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WALDEMAR JĘDRAL*l

THE PRESSURE DISTRIBUTION IN TURBULENT 
LIQUID FLOW WITHIN A CONICAL AXIAL CLEARANCE 

Deflection of balancing disc in a multistage centrifugal pump, being the 
consequence of pressure forces, causes the change of shape of the axial clearance 
between the rotating balancing disc and the stationary counterdisc. It results in 
reduction of axial force acting on the rotating wall of the clearance, and the total 
balancing force. The final effect is a significant decrease (e.g. of 20%) of disc to 
counterdisc distance. The approximate formulae for radial pressure distribution in 
turbulent flow through hydraulically smooth conical axial clearance are derived in the 
paper and a numerical example is given. The method of integral relations was applied. 

NOMENCLATURE 

a, b
C

din, d.;
Fax 
r;
Fg
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N 
p
/1p, t1pg, Sp:
Q1

diameter ratios; a= d0jdin, b = 1/a,
mean velocity of liquid; c = Q1 !2nrs,
diameters, as shown in Fig. 1, 
axial thrust, 
balancing force, 
force acting on the rotating surface of the gap, 
local (eq.12) and average value of liquid swirl between rin 
and rau, 
velocity ratio; N = ule,
static pressure (time averaged), 
differential pressure, as shown in Fig.L, 
leakage through the gap, 
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- Reynolds number; Re = c · 2s/v, 
- peripheral velocity; u = w r, 
- radial, peripheral and axial fluid velocity (time averaged),
- mean relative velocity (relating to the gap surface),
- coefficient in Blasius formula for fluid stress on the wall,
- coefficient for calculation of relative velocity,
- angle of the gap conicity,
- shear stress in liquid,
- coefficient of the pressure drop increase due to rotation of

the gap surface,
- angular speed of rotating disc.

LOWER INDICES:

con
diff

m
OU 

s 
t 
(J) 

r, (f), z 

- refers to conical gap,
- refers to the pressure increase because of the gap diffuser-

ness,
- refers to inner diameter of the gap,
- refers to outer diameter of the gap,
- refers to stationary wall,
- total (i.e. resultant),
- refers to rotating wall,
- refers to radial, angular (circumferential) or axial coor-

dinate.

1. Introduction 

When designing a system with balancing disc in a multistage pump, we
usually assume that the surfaces on both sides of the radial annular gap (i.e.
axial clearance) s are parallel (Fig. la). However, due to the forces resulting
from high difference of pressures acting on both surfaces, the disc deforms,
and the gap takes a conical shape (Fig. 1 b).

In order to carry the same axial force Fax, the rotating disc must move
closer to the counterdisc, in result of which the width Sin at the inlet of the
clearance may become too low. A threat then arises that the two discs may
touch, and a severe damage of the pump may occur.

When designing the balancing device, one must first estimate the
deflection angle y of the disc (Fig. 1 b), and then calculate the parameters of
fluid flow in the clearance, as well as the actual force Fg acting on the rotating
surface of the gap and the diminished width Sin· Only then can one prevent
negative effects of disc deflection by
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• making a disc with a "counter-cone", y < O for w = O, or applying 
a conical counterdisc, 

• adequately increasing outer diameter of the disc dou· 

a) 

6p r 

stationary 
wall 

rotating 
wall 

b) 

Fig. 1. Radial annular gap (axial clearance) with: 
a) two parallel surfaces, b) rotating surface of conical shape 

The solution to a turbulent flow in a clearance of parallel walls was 
obtained in [ l] in a form of a set of algebraic relationships. The objective of 
this study is to present the method of calculations, of an adequate accuracy, 
which would allow finding the distribution p(r) and pressure drop !:c..p(Q 1, w) 
in a turbulent flow through a conical clearance. A suitable form of conicity is 
assumed to facilitate the calculations (the apex W of the cone lies at the point 
where the axis of rotation passes through the surface of the stationary disc; 
if we assumed a different apex location, the calculations would be 
significantly more complicated, and obtaining a convenient form of final 
formulae would become practically impossible). 

To find the solution, which would also have the form of a set of algebraic 
relationships, one applied the method of integral relations. When deriving 
these relations, one used the following formulae, which explicitly result from 
Fig. 1, the equation of continuity of flow with velocity c averaged over the 
widths, the definition of circumferential velocity u, and the Reynolds number 
Re: 



396 WALDEMAR JĘDRAL

S S;n S;ntgy=-=-, thus s=r-
r r;n r;n

Q, 
c=-- thus C;nrinSin=C rsLnrs' 

(1) 

(2)

and (3)

r
U= Orr = U;0- 

r;a
(4)

Re= c · 2s = Re· r;n
111

V r 
(5) 

(6) 

2. Initial equation system 

It is assumed that there is a steady state, axially symmetric turbulent flow
of fluid of constant viscosity in the clearance. The initial segment close to the
inlet (the entrance region) has been neglected, as its length is very small
(below 0.1 of the length of a typical axial clearance). The Reynolds equation
in radial direction (after making typical simplification [l], [2]), and the
equation of continuity have in this case the forms

dp = -p(vr avr + V, avr - V~) + OTzr
dr Jr - Jz r d: (7) 

(8) 

Although the walls of the clearance are almost parallel, one cannot neglect

the velocity component u.. It follows from Fig. 2 that tgB = Ve = ~, thus
Vr r

Z dć)vz u, z d »,
V- = v - an - = - + --· 

- r r' a z r r az '
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z 
(J) 

Fig. 2. Components v,, v, of meridional velocity Vm (vm + v0 = v) 

Substituting this relation into we obtain 

avr = -(2 Vr +~aur) 
Jr r r d : 

thus 

and then equation (7) takes the form 

dp 2 v; vi OTzr 
-= p-+p-+- 
dr r r d : (9) 

Considering very small value of angle y 1, one can assume that the 
velocity distributions vr(z) and Vq, (z) are practically the same as for 
a clearance of parallel walls. Similarly as in [1], the velocity distributions 
assumed here are power functions with exponent lin (Fig. 3), given by the 
equations 

( )' 2z ;; 
for o ::; s Vr Vrmax S , z :S: 2 

-I: I i)]' 
(10) 

for 
s Vr 
2 

::; z :S: s 

1 The disc deflection shown in Fig. 2 is greatly exaggerated; actually y = 0.02° ... 0.04°, and 
the deflection of rotating wall is practically invisible, as it is in Fig. 3a. 
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where n + 1
V,max = --- C,

n 

and

kcv,{2/Y, for o s 
Vrp ś z ś 2

wr{ I - (I +(1 i)]T
(11)

for s 
ś śVrp 

2 z s 

where

(V ) k = rp ,=,12 ś 0.5 (12)
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Fig. 3. Distributions of velocities averaged over time, v,(z) and u~(:)

3. Pressure distribution in conical clearance 

After substituting (10) and (11), both sides of equation (9) are multiplied
by dz, integrated first over the limits 0-s/2, s/2-s, and then added side-to-side
and integrated from r;" to r. Assuming - similarly as in [1] - that
k = k; = const, and taking into account formulae (1) ... (6) we obtain
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(13) 

where 8pctiff is the pressure increase resulting from the drop of velocity c 
(the clearance is a diffuser) 

(14) 

8pw is the increase of pressure due to rotation of the movable wall 

6 _ pw2 
2 _2 1 + kn + Pn + P112 

Pw - -2-(r - 1 in) (n + l)(n + 2) (15) 

and 8p1 is the pressure drop due to friction on both walls of the clearan­ 
ce 

6 =fTsr+Twrdr 
pf s 

riu 

(16) 

while p ;> Pin - ~Pin, where /',.pin is the pressure drop at the clearance inlet 
(Fig. la), and k - average value of liquid swirl coefficient between rin 
and r 00• 

Denotations of radial components of stresses on the walls are as follows: 
- stationary wall (s) - ( Tzrto = Tsr 
- rotating wall (w) - (Tu),=,= Twr· 

The values of stresses T5 on the stationary wall and on the rotating one, 
tw (Fig. 4) were calculated, similarly as in [l], from the following for­ 
mula 

(17) 

that was obtained by generalising the known relationship describing the flow 
in a pipe of circular section, as well as other cases of flows, such as flows in 
plane gaps and in axial annuli. 
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Fig. 4. Radial (r) and circumferential ( ({J) stresses in the fluid and on the clearance walls,
the rotating one (W) and the stationary one (s)

The resulting fluid flow velocity v1 with respect to the walls was
calculated as a mean value over the clearance width, separately for both
halves of the clearance,

where

u, = ✓ C 
2 + W 

2 = ✓ C 
2 + (/3 U) 2

w=lwl=/3u 

/3s = kn : 1 } 

/3w = (1 - k)-
11
- 

n + 1

(18) 

(19) 

(20) 

(Fig. 3a)
n 

C =~Vrmax (21) 

A conventional Reynold's number that pertains to this value equals

v1 · 2s R V1 Rei=--= e-
v C 

(22) 
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It follows on the assumption expressed by formula ( 17) that the stresses 
r on the walls, and the velocities v,, have the same directions but opposite 
senses (Fig. 5). From this property, there follows the equality of respective 
angles {} and the relationship valid for both walls 

Tr= T COS {) = T~ = [1 + (/3N)2r112 

V,- 
(23) 

~ 
ul - 

Fig. 5. Velocities, total stresses and their components on the stationary (s) and the rotating wall (w) 

On the basis of formulae (17) ... (23) one finally obtains the values of 
stresses on the stationary (s) and the rotating wall (w) 

2 2 ,,_ 1 

Tnr = p ~ aRe n+l[l + CJ3sN)2]~ 

, 2 n-I 

i.: = P ~- aRe -n+l[l + (/3wN)2] Z(n+l) 

(24) 

In order to avoid solving elliptic integrals when calculating ( 16), one must 
expand the expressions in the square brackets into Taylor series. However, 
because there could be J3N ~ 1 as well as j3N > 1, one should apply two 
different expansions, which would be inconvenient in practice. Then, 
similarly as it was done in [l], in this work the expressions in brackets were 
approximated by one approximate polynomial (with an error < 4.5% 
for j3N ~ 3): 

n-I 

[ l + (/3N)2] 2(n+ I) = l + 11 - 1 (/3N)2 _ (n - l)(n + 3) (/3N)3 
2(11 + 1) 12(1l + 1)2 
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Carrying out integration (16) with the use of the above relations we obtain

(25)

where

? [ ( ) 411+2 l 6 0
= p C;-;, a d;n n + 1 1 _ T;n ~

Pf 2 _L 2s 2n + l r 
n+l rn

Re;n 

(26)

is the pressure drop between r;n and r for a conical clearance of immobile
walls, and the increase of the pressure resulting from rotating motion of the
disc is expressed by the coefficient

(peon =
(

_!__) 2~':14 - 1

l (11 - 1)(211 + l)n2N·2 (l _ 2k- 2k-2) T;n+ 3 m + ----,(-.,.-) ~4n_+..,_2 + 
2(11 + 1) (2n + 4) 1 _ r;." ~ 

(27)

( r).2Iltln+ l 1 
(n - 1)(211 + l)(n + 3)n3 N3. (1 _ 3k 3P) ;:;: - 

12(n + I)' (5 n + 7) '" + I _ ( r~"r:,' 

On the basis of equations (13) ... (15) and (25) ... (27), one can calcu­
late the force F 8 acting on the rotating surface of conical gap. One can
also calculate the total pressure drop in a clearance limited by the radii r;n 
and Tou:

where

(28)

(29)

and the remaining pressure differences can be calculated by substituting
r = r0u into formulae (14), (15), (26), (27).
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For a wide range of turbulent flows, one usually assumes n = 7 and 
a= 0.0971, the validity of which has been experimentally verified for axial 
annuli. In the here-discussed case, we introduce the symbols that simplify the 
notation 

(30) 

and then we obtain 

21 

25·49 3 - -2a
4 - 1 

128· 512Nin(l - 3k + 3k) 1s 
1 - b 4 

(31) 

(32) 

(33) 

9 

5 · 49 ? - -? a4 - 1 <Peon= 1 + 
1024 

N(;;(l - 2k + 2k-) li+ 
1 - b 4 

(34) 

(35) 

The averaged value k = k ; of the fluid swirl coefficient in axial clearance 
depends on the value kin at the clearance inlet, and the latter depends on the 
course of function k 1 (r) between the outlet of axial annulus (before the 
counterdisc) and the inlet to the radial gap. Based on [2] and making some 
additional estimations, one can assess that this value should lie within the 
limits k = 0.3 ... 0.38. A more precise value of k can be found by calculating 
first k(r) in the region between r1 and rin, and then k(r) in the axial clearance, 
using the methodology described in [2]. 

The above formulae have been derived on the assumption that the surfaces 
of the clearances are hydraulically smooth, which is confirmed by the results 
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of measurements done for parallel-walled clearances, as well as for axial
annuli. It seems that the formulae are applicable up to Re;0 = 5 · 104, or,
according to [l]:

( 
5 )sn

Rein:":: Re;n,lim = 126 -, '"
1av

(36)

where h « is the average height of wall surface roughness.

4. Force acting on conical disc surface 

The force F, acting on the rotating, conical surface of radial gap (Fig. 1) 
constitutes 25-30% of the total loading force Fbal· It is lower by 8-15%
(depending on geometry of the system with balancing disc) than the force
acting on the surface of a clearance of parallel walls. The difference is due to
a greater velocity c;0 and an increased pressure drop !::,.p;0 at the clearance inlet.
The force can be calculated from the relationship that is obtained after
substituting the relationships (13)+(15) and (25)+(27) into the definition
formula

r, = 2n f p(r)rdr. (37)

Assuming - as in the previous case - n = 7, one obtains

- 1[ 2 { 2 32 2 2 2Fg - 4din + (a - 1)1::,.pg + 63pC;n(a - 2 + b ) + 

)d;2., 2 71 + 7k + 56P 7 d.; 114[ 7 114 + por-(a - 1)------ - O 02109pc--Re-:- a- + b + 4 288 . '"2s;n '"

15 5. 49 7 - -7 ( 8 1
; 2 9)- - + --N- (1 - 2 k + 2 k-) -a - a + - + 

7 2·512'" 17 17

25 . 49 3 - - 2 ( 8
2
; 2 21) ] }

- 128 · 512N;n(l - 3k + 3k ) 29a - a + 29 ·

(38)

If we have assumed, as one usually does, a rectilinear distribution of
pressure p (r) in the clearance, the calculated value of force Fg would be
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greater by approximately 10 ... 15%. This fact confirms the purposefulness of 
using formula (38). 

5. Example of calculations 

The below-presented numerical example shows how, with a constant 
force F,., carried by the balancing disc, conical shape of axial clearance 
influences the decrease of pressure drop in it, and consequently leads to the 
decrease of Sin at the inlet. The boiler feed pump having rate of flow 
Q = 275 m3/h and head H = 1820 mis selected for the example. 

The dimensions of parallel-walled clearance are: d.; = 300 mm, 
din = 200 mm, s = 0.088 mm. The remaining data: w = 488 rad/s 
(n= 4660 rpm); p = 910 kg/m ', v = 0.2 · 10-6 m2/s (hot water t = 158°C); 
cin = 63.1 mis. With the above data we have: uin = 48.8 mis; Nin = 0.7734; 
Rein = 5.553 · 104• 

Using the formulae derived in [l] one calculates: !J,,pctiff = 1.0224 MPa; 
tJ,,pw = 0.1531 MPa (fork= 0.3); tJ,,pJo = 7.4196 MPa; <P= 1.1018 ~ tJ,,pJ= 
= 8.175 MPa; /:J,,pin = 1.19022 MPa (assuming (in = 1.05), and then 
!J,,p = !J,,pin + <fJ!J,,pJo - !J,,pdiff - !J,,p{V = 8.9017 MPa. 

Applying the formulae (28) ... (35) for a conical clearance of inlet width 
sin = 0.088 mm, the same as that mentioned before, one obtains the pressure 
drop as low as !J,,p = 4.84 MPa. In order to satisfy again the condition FbaI = Fa, 

and to maintain the same through-flow Q1, and- at the same time - keep the 
same pressure drop in both the axial annulus and the radial gap, the balancing 
disc must be shifted closer to the counterdisc, which means that the width 
must be set to sin< 0.088 mm. Using the above formulae and applying the 
method of successive approximations, one calculates sin = 0.0729 mrn 
(y = 0.042°), and Cin = 76.59 mis; Nin = 0.6372; Sp ; = 2.803 MPa; 
!J,,pctiff = 2.176 MPa ~ t,,,p = 9.025 MPa. In the calculations, one assumes 
k = 0.35 - a value greater than that for a parallel-walled clearance - taking into 
account that the ratio N = ule strongly increases with the radius r, and in 
consequence the swirl of fluid is greater for r > rin. It can be easily proven that 
the influence of the k value on the final result is small (fork= 0.16 one would 
obtain /s p = 9.223 MPa, so that it would be only 2.2% greater than with 
k = 0.35). 

It must be emphasised that the above calculation is approximate, because 
- despite the same value of total pressure drop t,,,p in both clearances - their 
pressure distributions are different (Fig. 1), and thus the forces Fi; must be 
different, too. The smaller force for conical clearance will result in a decrease 
of force FbaI so that re-establishing the force balance FbaI = Factc would be 
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possible only after an additional decrease of the clearance width at the inlet,
down to the value of s;11 = 0.07 mm.

A more accurate value S;n can be determined by performing a complete
calculation for the whole balancing disc, with respect to the abovementioned
condition of equality between the balancing force and the axial thrust.

5. Conclusions 

1. The result of deflection of the balancing disc due to the pressure forces
acting on it is that the clearance between the disc and the counterdisc
becomes conical. It leads to a decrease of the clearance width s;11 at its inlet,
and causes a simultaneous increase of the speed c;0• These effects
deteriorate, in an obvious way, functional properties of a pump with
balancing disc, and increase probability of pump's failure.

2. A more precise numerical examination of the influence of disc deflection
needs calculating this deflection (e.g. using the Finite Element Method)
and determining flows and pressure distributions in the whole balancing
device, taking into account the distribution p(r) of pressure in the region
between the radial annular gap and the axial annulus, i.e. for r, '.S r '.S r;11

(Fig. 1).
3. In order to prevent the negative effects of conical axial clearance, one

should give the surface of the balancing disc a "counter-conical" shape, so
that, after deflection of the disc, the walls would become parallel, or one
can increase the disc diameter d00• Additionally, in order to compensate
also the influence of shaft deflection, one can apply a counterdisc with
elastic support [4].

The work was supported by Ministry of Science and Informatization
in Poland from financial means for science in 2005-2007 as a research
project.
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Rozkład ciśnień w turbulentnym przepływie cieczy przez stożkową szczelinę poprzeczną

Streszczenie

Projektując układ z tarczą odciążającą w pompie wielostopniowej zakłada się, że powierzchnie
tworzące szczelinę poprzeczną (promieniową) są do siebie równolegle (rys. I a). Jednak tarcza
odkształca się, wskutek sil spowodowanych dużą różnicą ciśnień działających na jej powierzchnie,
wskutek czego szczelina staje się stożkowa (rys. I b). Powoduje to zmianę rozkładu ciśnień
w szczelinie i zmniejszenie siły osiowej F, działającej na wirującą powierzchnię szczeliny,
w wyniku tego zaś - zmniejszenie siły odciążającej Fb,1- Aby przenieść nie zmieniony napór osiowy
Fax musi wzrosnąć siła Fbm = F"" co wymaga zbliżenia wirującej się tarczy do nieruchomej
przeciwtarczy i zmniejszenia szerokości szczeliny. Szerokość s.,, na wlocie szczeliny może stać się
wówczas zbyt mała, co grozi zetknięciem się obu tarcz i poważną awarią pompy.

Aby zapobiec negatywnym skutkom ugięcia tarczy należy móc uprzednio dostatecznie
dokładnie obliczyć parametry przepływu cieczy w szczelinie. W pracy wyprowadzono zależności na
rozkład ciśnień w hydraulicznie gładkiej poprzecznej szczelinie stożkowej dla przypadku przepływu
turbulentnego. Do rozwiązania zastosowano metodę związków całkowych zakładając przepływ
osiowo-symetryczny i potęgowe rozkłady prędkości promieniowych i obwodowych. Wykorzystano
znane zależności pólempiryczne na naprężenia na obu powierzchniach tworzących szczelinę.
Wyprowadzono także wzór na silę F, dla szczeliny stożkowej.

Zamieszczono przykład liczbowy pokazujący, jak stożkowość szczeliny wpływa na zmniej­
szenie się spadku ciśnienia l':;.p w szczelinie oraz siły F,, a w konsekwencji - na zmniejszenie się
szerokości s,, (o ok. 20%) w układzie odciążającym pompy zasilającej kocio!, o wydajności
Q = 275 rrr'zh i wysokości podnoszenia H = 1820 m.


