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THE PRESSURE DISTRIBUTION IN TURBULENT
LIQUID FLOW WITHIN A CONICAL AXIAL CLEARANCE

Deflection of balancing disc in a multistage centrifugal pump, being the
consequence of pressure forces, causes the change of shape of the axial clearance
between the rotating balancing disc and the stationary counterdisc. It results in
reduction of axial force acting on the rotating wall of the clearance, and the total
balancing force. The final effect is a significant decrease (e.g. of 20%) of disc to
counterdisc distance. The approximate formulae for radial pressure distribution in
turbulent flow through hydraulically smooth conical axial clearance are derived in the
paper and a numerical example is given. The method of integral relations was applied.

NOMENCLATURE

a, b — diameter ratios; a = do./di,, b = 1/a,

c — mean velocity of liquid; ¢ = Q,/27rs,

din, doy — diameters, as shown in Fig. 1,

Fox — axial thrust,

Fia — balancing force,

F, — force acting on the rotating surface of the gap,

k k — local (eq.12) and average value of liquid swirl between r;,
and 7y,

N — velocity ratio; N = u/c,

p — static pressure (time averaged),

Ap, Ap,, Api, — differential pressure, as shown in Fig.1,

o) — leakage through the gap,
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Reynolds number; Re = ¢ 2s/v,

— peripheral velocity; u = wr,

radial, peripheral and axial fluid velocity (time averaged),

— mean relative velocity (relating to the gap surface),

— coefficient in Blasius formula for fluid stress on the wall,

coefficient for calculation of relative velocity,

— angle of the gap conicity,

— shear stress in liquid,

— coefficient of the pressure drop increase due to rotation of
the gap surface,

w — angular speed of rotating disc.
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LOWER INDICES:

con — refers to conical gap,

diff — refers to the pressure increase because of the gap diffuser-
ness,

in — refers to inner diameter of the gap,

ou — refers to outer diameter of the gap,

K — refers to stationary wall,

t — total (i.e. resultant),

W — refers to rotating wall,

r,Q,z — refers to radial, angular (circumferential) or axial coor-
dinate.

1. Introduction

When designing a system with balancing disc in a multistage pump, we
usually assume that the surfaces on both sides of the radial annular gap (i.e.
axial clearance) s are parallel (Fig. 1a). However, due to the forces resulting
from high difference of pressures acting on both surfaces, the disc deforms,
and the gap takes a conical shape (Fig. 1b).

In order to carry the same axial force F,, the rotating disc must move
closer to the counterdisc, in result of which the width s;, at the inlet of the
clearance may become too low. A threat then arises that the two discs may
touch, and a severe damage of the pump may occur.

When designing the balancing device, one must first estimate the
deflection angle y of the disc (Fig. 1b), and then calculate the parameters of
fluid flow in the clearance, as well as the actual force F, acting on the rotating
surface of the gap and the diminished width s;,. Only then can one prevent
negative effects of disc deflection by
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e making a disc with a “‘counter-cone”, ¥ < 0 for @w = 0, or applying
a conical counterdisc,
e adequately increasing outer diameter of the disc d,.
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Fig. 1. Radial annular gap (axial clearance) with:
a) two parallel surfaces, b) rotating surface of conical shape

The solution to a turbulent flow in a clearance of parallel walls was
obtained in [1] in a form of a set of algebraic relationships. The objective of
this study is to present the method of calculations, of an adequate accuracy,
which would allow finding the distribution p(r) and pressure drop Ap(Q;, @)
in a turbulent flow through a conical clearance. A suitable form of conicity is
assumed to facilitate the calculations (the apex W of the cone lies at the point
where the axis of rotation passes through the surface of the stationary disc;
if we assumed a different apex location, the calculations would be
significantly more complicated, and obtaining a convenient form of final
formulae would become practically impossible).

To find the solution, which would also have the form of a set of algebraic
relationships, one applied the method of integral relations. When deriving
these relations, one used the following formulae, which explicitly result from
Fig. 1, the equation of continuity of flow with velocity ¢ averaged over the
width s, the definition of circumferential velocity u, and the Reynolds number
Re:



396 WALDEMAR JEDRAL

S Sin _ __Sﬂ
tgy—;—r—in, thus s = lrin (1)
_ o _
c= s thus cupripSm=c¢ r s 2)
Fin 2
and €= Cin(T) (3)
U= QT = Uy— )
Re = £ 25 —Re, i (5)
y r
u A
NZE:Nin(—fj (6)

2. Initial equation system

It is assumed that there is a steady state, axially symmetric turbulent flow
of fluid of constant viscosity in the clearance. The initial segment close to the
inlet (the entrance region) has been neglected, as its length is very small
(below 0.1 of the length of a typical axial clearance). The Reynolds equation
in radial direction (after making typical simplification [1], [2]), and the
equation of continuity have in this case the forms

dr

ﬁrql—v~ dz r

dp——p(u,av' L “‘7’) i ™
Jz

v, Jdvu,  Jdvu.

P Sk i

Although the walls of the clearance are almost parallel, one cannot neglect

the velocity component v.. It follows from Fig. 2 that tgd = % = ; thus

.
d&v: v, zdV,

,and — = — + = —;

'r dz r rodz

<

Yy = B
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Fig. 2. Components v,, v. of meridional velocity v, (Un + v,=v)

Substituting this relation into we obtain

e j thus Ua—vr+v@——20—%
r rodz " dr ‘oz r

dvu, _ _(2 o zdv,
or r

and then equation (7) takes the form

2 J7.
—=2p—+p—+ T 9

Considering very small value of angle 7', one can assume that the
velocity distributions v,(z) and v,(z) are practically the same as for
a clearance of parallel walls. Similarly as in [1], the velocity distributions
assumed here are power functions with exponent 1/n (Fig. 3), given by the
equations

I\
v, = v”“‘“(f) , for 0 <z <
(10)

1
Z) |n s
v, () 2(1 2) , for > z )

' The disc deflection shown in Fig. 2 is greatly exaggerated; actually y =0.02° ... 0.04°, and
the deflection of rotating wall is practically invisible, as it is in Fig. 3a.
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n+ 1
where Urmax = c,
n
and
27 5
n A
Vy = ka)r(—) , for 0<z< 5
S
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Fig. 3. Distributions of velocities averaged over time, v,(z) and V,(z2)

3. Pressure distribution in conical clearance

After substituting (10) and (11), both sides of equation (9) are multiplied
by dz, integrated first over the limits 0-s/2, s/2-s, and then added side-to-side
and integrated from ry, to r. Assuming — similarly as in [1] — that
k = k,. = const, and taking into account formulae (1) ... (6) we obtain
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p(r) = pi;z + Opaisg + OPw — 5pf (13)

where Opa is the pressure increase resulting from the drop of velocity ¢
(the clearance is a diffuser)

Spay = pS 1t D2 (1)’ (14)
PR 2 n(n + 2) r
Op, is the increase of pressure due to rotation of the movable wall

_pw’ 5 1+ kn + k*n + k*n?
5pw_ 7 (7 ’m) (I’l n 1)(1”[ n 2) (15)

and Op; is the pressure drop due to friction on both walls of the clearan-
ce

r

ou

Oy = J. Mdr (16)

z s

while pin = pin — Apin, where Ap;, is the pressure drop at the clearance inlet
(Fig. 1a), and k — average value of liquid swirl coefficient between ri,
and r,.

Denotations of radial components of stresses on the walls are as follows:
— stationary wall (s) — (7.,)._, = T,
— rotating wall (@) — (7.)__, = To

The values of stresses 7, on the stationary wall and on the rotating one,
t, (Fig. 4) were calculated, similarly as in [1], from the following for-
mula

T i WL (17)

=&y 2
2 Re[n+

that was obtained by generalising the known relationship describing the flow
in a pipe of circular section, as well as other cases of flows, such as flows in
plane gaps and in axial annuli.
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Fig. 4. Radial (r) and circumferential (¢) stresses in the fluid and on the clearance walls,
the rotating one (®) and the stationary one (s)

The resulting fluid flow velocity v, with respect to the walls was

calculated as a mean value over the clearance width, separately for both
halves of the clearance,

v, =Ve? + wr=+c? + (Bu)? (18)
where w=|w|=Bu (19)
- n
ﬂs =

n+1 ) (20)

ﬁ(":(l_k)n+l

. n

(Fig. 3a) c= == T U max (21)

A conventional Reynold’s number that pertains to this value equals

U, 2
Re; = ’

= Re ! (22)

v c -
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It follows on the assumption expressed by formula (17) that the stresses
Ton the walls, and the velocities v,, have the same directions but opposite
senses (Fig. 5). From this property, there follows the equality of respective
angles ¢ and the relationship valid for both walls

172
T, = Tcos ﬁ—rU:[H(ﬁN)] (23)
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Fig. 5. Velocities, total stresses and their components on the stationary (s) and the rotating wall (®)

On the basis of formulae (17) ... (23) one finally obtains the values of
stresses on the stationary (s) and the rotating wall ()

_n—-1

n+1

2 S
T, = p%aRe [1 + @B N
| (24)
2 n+1 ?n«rll)

Ty = p%:aRe_ [1+ BN

In order to avoid solving elliptic integrals when calculating (16), one must
expand the expressions in the square brackets into Taylor series. However,
because there could be SN < 1 as well as SN > 1, one should apply two
different expansions, which would be inconvenient in practice. Then,
similarly as it was done in [1], in this work the expressions in brackets were
approximated by one approximate polynomial (with an error < 4.5%
for BN < 3):

n-—1

i+ D) n—1 (n — Dn + 3)

[1+ ] =1 M Tera s s Ty

(BNY’
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Carrying out integration (16) with the use of the above relations we obtain
(Slif = 5/1,[0 Deon (25)
where

9

" o d - 1 - 4n+2

2 o ¥ in n+1

_ (P 2
Sp0 =P ) B 2_Dsm2n + 1{1 (r) :| £

n+1l
in

is the pressure drop between r;, and r for a conical clearance of immobile
walls, and the increase of the pressure resulting from rotating motion of the
disc is expressed by the coefficient
2n+4
(Lj n:l _ 1
Fin

_——_l_
FEE)
1 - (@) ::1
»

Sn+7
(Lj m_
Vin

4n+2
§ s ﬁ n+l
r

On the basis of equations (13) ... (15) and (25) ... (27), one can calcu-
late the force F, acting on the rotating surface of conical gap. One can
also calculate the total pressure drop in a clearance limited by the radii r,
and ro,:

n — D2n + l)n‘N_z(l — 2k + 2k?)

con = l mn
¢ T2 T D@ + 9

(- D@n+ D + Nn?
120 + 1)°Gn + 7)

N3~ (1 -3k + 3kY

Ap = Apin+ Aps— Apas — Apo (28)
where
Apin = p%r“ Gin = p%;‘- 1.05 (29)

and the remaining pressure differences can be calculated by substituting
F = rq, into formulae (14), (15), (26), (27).
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For a wide range of turbulent flows, one usually assumes n = 7 and
o= 0.0971, the validity of which has been experimentally verified for axial
annuli. In the here-discussed case, we introduce the symbols that simplify the
notation

dou _ din = 1 e
din = dou B E - b’ (30)
and then we obtain
64 ci
Apdiff @ %(1 - bd) (31)
7 ol 1 + 7k + 56k*
Ap, = pTdm (a-—1) 738 (32)
d. 15
Apjp = 0.0210906512: Re}nm(l -b 4) (33)
%
5-49 -1
=1+ -—Nj +
D.on 1+1024N,( 2k+2k) ITD
1 -5
y (34)
25-49 . a® — 1
—mNin(l 3k+3k ) TS
1 -5
Apf= ApfO cDcon (35)

The averaged value k = k,, of the fluid swirl coefficient in axial clearance
depends on the value k;, at the clearance inlet, and the latter depends on the
course of function k,;(r) between the outlet of axial annulus (before the
counterdisc) and the inlet to the radial gap. Based on [2] and making some
additional estimations, one can assess that this value should lie within the
limits k = 0.3 ... 0.38. A more precise value of k can be found by calculating
first k(r) in the region between r, and r;,, and then & (r) in the axial clearance,
using the methodology described in [2].

The above formulae have been derived on the assumption that the surfaces
of the clearances are hydraulically smooth, which is confirmed by the results
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of measurements done for parallel-walled clearances, as well as for axial
annuli. It seems that the formulae are applicable up to Re;, = 5- 10%, or,
according to [1]:

S 317
Rein < Rein.lim = 126( '“j (36)

hay
where #,, is the average height of wall surface roughness.

4. Force acting on conical disc surface

The force F, acting on the rotating, conical surface of radial gap (Fig. 1)
constitutes 25-30% of the total loading force Fyy. It is lower by 8-15%
(depending on geometry of the system with balancing disc) than the force
acting on the surface of a clearance of parallel walls. The difference is due to
a greater velocity c;, and an increased pressure drop Ap;, at the clearance inlet.
The force can be calculated from the relationship that is obtained after
substituting the relationships (13)+(15) and (25)+(27) into the definition
formula

F, =27 p(rrar. (37)

Assuming — as in the previous case — n = 7, one obtains

F = %Idiﬁ + {(a2 - DAp, + %pciﬁ(az -2+ b))+

_dfn 21 + Tk + 56k _ 2 dis 14| 2 7/4
+ pw _( ) 738 0.02109pcm23mRem a +b +
(38)
15 5:49 B T
- — 2 512 (l 2k+2k)(—7 —a- +—j

25-49

3 8 3 3
T s el - 3k+3“(_a - }

If we have assumed, as one usually does, a rectilinear distribution of
pressure p(r) in the clearance, the calculated value of force F, would be
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greater by approximately 10...15%. This fact confirms the purposefulness of
using formula (38).

5. Example of calculations

The below-presented numerical example shows how, with a constant
force F,c carried by the balancing disc, conical shape of axial clearance
influences the decrease of pressure drop in it, and consequently leads to the
decrease of s;, at the inlet. The boiler feed pump having rate of flow
QO =275 m’/h and head H = 1820 m is selected for the example.

The dimensions of parallel-walled clearance are: d,, = 300 mm,
din = 200 mm, s = 0.088 mm. The remaining data: w = 488 rad/s
(n = 4660 rpm); p = 910 kg/m®, v = 0.2 - 107® m*/s (hot water ¢ = 158°C);
cin = 63.1 m/s. With the above data we have: u;, = 48.8 m/s; N;, = 0.7734;
Re;, = 5.553- 10*

Using the formulae derived in [1] one calculates: Apg¢ = 1.0224 MPa;
Apo,=0.1531 MPa (for k = 0.3); Apy = 7.4196 MPa; @=1.1018 — Ap,=
= 8.175 MPa; Ap;,, = 1.19022 MPa (assuming ¢, = 1.05), and then
Ap = Apin+ PApsp — Apas — Ap o = 8.9017 MPa.

Applying the formulae (28) ... (35) for a conical clearance of inlet width
sin = 0.088 mm, the same as that mentioned before, one obtains the pressure
drop as low as Ap =4.84 MPa. In order to satisfy again the condition Fiy, = Fix
and to maintain the same through-flow Q,, and — at the same time — keep the
same pressure drop in both the axial annulus and the radial gap, the balancing
disc must be shifted closer to the counterdisc, which means that the width
must be set to s;, < 0.088 mm. Using the above formulae and applying the
method of successive approximations, one calculates s;, = 0.0729 mm
(y = 0.042°), and ci, = 76.59 m/s; N, = 0.6372; Api, = 2.803 MPa;
Ap g = 2.176 MPa — Ap = 9.025 MPa. In the calculations, one assumes
k=0.35 —a value greater than that for a parallel-walled clearance — taking into
account that the ratio N = u/c strongly increases with the radius », and in
consequence the swirl of fluid is greater for » > r;,. It can be easily proven that
the influence of the & value on the final result is small (for X =0.16 one would
obtain Ap = 9.223 MPa, so that it would be only 2.2% greater than with
k =0.35).

It must be emphasised that the above calculation is approximate, because
— despite the same value of total pressure drop Ap in both clearances — their
pressure distributions are different (Fig. 1), and thus the forces F, must be
different, too. The smaller force for conical clearance will result in a decrease
of force Fyy so that re-establishing the force balance Fi, = Fo. would be
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possible only after an additional decrease of the clearance width at the inlet,
down to the value of s;, = 0.07 mm.

A more accurate value s;, can be determined by performing a complete
calculation for the whole balancing disc, with respect to the abovementioned
condition of equality between the balancing force and the axial thrust.

5. Conclusions

1. The result of deflection of the balancing disc due to the pressure forces
acting on it is that the clearance between the disc and the counterdisc
becomes conical. It leads to a decrease of the clearance width s;, at its inlet,
and causes a simultaneous increase of the speed cj,. These effects
deteriorate, in an obvious way, functional properties of a pump with
balancing disc, and increase probability of pump’s failure.

2. A more precise numerical examination of the influence of disc deflection
needs calculating this deflection (e.g. using the Finite Element Method)
and determining flows and pressure distributions in the whole balancing
device, taking into account the distribution p(r) of pressure in the region
between the radial annular gap and the axial annulus, i.e. for r, < r <,
(Fig. 1).

3. In order to prevent the negative effects of conical axial clearance, one
should give the surface of the balancing disc a ““‘counter-conical” shape, so
that, after deflection of the disc, the walls would become parallel, or one
can increase the disc diameter d,,. Additionally, in order to compensate
also the influence of shaft deflection, one can apply a counterdisc with
elastic support [4].
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Rozktad ciSnient w turbulentnym przeplywie cieczy przez stozkowa szczeline poprzeczna

Streszczenie

Projektujac uktad z tarcza odciazajaca w pompie wielostopniowej zaklada sie, ze powierzchnie
tworzace szczeling poprzeczna (promieniowa) sa do siebie rownolegte (rys. la). Jednak tarcza
odksztalca sig, wskutek sit spowodowanych duza réznica ci$nien dzialajacych na jej powierzchnie,
wskutek czego szczelina staje sie stozkowa (rys. 1b). Powoduje to zmiane rozkladu ci$nien
w szczelinie 1 zmniejszenie sily osiowej F, dzialajacej na wirujaca powierzchnie szczeliny,
w wyniku tego za$ — zmniejszenie sily odciazajacej Fia. Aby przenies$¢ nie zmieniony napér osiowy
Fy musi wzrosna¢ sita Fvy = F, co wymaga zblizenia wirujacej si¢ tarczy do nieruchomej
przeciwtarczy i zmniejszenia szerokosci szczeliny. Szeroko$¢ s,, na wlocie szczeliny moze staé si¢
wowczas zbyt mala, co grozi zetknigciem si¢ obu tarcz i powazng awaria pompy.

Aby zapobiec negatywnym skutkom ugigcia tarczy nalezy moéc uprzednio dostatecznie
doktadnie obliczy¢ parametry przeptywu cieczy w szczelinie. W pracy wyprowadzono zalezno$ci na
rozktad ci$nient w hydraulicznie gtadkiej poprzecznej szczelinie stozkowej dla przypadku przeptywu
turbulentnego. Do rozwiazania zastosowano metodg¢ zwiazkéw catkowych zaktadajac przeptyw
osiowo-symetryczny i potggowe rozklady predkosci promieniowych i obwodowych. Wykorzystano
znane zaleznoSci pdlempiryczne na naprgzenia na obu powierzchniach tworzacych szczeling.
Wyprowadzono takze wzor na site F, dla szczeliny stozkowe;j.

Zamieszczono przyklad liczbowy pokazujacy, jak stozkowosé szczeliny wplywa na zmniej-
szenie si¢ spadku ci$nienia Ap w szczelinie oraz sity F,, a w konsekwencji — na zmniejszenie si¢
szerokosci s, (0 ok. 20%) w ukiadzie odciazajacym pompy zasilajacej kociol, o wydajnosci
0 = 275 m’/h i wysokosSci podnoszenia H = 1820 m.



