝐴1 and they are
all leaves. Thus, 𝐶 (𝐴2, 𝐹) = 𝐶 (𝐴4, 𝐹) = 𝐶 (𝐴5, 𝐹) = [0.01,0]
and 𝐶 (𝐴3, 𝐹) = 𝐶 (𝐴6, 𝐹) = [0,0.01]. After the similar calcula-
tion, we get 𝐶 (𝐴1, 𝐹) = [0.02477,0.00998].

Summing up, we can see that different structures of the ci-
tation trees cause distinct contribution vectors. Using the opti-
mistic fuzzy aggregation norms, we can calculate the vectors
of the article contribution to all considered scientific fields (the
root of a tree and all items in the tree). Because of the prop-
erties of the S operation, the contribution values belong to in-
terval [0,1], and we can observe the increasing contribution to
scientific fields as the citation tree is growing. Moreover, we
can compare the results for different articles (and their citation
trees).

3.5. Description of data
The presented method of evaluating researchers’ scientific
achievements is based on the data retrieved from the CORA
dataset [23]. The relational dataset consists of 3 tables: cites, pa-
pers and content. The tables include fields describing the main
bibliographic entities and such as:
• cites: cited_paper_id, citing_paper_id,
• paper: paper_id, class_label,
• content: paper_id, word_cited_id.
As we can see, the 𝑝𝑎𝑝𝑒𝑟𝑖𝑑 field serves as both the primary

and secondary keys linking the tables. The CORA consists of
1446 scientific publications published in 1987–1997 and 4062

direct citations. All of the articles are classified into one of
seven scientific fields of computer science:

1. Case-Based (CB),
2. Genetic Algorithms (AL),
3. Neural Networks (NN),
4. Probabilistic Methods (PM),
5. Reinforcement Learning (RFL),
6. Rule Learning (RL),
7. Theory (Th).
A simple database structure is convenient to present the cita-

tion network of 1446 nodes and 4062 edges. Sufficiently large
numbers of nodes and edges allow complex patterns of citation
links inside and outside of each category to be explored. The
citation relationship of the CORA dataset is shown in Fig. 3
(left).

Fig. 3. Citation network of the CORA articles (left). The citation
network of article ID = 35 as a root (right)

An article is represented by a node, which is scaled by the
primary measure used in network analysis (NA), such as eigen-
vector centrality. The colour relates to the appropriate scientific
field. Regarding colour overloading on the spectacular graph
using the spring layout in Fig. 3 (right), we can observe that
the citations between different disciplines occur in the central
network area. The distribution of degrees is characterised by a
long tail that follows a power law. Therefore we can conclude
the CORA belongs to a free-scale network.

Figure 4 shows how the distribution of articles published
within the considered scientific areas changes over time. As we
can see, most papers are assigned to Neural Networks (total
413) during the whole considered period. The number of arti-
cles assigned to other computer science subfields was changing;

Fig. 4. The growth of numbers of articles categorized into seven
subfields during the years 1987–1997
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different years show varying numbers of publications. Interest-
ingly, the maximum quantity of articles occurs around 1995–
1996 in all discussed scientific fields. The year 1997 is the
last year of our research period, and usually the finishing year
data is underrepresented, and we can observe this decline in the
number of published articles.

However, in our study, we separately analysed the citation
trees of each article instead of the whole network. We specified
several papers and their connected nodes for convenient analy-
sis, but the tree of only one paper is presented in this article due
to space limitations.

An NA application such as Gephi will run the Ego network
filter. Figure 3 (right) illustrates the selected node Ego net-
work (ID = 35), which was considered a root as it was cited
by papers at all depths. The item and its children are assigned
mainly to Genetic Algorithms (Fig. 3 (right), blue circles).
However, some citing articles are allocated to Reinforcement
Learning, Theory, and Case-based subfields, and they appear
on the deepest levels in the citation network (Fig. 3 (right), dif-
ferent colours).

For each article 𝐴, we assign the vector 𝑉 (𝐴,𝐷) =

[𝐶𝐵,𝐺𝐴,𝑁𝑁,𝑃𝑀, 𝑅𝐹𝐿, 𝑅𝐿,𝑇ℎ] such that its components in-
dicate the class affiliation at the time of publication and D de-
notes computer science. For example, if article A is assigned
to the Genetic Algorithms class, 𝑉 (𝐴,𝐷) = [0,1,0,0,0,0,0]. In
the case of the CORA dataset, we can aggregate, for example,
the number of articles belonging to classes or the number of
citations of these articles.

The paper aimed to compare the initial distribution of the
articles from the CORA dataset with the distribution based on
citation information. For this purpose, we built trees of citations
for each article. The trees of articles were built as follows. The
tree root is the current article, the nodes of the first level of the
tree are articles citing the present article, the second level nodes
are built from the papers citing the papers from the first level
so on, as described above. The leaves of the tree are the articles
that are not cited anywhere. Let us consider one of the trees
(Fig. 5). The root of this tree is the following paper: T.R. Mar-
tinez, “Models of Parallel Adaptive Logic,” [24].

Fig. 5. Example of a tree of citations of T.R. Martinez,
“Models of Parallel Adaptive Logic” [24]

This tree presents the hierarchy of papers that have cited the
root and then the nodes indexed by the CORA database during
1987–1995. The tree shows that taking into account only the
first level of citations when calculating the contribution to com-
puter science subfields diminishes the true scientific impact of
the root article.

4. RESULTS
4.1. The dynamic scientific profile of a paper
Let us apply the concept of contributions to discipline/research
areas to prepare the dynamic scientific profiles of a chosen
paper or a research field. For each paper from the considered
set of articles, we can prepare its dynamic scientific portrait.
For each year, starting from the year of publication, we can
describe the vector of the contributions to the development
of subfields of computer science. Thus let 𝐶 (𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝐷) =
[𝐶 (𝐶𝐵),𝐶 (𝐺𝐴),𝐶 (𝑁𝑁),𝐶 (𝑃𝑀),𝐶 (𝑅𝐿),𝐶 (𝑅𝐿),𝐶 (𝑇ℎ)]
where 𝐷 denotes computer science, 𝐶 (𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝐷) – the
vector of contributions to computer science of the article,
𝐶 (𝑠𝑐𝑖𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐 𝑓 𝑖𝑒𝑙𝑑) – the contribution to the considered field
of computer science.

We can prepare the vector of the article contribution to the
considered scientific fields for the given period. We can also
calculate the set of these vectors for each year from the consid-
ered period. In the second case, we call this set of contributions
a dynamic scientific profile of an article. Suppose paper A is
assigned to scientific field 𝑃 at the time of publication. In that
case, the vital thing that we can see while observing the dy-
namic scientific profile of this paper is the possibility that it can
also contribute to subdisciplines other than 𝑃.

As an example, we prepared the dynamic scientific portrait
of the following publication during 1989–1997: Goldberg D.E.,
Genetic algorithms in search, optimization, and machine learn-
ing, [25]. In the CORA dataset, this book was assigned to Ge-
netic Algorithms. According to our calculations, this book con-
tribution has increased in Genetic Algorithms (leading scien-
tific field), Reinforcement Learning, and later in Neural Net-
works and Case-Based (comp. Table 1).

Table 1
The values of the contribution of D.E. Goldberg’s book to the subfields

of computer science

Class CB GA NN PM RLF RL Th

1989 0 0.269 0 0 0.066 0 0

1990 0 0.681 0 0 0.339 0 0

1991 0 0.893 0 0 0.423 0 0

1992 0 0.93 0 0 0.533 0 0

1993 0 0.993 0 0 0.822 0 0

1994 0.149 1 0.105 0 0.917 0 0

1995 0.276 1 0.17 0 0.965 0 0

1996 0.312 1 0.251 0 0.988 0 0

1997 0.351 1 0.251 0 0.994 0 0
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As can be observed (Table 1), we can monitor its contribu-
tion to various scientific fields over time based on the paper
citations. Hence, we can see that this book has influenced the
development of Genetic Algorithms; however, it has had an im-
pact on the other subdisciplines as well. The dynamic portrait
gives us a better image of the paper’s influence during the sev-
eral years on its contribution to computer science.

The vectors of the article’s contribution to science help us
observe its impact on different scientific fields over time. Con-
sidering only the scientific field to which the paper is assigned
during publication gives us an inadequate, non-dynamic, less
compound picture of this publication’s impact on the develop-
ment of the discipline.

4.2. Dynamics of changes in scientific achievements
over time

The vector 𝐶 (𝐷) = [𝐶 (𝐶𝐵),𝐶 (𝐺𝐴),𝐶 (𝑁𝑁), . . . ,𝐶 (𝑅𝐿),𝐶 (𝑇ℎ)]
representing the contribution to computer science can be calcu-
lated with the application of aggregation norm 𝑆 based on the
papers’ citations in the following way. After preparing the cita-
tion tree with the contribution vectors of each article (nodes of
the tree), we aggregate the contributions of all articles assigned
to the computer science scientific fields with formula (2). As in
the case of a paper, we can prepare a scientific field’s dynamic
profile (Table 2).

Table 2
The contribution to computer science its scientific fields based on

paper citations

Class CB GA NN PM RLF RL Th

1987 0 0 0.1 0 0.1 0 0

1988 0 0.19 0.1 0 0.466 0 0

1989 0.231 0.408 0.546 0 0.501 0 0.1

1990 0.511 0.981 0.838 0.1 0.973 0.307 0.342

1991 0.843 0.9998 0.9996 0.19 0.995 0.307 0.678

1992 0.897 1 1 0.467 1 0.377 0.995

1993 0.998 1 1 0.913 1 0.887 1

1994 1 1 1 1 1 1 1

1995 1 1 1 1 1 1 1

1996 1 1 1 1 1 1 1

1997 1 1 1 1 1 1 1

All dynamic profiles of computer science subfields show in-
creasing contributions to science; however, with different ratios.
Neural Networks impact on science is the most rapid during this
period, but its domination is not significant enough compared to
the growth in the number of articles.

5. DISCUSSION
5.1. Normalisation
In bibliometric research, normalising most of the measures re-
lated to cumulative knowledge output is assumed. Thus, to eval-
uate the scholarly impact, they use the annual number of publi-

cations to calculate the growth rate, the yearly number of cita-
tions to get the citation impact, and the average number of docu-
ments per journal to estimate its influence. Normalisation at the
current stage and time, i.e., division by the maximum value of
the measured variables, in most cases operates retrospectively
because we do not know future numbers of articles. Therefore,
normalisation used at any point in time evokes a redistribution
of the ratio between the components and changes the disci-
plinary relations at the aggregation level. Table 3 presents the
example (sample, hypothetical) numbers of articles for which
normalised and affiliation values were calculated based on the
number of articles. In this period, the total number of published
articles was 61, so we normalised all papers with this number.
The affiliation vectors were calculated using (1).

Table 3
Normalized and affiliation values for sample number of articles

Number of articles 0 1 2 3 4

Normalized values 0 0.016 0.033 0.049 0.066

Affiliation values 0 0.01 0.02 0.03 0.039

Number of articles 5 6 7 8 9

Normalized values 0.082 0.098 0.115 0.131 0.148

Affiliation values 0.049 0.059 0.068 0.077 0.086

The following graph (Fig. 6) presents the normalised num-
bers of articles and affiliation values of the discipline. As we
can observe, the impact on the knowledge is comparable; how-
ever, we have not added the impact caused by citations.

Fig. 6. Normalized values of numbers of articles and affiliation values
of the impact on the discipline

In the case of normalisation, after choosing the set of cit-
ing articles of one paper, we can calculate the citation count
CT(d) [26]; the primary measure of scientific impact. However,
it is hard to use it for comparison studies because they are un-
predictable, jumping, and irregular [5]. When we calculate the
citation count, the results are the same if we consider two trees
with the same number of papers but with different structures.
Moreover, comparing two trees needs normalisation, which is
not accessible if we are dealing with dynamic situations and
following the new citation papers.
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Therefore, instead of citation count, we propose building ci-
tation trees of articles to calculate their contribution to scientific
fields producing contribution vectors. Each component repre-
sents the contribution of a root of the citation tree to the chosen
scientific fields. This method also meets the requirement that
the contribution of this article to the knowledge increases as the
number of articles citing it grows, which is the specificity of
scientific achievements. Furthermore, the impact of a paper cit-
ing the root depends on the number of years between the root
and the paper-child being published. The more years that have
passed between the publications of both articles; the less signif-
icant the child’s contribution to the science of the root.

5.2. Category expected citation
To better understand the CORA citation data and their distribu-
tion by scientific fields, we refer to the scientometrically recog-
nised indicators mentioned in Section 2. One of them is the Cat-
egory Expected Citations (CEC), the number of citations of arti-
cles published in the same subject categories and the same year.
According to Clarivate [27], the CEC measure was designed to
compare articles’ citation data with the average citation for sim-
ilar publications in the same research field/journal/database in
the same year. Let us notice that the CEC is a scalar whereas we
received vectors, the components of which estimate the contri-
bution of the considered paper to the discussed scientific fields.
Table 4 shows the CECs for computer science scientific sub-
fields in the years 1987–1997. This parameter indicates the fol-
lowing shortcomings. When there are more articles without ci-
tation in the considered period, the Category Expected Citations
diminishes and might suggest that the contribution to these re-
search fields knowledge also decreases. Moreover, when an ar-
ticle with many citations is published, it might stand out and
distort the picture (in 1989 in GA, one publication was pub-
lished with 165 citations during this period).

We can analyse the dynamics of development of scientific
fields based on the CEC coefficient. In this case, when a new

Table 4
Category Expected Citation of computer science articles from

the CORA during 1988–1997

Class CB GA NN PM RLF RL Th

1988 0 2.5 3 5 38 0 19

1989 7.75 165 7.625 2.5 3 7 15

1990 4.75 8.333 4.5 4.5 8.75 10.333 5.8

1991 2.4 8.667 5.643 4.429 1.5 6.5 5.571

1992 3.917 4.2 2.9 4.333 4 3.5 4.722

1993 2.318 3.708 2.907 5.556 5.667 2 3.824

1994 2.971 2.273 2.701 4.029 2.833 2.8 3.186

1995 1.786 2.957 2.284 2.714 2 1.704 1.638

1996 1.552 1.568 1.506 2.259 2 1.045 1.816

1997 1.353 1.031 0.844 1.243 0.75 0.571 0.912

Total 2.444 3.567 2.345 2.713 2.546 2.45 2.329

idea arises, this is reflected by the high growth of articles de-
scribing it and the rapid growth of citations of these articles.
The citations do not keep up with the number of papers. But
only a few articles will receive the greatest number of citations
related to a new idea; the most widely known pioneer works di-
rectly reporting the discovery [28]. However, the vast majority
of papers are not cited, which is commonly explained by the
Pareto distribution (80% with no citations).

Nonetheless, it can be expected that each publication adds
some value to the development of science. So the use of the
cumulation method for each article and its citations is justified.
Of course, some papers are cited after a few years, and we can
observe some shorter or longer delays. However, generally ci-
tations “favour” the revelatory or fashionable articles (Matthew
effect). We can see similar situation on the CEC plot (Fig. 7).
Only one paper receives a vast number of citations (165), re-
quiring the log scale to be used. According to subfields, com-
paring the dynamics of articles contributions (Table 2) and Cat-
egory Expected Citations (Table 4), we can observe that CEC
gradually decreases whereas the contributions to science are not
decreasing values. Hence, the values of the contributions to sci-
ence over ten years might reach some point of balance.

Fig. 7. Category expected citations of computer science subfields
in logscale during 1988–1997

Nowadays, the analysis of citations and co-citations to reveal
the relative importance or impact of an author or publication is
the primary method in science studies. But there are a series of
difficulties concerning citations. Usually, counting the citations
of publications does not consider the different research fields
the documents are ascribed to. The citation density and citation-
based indicators in the natural sciences are also incomparably
higher than in the humanities. The method of collaboration in
the natural sciences, reflected in multi-specialist and multi-task
teams (for instance, consisting of theorists, experimenters, ana-
lysts, and others), generates more extensive responses from re-
searchers. As was mentioned above, to minimise these differ-
ences among research fields, the Category Expected Citations
index was introduced and adopted by ClarivateAnalytics [29].

Comparing the results achieved from two approaches
(Fig. 8): normalisation of the number of articles according to
computer science subfields and contributions of computer sci-
ence subfields, we can observe that these two factors are not
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equal in the overall distribution of computer science publica-
tions. For some research areas, the number of articles is higher
(for example, NN); for others, the contribution of individual
subfields is higher (for example, RL), and for one research area
(Th), they are almost equal. Suppose we strive to present the
growth of the scientific fields. In that case, we should consider
that the use of the number of publications does not reproduce
the proper development of knowledge which is mainly based
on scholar communication in the form of direct citations and
complex and interdisciplinary trees of citations.

Fig. 8. Values of normalisation and contribution to scientific fields
of computer science in the years 1987–1997

To calculate the normalisation values, we determine the pro-
portional ratios of the articles of the computer science classes
(blue bars in Fig. 8). Thus, we can observe that the NN papers
had a higher impact on computer science during these years.
Next, we calculate the proportional ratios of the contributions to
computer science in all of its subfields (orange in Fig. 8). Here,
a higher impact is observed for total GA contributions. Hence,
comparing these two results, we can see that considering the
normalisation, the picture of the actual contribution to science
is blurred and incomplete. It does not consider the information
connected with the considered subfield citations and the cita-
tions of articles assigned to other computer science subfields.
For example, the NN normalisation ratio is the highest. How-
ever, its contribution ratio is much smaller than GA because of
the larger number of more minor citations. Summing up, due
to the cases of overlays of subfields in the citation trees, these
normalisation ratios are not-complete. Hence, we used the non-
linear calculation of the contribution ratio, and the larger orange
bars mean GA and RL were very intensively cited, comparably
to all of the other subfields of computer science.

The authors’ approach tries to integrate information about
citations and subdisciplines. By considering each citation tree
separately, we can track the backpropagation of specific knowl-
edge from the leaves (cited articles) to the root, i.e., down-up.
The articles-leaves give only (for some time) their affiliation
values to the development of knowledge, but they increase the
contribution to the science articles when they are cited. At each
successive step, we observe the cumulation of the knowledge of
the considered disciplines. Thus the root article will contain the
cumulative information about all of the scientific fields of the

cited children. It is worth noting that aggregation of the data
was performed for each year in which citations were found.
So, for aggregating knowledge, we should investigate the ci-
tations and, therefore, the disciplinary contribution recursively.
Using optimistic fuzzy aggregation norms, we can calculate sci-
ence aggregation every year and find the root article multidisci-
plinary profile. Such a profile will reflect the actual distribution
of knowledge. If the publication-root is ascribed to one disci-
pline, the calculation will show the future propagation of the
authors’ ideas among many research fields and their non-linear
contribution.

As Waltman [5] stressed, additional trouble with citations
is comparing publications from different years because of the
possible large variance and their undetermined values. To over-
come these drawbacks, normalisation and averaging of mea-
sures have been developed to make comparisons regarding se-
lected variables. Normalisation, however, has the following
weakness. It needs to be updated with every new considered
period (year) in a dataset, and any comparison leads to perma-
nent rescaling. In the case of citations, a significant variance
is usually observed, and linear normalisation by a maximum
value generates a considerable divergence of the unit contribu-
tion. Instead of averaging the quantities of citations and pub-
lications, the authors propose to cumulate them from one year
to another using the contribution concept. This strategy results
from the necessity to construct citation trees while maintaining
the information about citation inheritance. A similar approach
to evaluating the disciplinary contribution to the whole field
in the case of journals set by citation trees in “descending or-
der” was applied for calculations using a maximum spanning
tree [30]. In the current article, the calculations were performed
by optimistic fuzzy aggregation norms, the advantage of that
being their natural built-in normalisation (the range is interval
[0, 1]). Moreover, the “amount of knowledge” is continuously
increasing, adding new publications and citations of articles by
the property of optimism. However, in normalisation, article ci-
tation impact might be decreasing over several years when there
are more unquoted articles.

We can analyse the dynamics of cumulative citation knowl-
edge based on the proposed calculation, considering the ratios
of particular disciplinary areas. As Table 2 presents, the con-
tribution of all examined subfields of computer science is con-
tinuously increasing from 1987 to 1997. From 1995, the sat-
uration of this indicator occurs. We can make inferences only
within a given period because of the limited citation years of
the CORA dataset. Every citation and publication, contributes
to specified knowledge, defined by subfields. This way, despite
the unknown future contribution (the number of forthcoming
publications and in particular citations), we will not go beyond
interval [0, 1]. Thus, while estimating the contribution to the
research areas by “adding” the small value a to the knowledge
assigned to these research areas because of fuzzy-optimistic-
norm properties, we can reach saturation.

5.3. Discrete derivatives
It is also interesting to see the dynamics of the discrete deriva-
tives of the contribution to computer science in its scientific
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fields (Table 2). By differentiating the results according by year
for contributions to the science of the subfields of computer sci-
ence, we achieve the values if the discrete derivatives values
presented in Fig. 9. They can be considered as the annual im-
pacts obtained from the cumulative knowledge.

Fig. 9. Discrete derivatives of contribution to the science of computer
science subfields during 1998–1997

As we can observe, the discrete derivatives behave very irreg-
ularly: some subfields increase to some maximum values (dif-
ferent in each case; however, they happen during 1994 – 1997),
and some slowly decrease. But all have cycles of changes that
are reflected by two or more hills. Furthermore, almost all dis-
ciplines present up and down cycles – we can evaluate them
as wave-like fluctuations of varying intensities. These observa-
tions with comparison to the CEC distribution lead to the fol-
lowing conclusions during the selected period. While the ci-
tation frequencies fade away after ten years in all subfields,
the nonlinear annual contributions reveal express growth in two
cases, PM and RL.

As was mentioned above, the CEC is an indicator that can
create comprehensive insight into the development of research
fields using citation measures. The chart (Fig. 7) indicates the
decreasing trend for all computer science subfields. It can be
explained if we consider that articles containing new, valuable
ideas sometimes occur. These articles get the most citations in
the applicable field, but they constitute a small ratio of all pub-
lications (<20%). Although the number of citations exceeds the
number of publications, their growth does not match the devel-
opment of the number of publications.

It is challenging to assess the scientific fields because each
field develops using individual paths (theoretically, they do not
cross in most databases) and the publications servicing this
area. Moreover, only their citations are included in the estima-
tion of the development of this scientific field. However, even
when the article is assigned to one research area, the authors
refer to papers from different research areas or subdisciplines.
Hence, the knowledge of the cited research areas (including ar-
ticles assigned to other scientific fields or disciplines) should
also increase, such as in Fig. 9. When we observe the cita-
tion trees of “scientific fields” of computer science, the paths
are crossing. For example, some Neural Network articles cite
Genetic Algorithm papers and vice versa. Hence, we propose
to prepare the publication profile, including the contribution to
the primary (assigned at the time of publication) scientific field
and the contributions to research areas caused by its citations
and further citations. Our method of preparing the dynamic pro-

files of articles shows their contribution to several (more or less
general) scientific fields based on the contribution vectors dur-
ing some period. These profiles can indicate papers that signifi-
cantly impact research fields different from the initial ones. This
is vital for some scientists whose achievements may be under-
estimated because their works are primarily applied in various
areas, i.e., classified as multidisciplinary.

For many centuries, scientists have wanted to compare oth-
ers’ scientific achievements and locate themselves on the rank-
ing lists. They are supported by economists, institutions fund-
ing science, business people, and awarding institutions. As
Stallings noticed when an article has a few co-authors, it is dif-
ficult to estimate the real contribution to this paper of each au-
thor [31].

6. CONCLUSIONS
The authors of the article introduce a new method of measur-
ing the contribution to knowledge, which analyses knowledge
cumulation dynamics based on the concept of a contribution-
to-scientific field. We use double cumulation for the scientific
fields and years. We can calculate the contribution to the given
research area caused by papers and their citations from different
fields of science for each year. The proposed method is worth
being considered in terms of developing concepts so that we
will be able to predict the development of research areas.

In the current approach, the use of affiliation and, above all,
contribution vectors are proposed instead of scalar measures
concerning articles and scholars’ disciplinary profiles. There-
fore, a contribution to a discipline can be measured by a vec-
tor of contributions to subdisciplines or subfields. If papers are
not cited, their contribution vectors are equal to the affiliation
vectors. To create citation networks, we have considered each
paper as a potential root, and this way, using optimistic fuzzy
aggregation norms, we can evaluate the cumulative knowledge
disseminated across direct and indirect citations instead of sim-
ple summarisation.

We integrate the data about the citations and affiliation of ar-
ticles concerning disciplines/subdisciplines. Information about
the disciplinary distribution can be helpful to present the de-
velopment of scientific fields. Estimating the level of devel-
opment of a scientific field only on the quantities of publica-
tions and direct citations among the discipline is insufficient.
The research area is also developed by the indirect citations
of papers assigned to other scientific areas or fields. Hence,
it is essential to create complex and interdisciplinary citation
trees and estimate the development of all scientific fields. Be-
cause of the properties of fuzzy aggregation norms, we do not
need to normalise results, and the components of the contribu-
tion vectors always exist, so we can constantly evaluate scholar
production. Furthermore, by comparing the affiliation and con-
tribution vectors, we can state whether the citations of the
articles matter while considering the contribution to research
fields.

In comparison with linear counting, we proposed a method
to flatten the dispersion of extremal values (Fig. 4, GA and
NA). This way, the distribution based on traditional sciento-
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metric measures such as the h-index or g-index or originated
from them will look different than if we use a proposed method
of evaluation of the contribution to various scientific fields. In-
deed, the CORA dataset is not robust enough to draw essential
conclusions about the behaviour of disciplines in the retrospec-
tive view. In the future, we plan to extend the method using
large-scale, accurate bibliographic data. It is essential to extend
the citation tree to all research areas. Then, the contribution vec-
tors provide the whole image of the given article contribution to
science by the authors’ research and the impact produced by its
citations. One problem is knowledge saturation when the given
article or scientific field contribution to science reaches 1. We
can quickly improve the situation by lessening the value a and
recalculating the contribution vectors.

In the future, we plan to prepare the citation tree of the ar-
ticles assigned to a whole discipline, for example, computer
science. Because of the application of the optimistic fuzzy ag-
gregation norm, all achieved values belong to interval [0, 1],
so they do not need to be normalised and provide more than
just an image of the dynamics of the growth of knowledge in
computer science. We hope that it will let us predict the devel-
opment of the knowledge caused by computer science articles
and their citations. Of course, there may and probably will be
publications with so many citations as to disturb the study of
continuous development of science. These publications provide
impulses and directions for the development of science. After
some time, like many other ideas, their problems will be solved,
almost forgotten, or become a seed for new concepts.
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