
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 70(5), 2022, Article number: e142654
DOI: 10.24425/bpasts.2022.142654

THERMODYNAMICS, MECHANICAL,

AERONAUTICAL ENGINEERING AND ROBOTICS

Abstract. The current research focuses on the implementation of the fuzzy logic approach for the prediction of base pressure as a function of
the input parameters. The relationship of base pressure (β ) with input parameters, namely, Mach number (M), nozzle pressure ratio (η), area
ratio (α), length to diameter ratio (ξ ), and jet control (ϑ ) is analyzed. The precise fuzzy modeling approach based on Takagi and Sugeno’s
fuzzy system has been used along with linear and non-linear type membership functions (MFs), to evaluate the effectiveness of the developed
model. Additionally, the generated models were tested with 20 test cases that were different from the training data. The proposed fuzzy logic
method removes the requirement for several trials to determine the most critical input parameters. This will expedite and minimize the expense
of experiments. The findings indicate that the developed model can generate accurate predictions

Key words: base pressure; Mach number; fuzzy modeling.

1. INTRODUCTION
The exhaust plumes from rockets and missile engines have
proven to be a grave concern with supersonic vehicles. The
outflow of air inside high-speed vehicle engines is confirmed
to alleviate the base drag [1]. For instance, a nozzle equipped
with rapid expansion ducts will create a recirculation zone, rais-
ing the losses. Numerous studies have shown the use of pas-
sive and active control methods to regulate high-speed flows.
In the passive control approach, the geometry of the duct is al-
tered by adding extra devices such as ribs, cavities, etc. [2]. In
the case of active controls, the researchers utilized a high-speed
nozzle with an expanded duct and microjet controller; a small
hole is drilled in the base region to control the flow, which was
proven to be an efficient approach for the supersonic flow prob-
lem [3, 4].

Base drag, caused by flow separation at the blunt base of an
aerodynamic body, can account for a sizable portion of over-
all drag. When an abrupt change in geometry results in a sep-
aration, the flow exhibits three distinct zones: separation, re-
circulation, and re-attachment (Fig. 1). At the nozzle outlet, the
recirculation zone generates negative pressure, referred to as
base pressure. Base pressure is inversely proportional to base
drag, implying that an increase in base pressure results in a de-
crease in base drag and vice versa. The base drag component of
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a missile overall drag can be as high as 50% when the missile is
powered down (i.e. with no jet flow at the base). Numerous re-
searchers have proposed various ways of controlling base pres-
sure using active and passive controllers, experimentally and
analytically. The section below discusses works published con-
temporaneously with this study. The base pressure was initially
investigated by Korst [1] in various Mach number regimes, with
the flow exhibiting sonic and supersonic behavior at the base
and wake, respectively. A physical model for base pressure was
developed that analyzed the interaction between flows at the
jet and wake. Khan and Rathakrishnan [2] conducted tests to
determine the influence of micro-jets on the base pressure be-
havior of an over-inflated nozzle. Experiments were conducted
by means of airflow from a settling chamber into the suddenly
expanded duct through a nozzle. A blowing chamber was used
to blow air in the form of microjets. The study demonstrated
that base pressure was controlled effectively through the em-
ployment of micro jets. Khan and Rathakrishnan [3] conducted
experiments to modify base pressure. M = 1.87,2.2, and 2.58,
and NPR = 3,5,7,9, and 11, were utilized as control param-
eters. An increase of 95% in base pressure was achieved for
various combinations of Mach numbers and NPRs. Khan and
Rathakrishnan [4] investigated the control of base pressure at
an under-expansion level for nozzles with Mach numbers rang-
ing between 1.0 and 2.0. According to their findings, microjets
significantly increased the base pressure for higher Mach num-
bers, i.e., M ≥ 1.5. Khan and Rathakrishnan [5] investigated
flow expansion for nozzles with M = 1.25,1.3,1.48,1.6,1.8,
and 2.0, which were correctly expanded. However, in this in-
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stance, the microjets had truly negligible effect on base pres-
sure which transpired as a result of a weak wave at the nozzle
exit/duct interface. Baig et al. [6] investigated the base pressure
control via a suddenly expanded channel. Microjets were used
as active controllers to regulate base pressure for this purpose.
The trials were conducted for η ranging from 3 to 11. Accord-
ing to the study, for certain parametric combinations, a 65%
rise in base pressure was achieved. The bifurcation phenomena
for sudden expansion flows were demonstrated by Chiang et
al. [7] through experiments. The instabilities caused by mod-
ifying the channel aspect ratio and the flow Reynolds number
occurred at the symmetry-breaking bifurcation point. Khan et
al. [8] used the CFD approach to model the nozzle flow based
on empirical data. ANSYS fluent was used to model a 2-D tran-
sient compressible flow of air via a supersonic nozzle. A stan-
dard k-ε was used to simulate the flow process. The results ob-
tained were benchmark results that could be used to simulate
the flow at Mach numbers other than Mach 2, and also predicted
shock generation in the duct [9], providing valuable information
for fluid dynamics research. Semlitsch et al. [10] investigated
double shock diamonds at the exhaust of modular convergent-
divergent nozzles. These shock patterns consisted of two struc-
tures: one originating from the nozzle throat, and another from
its exit. The results observed that when the two structures over-
lapped, it caused tremendous pressure oscillations at the ex-
haust, and led to the formation of shock-associated noise.

Recirculation zone Reattachment point

Boundary layer

Expansion fan
Compression wave

Pb
Pc

Fig. 1. Suddenly expanded flow process [2]

Soft computing and statistical analysis are novel approaches
for this kind of research. It is compared to the remarkable ca-
pacity of the human mind to study in an unpredictable and im-
precise environment. Quadros et al. [11] employed an L9 or-
thogonal array to estimate base pressure using the design of
experiments method. The control parameters were M, ξ , and
α . The created regression models effectively predicted base
pressure with high accuracy. Aabid and Khan [12] conducted
experiments for these flows with and without microjets, at
M = 1.87,2.2, and 2.58, α = 3.24, and ξ ranging from 10 to
1. The experimental findings were analyzed using an L9 or-
thogonal array, multiple linear regression analysis, and confir-
mation tests. The models were statistically appropriate and ca-
pable of making good predictions in both instances. Addition-
ally, a CFD technique was used to verify the experimental data.

The simulation results were analyzed using the k-ε turbulent
model. According to the findings, (ξ ) had the most significant
effect on the maximum increase or decrease of base pressure.
Quadros et al. [13] developed a prediction model for base pres-
sure through the Artificial Neural Network (ANN) approach.
The dataset used to train the network was created using the
CFD technique. The ANN design consisted of three layers, with
the hidden layer containing eight neurons. The ANN accurately
predicted base pressure with a regression coefficient (R2) of less
than 0.99, and a root mean square error (RMSE) of 0.0032. Ja-
gannath et al. [14] pioneered fuzzy logic to investigate pressure
loss in a rapid expansion duct. As demonstrated by the fuzzy
logic formulation, the authors sought to detect a small pressure
drop when the ξ was 1. According to the authors, this was ac-
complished by conducting a qualitative evaluation of internal
fluid flow through a nozzle equipped with a sudden expansion
duct utilizing the fuzzy logic technique. Quadros et al. [15] dis-
cussed the vital elements of fuzzy logic technology as a cost-
effective tool for the turbulent supersonic computation process.
The Mamdani-based fuzzy logic approach was used to link the
input and outputs of the CFD findings. This approach made use
of triangular, generalized bell, and Gaussian MFs. A reasonable
percentage deviation of around 9.07 % was observed. Afzal et
al. [16] constructed six back-propagation neural network mod-
els (BPMs) to forecast pressure in high-speed flows depending
on input and output variables. The data visualization revealed
“η” having the most significant influence on base pressure. Six
BPMs with two hidden layers, each containing four neurons,
were identified to be best suited for regression analysis. BPM 5
and 6 successfully forecasted the non-linear base and wall pres-
sure data. The L27 orthogonal array was used to optimize base
pressure (Jaimon et al. [17]). A non-linear regression model for
β was developed using the central composite design (CCD) and
Box-Behnken design (BBD). The significance of linear, non-
linear, and interaction factors in the models was determined us-
ing the ANOVA (analysis of variance). It is worth noting that
several authors have successfully deployed different analyses
for modifying base drag, demonstrating their effectiveness as
a cost-effective tool for modeling and analyzing complex fluid
flow processes. In addition to the papers mentioned above, for
our study, the works of Afzal et al. [18–23] on clustering and re-
gression techniques, support vector algorithms, deep neural net-
works, and back propagation neural network algorithms have
been considered.

Most of the research to date focused on base pressure pre-
diction through experiments and CFD simulations. Base pres-
sure analysis using fuzzy logic-based approaches is rarely re-
ported. Also, the use of an adaptive neuro-fuzzy system (AN-
FIS) for predicting base pressure is considered to be the inno-
vative step of this research. Therefore, the current work aims
to predict base pressure using a fuzzy logic approach based on
the Takagi and Sugeno model. This approach uses an ANFIS
and is concerned with the self-evolution of the consequent and
antecedent parameters. It should be emphasized that the fuzzy
approach employed both linear and non-linear MFs. The per-
formance of the model is compared with randomly generated
experimental (β ) data. The research results of this study could
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be used for predicting and controlling the base pressure with-
out actually performing any experiments or simulations. The
applications of this research include the design of combustion
chambers and chemical reactors, where there is a requirement to
decrease base pressure to enhance mixing levels, and the design
of aerodynamic vehicles viz., missiles, rockets, etc., where an
increment in base pressure is required for reducing base drag.

2. EXPERIMENTAL DETAILS
2.1. Experiments
Khan et al. [2, 3] determined the base pressures in the ex-
panded duct by varying the geometrical and flow parameters
of the convergent-divergent (C-D) nozzle. Mach numbers for
these nozzles fluctuate in the supersonic range. A typical C-
D nozzle of Mach 3.0 along with the enlarged duct is shown
in Fig. 2a. The exit diameter of the nozzle may be maintained
constant while fabricating a C-D nozzle, as the base pressure
findings for nozzles with an exit diameter are available in the
literature [2–5]. The isentropic relations were used to compute
the throat diameter [13]. After fabrication, the nozzles are cal-
ibrated to determine the precise Mach number at the nozzle
exit [13].
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Fig. 2. a) Nozzle connections with the settling chamber and duct;
b) data acquisition system for base pressure through the expanded duct

Figure 2b shows the complete experimental setup with the
data acquisition system. There were eight holes in the outlet
periphery of the nozzle, four of which were used for blow-
ing (c), and four of which were used to determine the base
pressure. The base pressure was controlled via control holes
(c) which are connected to the settling chamber [4, 5]. The ex-
periments were performed on a suddenly expanded duct hav-
ing a specified (ξ ). For the pressure tap location, the first nine
holes (for tapping) are made at an interval of 3 mm each and
the remaining are made at an interval of 5 mm each on the en-

larged duct. The nine holes ensure proper measurement of re-
circulation pressure or base pressure as they are in the vicinity
of the nozzle exit. The base pressure and pressure in the set-
tling chamber were measured using a PSI model 9010 pressure
transducer. It measures pressures between 0 and 300 psi. The
measurements are averaged and represented at a rate of 250
samples per second. User-friendly software was used to con-
nect the computer and the transducer. The software collects the
output data from all measurement channels and presents it on
the computer screen concurrently. The transducer had a reso-
lution of ±0.003 and a reading accuracy of up to ±1%. The
input and output variables for the suddenly expanded flow pro-
cess are shown in Fig. 3. All the non-dimensional base pressure
presented in this paper is within an uncertainty band of ±2.6%.

Suddenly expanded
flow process

(b)

(M)
( )h
( )a
( )x
( )ϑ

Fig. 3. Input output for suddenly expanded flow process

2.2. Data collection
In artificial intelligence approaches, the performance of the cre-
ated models is dependent on the quality and quantity of training
data employed. In soft computing applications, training must
be conducted using a large (say, 500) data set, which contains
all conceivable permutations of input variables and their ranges.
Collecting such data through genuine trials is time intensive and
impractical since it results in significant material wastage, labor,
and time consumption [24]. A massive amount of training data
was randomly produced using the response equation [24]. The
response equation (input-output relationship) for the present
study was developed using the DoE-based L16 Orthogonal ar-
ray [25], comprising five factors at levels as shown in Ta-
ble 1. The response equation was developed using the statistical
Minitab 20 software. The parameter and level selection were
done after conducting trial experiments. Additionally, the data
utilized to evaluate the models were gathered via experiments
and were not used to train the FLC. A response/regression equa-
tion for (β ), as a function of flow and geometric parameters, is
illustrated by Equation (1). The regression equation was tested

Table 1
Suddenly expanded flow parameters and levels

Parameters Notation Level 1 Level 2

M A 2.0 3.0

η B 3 7

α C 4.75 6.25

ξ D 4 8

ϑ E
1

(without control)
2

(with control)
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for accuracy with the help of 20 random experimental test cases
(Table 2) and obtained a prediction accuracy of ±6.52%.

β = 079+(0.712×A)+(0.023×B)+(0.401×C)

− (0.315×D)(0.0209×E)+(0.319×A×B)

+ (0.201×B×C)− (0.122×C×D)

+ (0.0137×D×E)+(0.0137×A×B×C×D×E).
(1)

Table 2
Random experimental test cases

Exp.
no.

Input Output

M H α ξ Θ β

1 2.0 A 4.75 4 1 0.234

2 2.5 3 6.25 5 2 0.443

3 3.0 5 6.25 6 2 0.229

4 2.0 5 6.25 7 2 0.678

5 3.0 7 6.25 8 1 0.656

6 2.5 7 6.25 6 1 0.737

7 3.0 5 6.25 7 1 0.441

8 2.5 7 6.25 4 2 0.666

9 2.0 5 4.75 6 2 0.921

10 3.0 7 4.75 7 1 0.990

11 2.5 3 4.75 8 2 0.721

12 2.5 3 4.75 8 1 0.844

13 3.0 7 4.75 4 2 0.225

14 3.0 7 4.75 4 1 0.449

15 3.0 7 6.25 5 2 0.557

16 2.0 5 4.75 5 1 0.698

17 2.5 5 6.25 6 2 0.361

18 2.0 5 4.75 6 2 0.551

19 2.0 3 4.75 7 1 0.328

20 2.5 5 6.25 7 2 0.751

2.3. Fuzzy modeling
Modeling is the process of discovering, analyzing, and veri-
fying the input-output connections of a physical system. The
fuzzy approach is utilized to create the link between the input
variables of the flow process and the base pressure [26]. Fuzzy
modeling is used in the present study to predict the output (β ),
given the set of inputs (M, η , α , ξ , and ϑ ) are known. For this
purpose, the Takagi and Sugeno-based model has been used.
Linear and non-linear (Triangular and Generalized bell shape
and Gaussian) MF distributions, along with twenty random test
cases (see Table 2) were utilized to evaluate the model perfor-
mance. In Fig. 4, we can see the input-output model of the flow
process, which uses fuzzy logic.

3. FUZZY LOGIC CONTROLLER
Due to the accelerated advancement of fuzzy logic applications
to complicated real-world situations, researchers/investigators
are more intrigued to develop fuzzy-based input-output con-
nections. Creative explanation based on human thinking and
reasoning is utilized to create the links between the input and
output of the system. Fuzzy logic has three main advantages: it
is easy to comprehend, it can deal with ambiguity, and does not
require an exact mathematical formulation [26, 27].

In fuzzy logic, the effectiveness of the model depends on the
knowledge base composed of a database and a rule base [27].
The MF is determined in a database that depends on the dis-
persed data of process variability. Linear type distributions rep-
resent the Trian-gular and Trapezoidal MFs, whereas non-linear
data distributions include bell shape, sigmoid, and Gaussian
MFs [28]. In fuzzy logic systems, variables are described us-
ing language words such as low, medium, high, tiny, etc. The
input-output connections are stated using rules as functions of
the linguistic terms [27, 28]. The number of rules varies as per
linguistic terms and process variables used.

3.1. Takagi Sugeno’s approach
Artificial neural networks (ANN) are a great and cost-effective
technique for modeling complicated industrial processes [29].
The explanation for this might be because they have enhanced
learning skills and the ability to generalize (predict appropri-
ate output for inputs that are not utilized during the learning
phase) [30]. A few drawbacks of ANN include the following:
output precision is restricted, solutions become trapped in lo-
cal minima, massive data covering the whole range of process
variables is required to train the network, and a large number of
training epochs [31, 32].

Wong and Lai [33] demonstrated that fuzzy ideas may be
successfully applied to challenges in various mechanical en-
gineering aspects. The primary advantages of the fuzzy logic
method include increased formulation flexibility and the ca-
pacity to deal with imprecise input-output data. It is critical to
highlight that the lack of a systematic process for defining the
MF distributions is the primary constraint in the fuzzy logic
system [33]. In recent years, research has focused on develop-
ing hybrid systems that combine the beneficial characteristics
of ANN and fuzzy logic tools to tackle complex real-world is-
sues. The embedded hybrid system was created to balance the
shortcomings of one soft computing tool with the advantages
of the other. A hybrid system called an adaptive neuro-fuzzy
interface system (ANFIS) has sufficient characteristics that in-
clude effortless implementation, improved efficiency, explicit
training, exceptional characterization through fuzzy rules, and
the capacity to solve complicated issues by combining numeri-
cal and linguistic skills [31, 32]. In ANFIS, ANN coupled with
a fuzzy system is utilized to update the rule base automatically.
Here, a hybrid learning method which includes gradient descent
and least squares estimator is used to map the input and output
combinations with ANFIS.

Two parameters govern the fuzzy rule, i.e., (i) the antecedent
that consists of MFs and its forms, and (ii) the consequent that
consists of a conditional variable associated with the input sig-
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nal, necessary for characterizing the network output. Hybrid
learning algorithms require both forward and backward com-
putations during training. The antecedent parameters are first
fixed in forward computing, and the consequent parameters are
found using the least-squares method. The network output is
determined by summing the outputs of subsequent layers. It
should be emphasized that the primary goal of any training
method is to minimize the error (between the actual and pro-
jected values), which requires updating the network parameters
and is achieved via backward pass computation. The following
parameters are fixed, and the premise parameters are updated
using the gradient descent technique [33]. The procedures used
in the current effort to create the ANFIS model are projected
in Fig. 4.

Figure 5 illustrates the construction of ANFIS for the sud-
denly expanded flow process [28]. The network has circular and
rectangular symbols that represent fixed and flexible nodes, re-
spectively. The network design is similar to ANN, including
input, output, and hidden layers. The suddenly expanded flow
process parameters are declared as a function of input nodes
associated with the input layer, and base pressure (β ) is nom-
inated as the output node. The nodes that operate in the hid-
den layer include performing MFs and rules as well. There are
five input parameters and one output parameter in this study.
There are 243 possible rule configurations for each of the 3
different input parameters. Equations (2), (3), and (4) for Tak-
agi and Sugeno’s first-order model, demonstrate a conventional
outcome with 3 fuzzy rules.

 Flow
process model

 Use of experimental data to develop response equation representing
flow process variables and base pressure

 Generate huge input-output data through response
equation

 Development of ANFIS model that correlates the
process variables and response

❖   Set initial input parameters, membership function and ANFIS structure
   Select learning scheme (hybrid learning scheme)❖
   Preset training cycles and error goal❖

Load data and start ANFIS training (say1000)

Training
finished

 ANFIS is ready for prediction once training completed successfully with
either error goal/training epoch reached

 Load ANFIS testing data (say 20)

Testing
finished

 View fuzzy interface structure, response surface of fuzzy
interface system and modified membership function

distributions

 Validate experimental data with ANFIS
prediction

No

Yes

No

Yes

Fig. 4. Flow chart representing methodologyfollowed for predicting (β ) using ANFIS.
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ϑ

W

Fig. 5. ANFIS architecture for predicting (β ) [34]

Rule 1: if (M is A1), (η is B1), (α is C1), (ξ is D1), and (ϑ is E1)
then

f1 = p1M+q1η + r1α + s1ξ + t1ϑ +u1 . (2)

Rule 2: if (M is A2), (η is B2), (α is C2), (ξ is D2), and (ϑ is E2)
then

f2 = p2M+q2η + r2α + s2ξ + t2ϑ +u2 . (3)

Rule 3: if (M is Ai), (η is Bi), (α is Ci), (ξ is Di), and (ϑ is Ei),
then

fi = piM+qiη + riα + siξ + tiϑ +ui , (4)

where, i = 1,2,3, . . . ,243, pi, qi, ri, si, ti, and ui, are the conse-
quent parameters, and f is the output parameter. The language
terms employed to describe the MFs are Ai, Bi, Ci, Di, and Ei.

The ANFIS structure is composed of six layers: the input
layer, the fuzzification layer, the product layer, the normaliza-
tion layer, the defuzzification layer, and the output layer. Setting

up an input-output connection and verifying the proper func-
tioning of each layer is done in the following manner:

Layer 1: Suddenly expanded flow variables are described
as a function of the input layer nodes in layer 1. Using a lin-
ear transformation function, layer 1 transfers the identical input
data to the subsequent layer.

Layer 2 is the fuzzification layer, wherein the MF weights
correlating to the prescribed linguistic labels are calculated as
indicated in Equations (5)–(9). In this layer “µ” represents
the fuzzification factor that transforms the input quantity into
a fuzzy quantity. These are values that lead the variables to be
represented by an MF due to their fuzzy nature. M, η , α , ξ , and
ϑ are the input nodes represented in relation to MFs as Ai, Bi,
Ci, Di, and Ei of layer 2, where O2,i is the output of ith node of
layer 2.

O2,i = µAi(M) for i = 1,2,3, (5)

O2,i = µBi−3(η) for i = 4,5,6, (6)
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O2,i = µCi−6(α) for i = 7,8,9, (7)

O2,i = µDi−9(ξ ) for i = 10,11,12, (8)

O2,i = µEi−12(ϑ) for i = 13,14,15. (9)

The most frequently used MFs are triangular, generalized
bell shape, and Gaussian, with values typically around zero to
one, in order to match the input requirements.

Layer 3: It is often called the product layer; this layer gen-
erates the total number of potential rules (35 = 243); layer 3
has 243 nodes and is typically labeled with the word. There
will be 32 functional nodes for each group of input data, with
every node indicating a possible input parameter combination.
Layer 2 receives the data and develops the result by multiplying
all input signals, as stated in Equation (10)

O3,i = wi = µAi(M)×µBi−3(η)×µCi−6(α)×
µDi−9(ξ )×µEi−12 (ϑ) . (10)

Layer 4: It is often referred to as the normalization layer,
and the nodes included inside it are typically labeled as N. Its
primary job is to standardize the weight functions by utilizing
Equation (11). The ratio of the intensity of i-th rule firing to all
other rules is calculated as the output of each node

O4,i = wi =
wi

(w1 +w2 +w3 + · · ·+w243)
. (11)

Layer 5: This layer is called the defuzzification layer. In or-
der to calculate each node, Equation (12) is used to combine all
of the standard firing intensities with the outcome of the asso-
ciated fired rule. For every set of the specified input parameter,
there are 32 nodes in Layer 5, giving a total of 243 nodes

O5,i = wi fiwi(piM+qiη + riα + siξ + tiϑ +ui). (12)

Layer 6: The output layer has only one variable of interest in
this study, hence, has only one node. As stated in equation (13),
the output is computed by combining all the input signals from
layer 5

O6.i = ∑
i

wi fi =

∑
i

wi fi

∑
i

wi
. (13)

4. RESULTS AND DISCUSSION
The ability of the proposed models to predict (β ) in suddenly
expanded flows was evaluated using 20 randomly generated
tests. This section discusses the acquired results and compares
the generated model performance to experimental values. The
procedure for predicting (β ) using the ANFIS model has been
illustrated earlier in Fig. 5. It had a significant number of train-
ing data (say 500) and was created arbitrarily using the response
Equation (1). Five input parameters (M, η , α , ξ , ϑ ), and a sin-
gle output parameter (β ) have been taken into consideration in
order to develop an input-output relationship for the suddenly
expanded flow process using the ANFIS model. As described

earlier, both linear (triangular) and non-linear (generalized bell
shape and Gaussian) MFs were utilized. Table 2 presents the
input-output data for 20 different flow process conditions. It is
critical to note that the prediction accuracy of the model de-
pends on the agreement between predicted and actual values
during training and is often expressed as root mean squared er-
ror (RMSE). Figure 6 illustrates the RMSE achieved after train-
ing for various MFs for the output base pressure (β ).
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Fig. 6. Rate of convergence for the response (β ) for (a) Triangular
MF, (b) Bell shape MF, and (c) Gaussian MF

4.1. Comparison of membership functions
In ANFIS, ANNs are used to take fuzzy inputs, process them,
and produce fuzzy outputs. ANNs are used in this technique
to design the ANFIS structure automatically and configure the
fuzzy parameters, rule base, database, and MFs. The efficiency
of the model may be further improved by including alterna-
tive MF distributions [32, 33]. Additionally, the performance
of the developed models is dependent on the volume and the
nature of the training data, the degree of correlation between
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actual and predicted values and is often assessed using the
RMSE after training. For training, 500 samples of input-output
data were used, and the network was terminated once the error
achieved a steady state. The RMSE values obtained after train-
ing are 0.1562, 0.2842, and 0.2921 for triangular, generalized
bell shape, and Gaussian MFs, respectively.

In Fig. 7, the model performance is compared with ex-
perimental test scenarios from Table 2. To match the model-
predicted and actual (β ) values, the best fit line was used. The
optimal fit line appeared to be identical for all models. However,
the triangle MF (Fig. 7a), performed better than the generalized
bell shape and the Gaussian MF distribution as illustrated in
Figs. 7b and 7c, respectively. This was due to the bulk of the
data points in the triangular MF, lying closer to the ideal (y = x)
line. Table 3 summarizes the results of the test scenarios for (β )

prediction. Additionally, the model performance is assessed us-
ing mean absolute percent error (MAPE) [28] values for twenty
experimental test cases. The MAPE values for triangular, gener-
alized, and Gaussian MFs distributions were 3.019, 5.998, and
6.810, respectively (Table 3).

4.2. Comparison of the MFs using percent deviations
The percent deviation in predicting (β ) values for triangular MF
distribution was found to be between (–4.09%, +11.96%).

Similarly, for the generalized bell shape and Gaussian MF
distributions, the percent deviation in prediction values varied
between (–11.177%, +8.618%), and (–8.889%, +13.456%),
respectively. It is noticed that the percent deviation profile is
consistent across all three models with various MF distribu-
tions; see Fig. 8.

Table 3
Random experimental test cases

Membership function
Exp.
No.

Actual
(β )

Triangular Bell shape Gaussian

Predicted
(β )

Absolute
deviation

(%)

Predicted
(β )

Absolute
deviation

(%)

Predicted
(β )

Absolute
deviation

(%)

1. 0.234 0.230 1.739 0.239 2.092 0.242 3.305

2. 0.443 0.459 3.485 0.464 4.525 0.475 6.736

3. 0.229 0.220 4.090 0.220 4.090 0.226 1.327

4. 0.678 0.704 3.693 0.639 6.103 0.718 5.571

5. 0.656 0.699 6.151 0.705 6.950 0.709 7.475

6. 0.737 0.730 0.958 0.750 1.733 0.701 5.135

7. 0.441 0.455 3.076 0.420 5.000 0.405 8.888

8. 0.666 0.659 1.062 0.621 7.246 0.615 8.292

9. 0.921 0.891 3.367 0.880 4.659 0.871 5.740

10. 0.990 0.991 0.100 0.969 2.167 0.977 1.330

11. 0.721 0.733 1.637 0.789 8.618 0.779 7.445

12. 0.844 0.845 0.118 0.899 6.117 0.914 7.658

13. 0.225 0.230 2.173 0.208 8.173 0.235 4.255

14. 0.449 0.510 11.96 0.488 7.991 0.515 12.81

15. 0.557 0.581 4.130 0.501 11.17 0.620 10.16

16. 0.698 0.707 1.272 0.760 8.157 0.630 10.79

17. 0.361 0.381 5.249 0.331 9.063 0.335 7.761

18. 0.551 0.539 2.226 0.514 7.198 0.598 7.859

19. 0.328 0.338 2.958 0.358 8.379 0.379 13.45

20. 0.751 0.744 0.940 0.747 0.535 0.748 0.401

MAPE 3.019 5.998 6.819
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Fig. 7. Comparison of predicted and actual (β ) for (a) Triangular MF,
(b) Bell shape MF, and (c) Gaussian MF
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Fig. 8. Suddenly expanded flow process [2]

4.3. Comparison of the membership functions using MAPE
The predictive effectiveness of the developed model was tested
using MAPE for three distinct MF distributions, as seen in Ta-
ble 3. However, it was found that the performance differs with
linear and non-linear type MF distributions, which could be ac-
counted for by the structure of the error surface used during
training [28]. The triangular MF distributions outperformed all
other models in terms of MAPE. The enhanced performance
of linear type MF distributions might be attributed to the auto-
mated development of the antecedent and consequent parame-
ters of the fuzzy logic system via the enhanced learning capa-
bilities of ANN [28, 29].

5. CONCLUSIONS
A forward mapping technique was used to estimate (β ) in sud-
denly expanded flows by utilizing the Takagi Sugeno models’
(ANFIS) based on the fuzzy logic approach. The batch train-
ing method has been used for improved training and predic-
tion accuracy, together with a large training data set (say 500).
Through genuine trials, massive databases are hard to acquire,
and hence, data were produced randomly from the parameters
and their levels, using the response equation developed from
the DoE-based L16 Orthogonal array. Twenty randomly gener-
ated test cases were utilized to evaluate the performance of the
model with linear and non-linear type MF distributions. It is
found that the triangular MF, Bell shape MF, and Gaussian MF
had a MAPE of 3.019, 5.998, and 6.819, respectively. The en-
hanced prediction performance of the triangular MF is mainly
dependent on the quality and quantity of the training data, the
distribution of MFs, and the shape of the error surfaces. The
proposed fuzzy logic models may be utilized to accurately esti-
mate base pressure under various suddenly expanded flow pro-
cess conditions, therefore avoiding the need for significant ex-
perimental effort. The current work is critical for aerodynamic
engineers because it identifies the most important criteria for
achieving the desired base drag in the suddenly expanded flow
process.
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Nomenclature
A – linguistic label representing the Mach number in the

fuzzy layer
ANFIS – adaptive network-based fuzzy interface system
ANN – artificial neural networks
ANOVA – analysis of variance
B – linguistic label representing nozzle pressure ratio in the

fuzzy
BBD – Box-Behnken design
BPM – back propagation neural network models
C – linguistic/language label representing area ratio in the

fuzzy layer
C-D – convergent-divergent
CCD – central composite design
CFD – computational fluid dynamics
D – linguistic label representing length to diameter ratio in

the fuzzy
DoE – Design of Experiments
E – linguistic label representing jet control in the fuzzy

layer
f – representation of the output parameter as per Takagi

and Sugeno’s first-order model
FLC – fuzzy logic controller
M – Mach number
MAPE – mean absolute percentage error
MF – membership functions
MSE – mean squared error
O – output of a particular layer in the ANFIS architecture
p – parameter representing the Mach number in the de-

fuzzy layer
q – parameter representing nozzle pressure ratio in the de-

fuzzy layer
R2 – regression coefficient
RNN – recurrent neural networks
RSM – response surface methodology
RMSE – root mean square error
r – parameter representing area ratio in the de-fuzzy layer
s – parameter representing length to diameter ratio in the

de-fuzzy
t – parameter representing jet control in the de-fuzzy layer
w – weight functions

Greek symbols
α – area ratio
β – non-dimensional base pressure
η – nozzle pressure ratio
ξ – length to diameter ratio
ϑ – jet control
µ – fuzzification factor
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