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EXPERIMENTAL/NUMERICAL PARAMETER IDENTIFICATION 
FOR VISCO-ELASTIC PROBLEMS 

For reasons of reliability, stability, safety and economy, controlling and 
monitoring the response of structures during the time of use, either permanently or 
temporally, is of increasing importance. Experimental methods enable in-situ 
measuring deformations of any kind of structures and enable drawing conclusions 
over the actual state of the structures. However, to obtain reliable knowledge of the 
real internal conditions like the strength of materials and the actual stress-state, as well 
as of their changes over time, caused by ageing, fatigue and environmental influences, 
always an inverse problem must be solved. That requires special mathematical 
algorithms. Especially for time-depending material response it might be quite 
important to know the material parameters at any time and furthermore the internal 
stress-state also. 
Therefore, a method will be presented to solve the inverse problem of parameter 
identification with reference to linear visco-elastic materials. 

1. Introduction 

Experimental methods are applied in system identification to analyse the 
static as well as the dynamic response of complex structures: they are 
developed as tools to supervise operating systems, machines and installations 
in order to guarantee a higher degree of safety and to minimise still existing 
risks. In the future, therefore, methods of experimental mechanics will 
become very important in strategies of risk-management. The structure must 
be observed under real operational conditions, recording the actual response. 
For safety as well as for economical reasons, permanent health monitoring as 
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part of a value preservation management is inalienable to obtain information 
on the effects of ageing, fatigue, environmental influences etc. on the actual 
state of technical products and structures, to analyse the actual material 
response as well as the actual stress-strain state and possibly the remaining 
service-life. Temporary inspection is recommendable also to control the 
effectiveness of maintenance and retro-fitting measures. In any case, such 
inspections demand application of non-destructive technologies in order not 
to impair the usability of the objects under consideration [6]. 

Modern measuring systems do not consist of the hardware only, but have 
to include proper software for process control, for transmission, converting 
and processing the measured input data up to the final output information. The 
operational capability of the whole measurement system strongly depends on 
the software. As generally the observed phenomena and measured data, 
respectively, are not identical with the finally wanted information, mat­ 
hematical/numerical procedures are necessary for data-processing and 
evaluation according to the finally wanted information. 

2. The inverse problem of parameter identification 

Modern measurement techniques, re-worked for routine comfortable 
practical application in monitoring systems, first of all yield analogue signals, 
either electrical, optical, acoustical signals of observed and measured 
phenomena. However, these signals generally do not come up to information 
necessary for relevant judgements of the actual state of the object under 
consideration. Processing the observed and recorded analogue signals, 
digitised data of deformations, related displacements and/or their derivatives 
will be obtained. However, for reliable assessment of the actual state of 
structures, information on the internal conditions and parameters are to derive 
from the measured data. In consequence, it is necessary to develop and to 
apply proper algorithms for further evaluation of these data. The defective 
quality of measured data because of errors of the measured data, outliers, lost 
data, noise-corrupted signals, limited number of measuring points demands 
advanced methods in statistics and mathematics for further evaluation. The 
so-called inverse problems arise, most of them are ill-posed as defined by the 
three Hadamard conditions: existence, uniqueness and stability of solutions 
[ 1]. Proper numerical procedures are required to obtain unequivocal 
solutions, which are indispensable to provide the finally wanted results like 
the stress-state, the internal forces, the internal parameters like material 
properties, the localisation of damages, the state of stability and safety and 
further on the service-life to be expected. The mathematical coherences of 
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inverse problems are to find e.g. in [2]. It turns out that for each problem it 
must be proved which solution meets the physical requirements. The analyst 
always is responsible to justify the choice of the method and to identify the 
physical plausibility of the result. 

As a result of ageing, fatigue and environmental influences etc. the 
material characteristic data might change or might have changed already 
during the time of use and operation. Reliable judgement of the actual state of 
structures requires the knowledge of time-depending response of materials. 
For visco-elastic material it is an inalienable necessity to get true information 
on the characteristic parameters and their dependency on time. 

3. Basic relations of visco-elasticity 

Considering structures and structural elements respectively, consisting of 
visco-elastic materials, it will be described in the following, how the internal 
parameters of such materials like the relaxation bulk-modulus, the relaxation 
shear-modulus and Poisson's ratio can be determined by proper experimen­ 
tal/numerical processes. This is an inverse problem belonging to the class of 
parameter-identification as the characteristic material parameters as time­ 
functions shall be derived from measured quantities. 

Based on Boltzmann's principle of superposition [9], the stress-strain 
relations for visco-elastic material response hold in the Laplace-transform [3] 

au(P) = p · 2G(p) · eu(p) + p · K(p) · e(p) · Oij (1) 

where p denotes the Laplace-variable, K(p) the relaxation bulk modulus, 
G(p) the relaxation shear modulus, o u the Kronecker-Delta, e ii(P) the strain 
deviator, e(p) the volume strain. 
Re-transformation of eq. (1) yields the Volterra-integral equation of the 2nd kind 

I 

au(t) = 2G(O+)· eu(t) - J ! 2G(t - r)· eij(T)dr+ K(O+)· e(t)· bij 
o· UT 

fl a 
- -K(t- r)· e(r)· b;jdT 

0• dT 

(2) 

with the initial values G(O+) and K(O+) at time t = o+. 
According to [2] Volterra's integral equations of the 2nd kind are 

well-posed and have a unique and stable solution always in an appropriate 
setting. Thus the inverse of eq. (1) holds 
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I 

f JA(t - r) x(t) = A(O+) · y(t) - ---· y(r) · dr 
o· Jr 

(3) 

The output data y(t) are taken by measurements in time-intervals L1t, 
which means that the data are not available as functions, unless they are 
expanded in proper series. Therefore, eq. (3) is transformed into a finite 
difference/summation representation according to [7]. 

1 { n-I 
x(t,,) = 2 A(o+)· [y(t,,) -yCt11-1)] - 

1

~A(t,, - tv)· [YCtv-1) -y(tv+1)] 

+ A (t,) · [y(t,) + y(O')]} ( 4) 

Regarding this relation, eq. (2) runs 

n-I 

CY;1(t,,) = G(O+) · [e;j(t,,) - e;J(t,,_1)] - L, G(t,, - lv) · [eiJ(tv-1) - eiJCtv+i)] 
v= l 

1 { n-I + G(t,,) · [e;}(t1) + eiJ(o+)] + 2 K(O+) · [e(t,,) - e(t,,_ 1)] - 
1

~ Kit; - tv) 

· [e(t ,-,) - e(t,.,)] + K (t,) · [ e(t,)] + e(O')]} · 15,,. 

(5) 

As to error propagation, it can be anticipated that the selected particular 
finite-difference/summation representation should be extremely stable. The 
curves of the strains run steadily and smoothly; with progressive time the 
increments in time intervals L1t are decreasing. Obviously, the errors in data 
do not grow in size in subsequent stages of computation because of the 
generally fading memory of most of the visco-elastic materials. 

The equilibrium conditions for a three-dimensional stress-state hold 

CY;j,j(t) + X;(t) = O, i,j E [1/ 3] (6) 

The derivatives of eq. (5) in direction of the axes of a Carthesian 
co-ordinate system are introduced into the equilibrium conditions eq. (6), 
yielding three Volterra-integral equations of the 2nd kind in discrete 
formulation, substituting the strain deviator and the volume dilatation by their 
derivatives e iJ.J and e.1. In these equations, the bulk modulus K(t) and the 
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shear modulus G(t) are unknown, whereas the elements of the strain deviator 
and the volume strain and their derivatives, respectively, are obtained from 
measured data of displacements and/or their gradients respectively, provided 
these quantities can be measured for all i,j. 

4. Solution for two-dimensional stress-states 

In the case of a two-dimensional plane stress state, defined by 

£13 = £23 = O; £33 i:- Q 

two equilibrium conditions are at disposal. 

aap,p(t) + Xa(t) = O, a,/3 E [1,2] (7) 

which run with reference to eq. (6): 

n-1 
2G(tn) · r:o + K(tn) · Iao = ~ {2G(tn - tv)· Ó:v + Kit; - tv)· flav} 

+ 2G(0+) · Ó:n + K(O+) · flan + Xa 
(8) 

and with the denotations 

e:(t) = ½ [K· Eaa,a(t) - A· Epp,a(t)] + Eap,fJ(t), a* /3, (not to sum up over a 
and /3), and e aU) = A· Epp,a(t), (considering Einstein's convention), 
where Kand A stand for K= (2- v) · (1 - v)-1, A= (I - 2v) · (1 - v)-1, and 
with the abbreviations 

r:o = e:co+) + e:Ct1), Ó:v = e:Ctv-1) - e:Ctv+1), Ó:n = e:Ctn-1) - e:(tn), 
Lao, flav, flan respectively. 

Because of the fading memory of visco-elastic material, computing of 
Kand Gat any time t, is to carry out in time-intervals Lltv, for each i, always 
beginning at t o- = O, introducing the successive results of the preceding steps. 

By means of optical measurement techniques, either the spatial disp­ 
lacements u1, u2, (u3) or the gradients u1,1, u2.2, u1,2, u2.1, (u3,1, u3,2) of the 
spatial displacements related to the co-ordinate axes (x1, x2) on the surface of 
the object can be measured, yielding the components of the strain tensor £11, 

£22, £12 = £21. The optical field methods do not yield the displacement 
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gradients perpendicular to the object surface in the direction of the xraxis by 
direct measurement. However, considering the condition a33 = O, the relation 
between the component £33 of the strain tensor and £11 and £22 holds 

V V 
£33 = - -

1
--Ecra = - -

1
--ua,a 

- V - V 
C9) 

where v denotes Poison's ratio, which generally depends on time t like G 
and K, although its change over time is very small [8]. As linear material 
response can be described by only two material characteristic quantities, 
Poisson's ratio can be substituted by the bulk modulus K and the shear 
modulus G. It is easy to realise then that, eqs. (8) become non-linear. The 
unknown material parameters K and G are connected to each other in such 
a way, that a direct solution might become quite difficult. In the time-space 
the relation between the three parameters K, G and v holds at time t = o+: 

co+) = 3 K co+) 2 c co+) 
v 6K(0+) + 2G(o+) (10) 

With an initial estimate v'", approximate values K'" (O+) and Gest (o+) may be 
calculated on the basis of the measured data E;f'ens and introduced into eq. (10) 
yielding an improved value of v(o+). 
Then, KCO+) and G(O+) are calculated again. This one-step iteration procedure 
can be repeated in each evaluation step L1tv. 

After having carried out the calculations for the first time intervals, it may 
be decided whether the changes of Poisson's ratio over time are to be 
considered further on or whether v(t) may be set approximately equal to v(O+). 

5. Solution for plates-in-bending 

The following considerations refer to the shear-elastic plate theory of the 
151 order (Mind/in-theory) [4]. In contradiction to the classical plate theory 
according to Kirchhoff and the Bemoulli-hypothesis, the normal to the 
"neutral plane" does not remain perpendicular to the neutral plane in the 
deformed state (Fig. 1). Under the presuppositions i), the material to be 
homogeneous and isotropic, ii) the central plane of the plate to be the "neutral 
plane" for deformations due to bending, iii) the deflections to be small 
compared with the plate thickness, which itself should be small with reference 
to the other geometric dimensions, iv) a33 to be negligible small compared to 
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the other components and will be set equal to zero, the shear stresses in the 
planes (x 1, x3) and (x2, x3), their effects on the rotation of the plate normal are 
taken into account. 

h/2 
I t" . :- . - . - . - . - . - . - ·, - . - . - . - . 

h/2 

X3

' 

XJ 
I 

■- .... ►

I
I

• I

: ' ., 
:, ,. 

I ...

~ u 3,1

~•'lf/1--,u, I

I 

I
I .... s '· I --"::...·..:::-. ,,, --.....-~ ------i-- ,'

"'-• U31 ' ·1 ..::::, • - ' ·' ,, ...._ ...._• -- :, ·, -- -:._- __ ..... --: 

Fig. I. Kinematics of the shear-elastic plate, section x, = canst 

Let ua(X1 ,x2), u3(x1 ,x2), aE [1,2] be given by measurements on the plate 
surface. With l/la(x1, x2) = 2/h· ua(x1, x2), the cinematic relations hold 

Ua(X1, Xz, X3) ""' ł/la(X1, Xz) · X3 = ~ Ua(X1, Xz) · X3,

u3(x,, Xz)""' U3(X1, X2), 
(11) 

subsequently yielding the components of the strain tensor 

Because cr33 ""' O the strain component £33 holds with reference to Einstein's 
convention 
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£33 = - -
1
-v- · -

1
2 [Cta,a(X1, Xz)] · X3 

- V 1 
(13) 

Considering u3 (x 1, x 2, x3):::: Ct3 (x 1, x2), the shear strain in the planes (x a, x 3) is 
given to 

E,a(X,, x,, x,) -H a,a(x,, x,) + ¾ · aa (x,, x,)], (14) 

Note: For lucidity the reference to the co-ordinates (x1, x2) will be omitted in 
the following. 
With eqs. (12), (13) and (14) the volume dilatation holds 

(15) 

and the components of the deviatoric strain tensor become 

e11 = 3
2
h (K· Ct1,1 - k Ct2,2) · X3, e22 = 3~1 

(K· Ct2,2 - A· U1.1) · X3, 

1 ( A A ) (16) e12 = h u1,2 + u2,1 · X3. 

l(A 2 A) l(A 2 A) e31 = £31 = 2 U3,1 + h. U1 , e32 = £32 = 2 U3,2 + h. Uz . (17) 

The denotations Kand A in eqs. (21) and (22) stand for 

2 - V 
K=--· 

1 - v' 
1 - 2v 

A= 1 . 
- V 

(18) 

The eqs. (15) and (16) are inserted into eq. (2), yielding the stress-strain 
relations for shear-elastic plates consisting of visco-elastic material. The 
internal forces mafJ are obtained by integrating the respective stresses over the 
plate thickness h. 

To get the shear-forces q a, the shear-stresses a3a are to integrate over h. 
These shear-stresses are independent of x3, i.e. they are constant over the plate 
thickness. However, in fact they are distributed parabolic and at x , = ± h/2 the 
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boundary conditions require a-31 = a-32 = O. This discrepancy shows the 
character of approximation of Mindl in 's plate model, which violates the local 
equilibrium conditions. For correction the deformation energy will be 
determined, considering parabolic distribution of the shear stresses over hon
one hand, on the other constant distribution over a corrected plate thickness 
hs [5]. 

+h/2

W, = 2 ~ f O'~a(X3). dx-; = 
-h/2

l O l 5 
=2cą"·1z·6; <19) 

+lr/2 

If) 0'3 a = const over h,

The deformation energy W, is set equal to W11, then the corrected thickness h5

amounts to 0,833 h. This consideration is true at any time t, therefore the shear forces 
can be formulated depending on time t as follows: 

The respective derivatives of the internal moments and the eqs. (20) are 
inserted into the equilibrium conditions, which must be satisfied at any time t

ma/3,/3 (I) - ąa(t) = O (21) 

After some intermediate transformations, considering the discrete solu­ 
tion of Volterra's-integral equations, (see eq. (4)) two equations will be 
obtained enabling the calculation of the bulk-modulus K(tn) and the 
shear-modulus G(t11) based on measured quantities of the displacements u1 (t),
u2(t), u3(t) or their derivatives respectively: 

n-l 

G(tn). r:o + K(tn). Iao = \~ [ GUn-v). ~:, + KUn-v). x;. 
+ G(O+). ~:n + K(O+). ~an (22) 
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with 

r:o = u:co+) + u:ui), 
and Iao, ~av, ~an respectively, where u:, Da stand for 

a -:t /3, (not to sum up over a and /3) 

Da= ~A- Uf3,f3a (acc. to Einstein's convention) 

(23) 

(24) 

Neglecting the rotation of the plate-normal in the case of small h, 
a modified Mindlin-theory may be considered, where I/fa= u3,a; a E [1,2]. 
Then the components of the strain tensor hold 

V 
c33 = --1--u3,aa· X3, CJa = U3,a· X3 

- V 

and the terms ou». Da(t); a E [1,2] in eqs. (14) stand for 

(25) 

(26) 

6. Example of application 

As an example of application of the above described method, a clamped 
plate has been inspected (Fig. 2). The surface of deflection has been 
determined by means of electronic-speckle-pattern interferometry at different 
time-intervals L!t. After processing the saw-tooth images (Fig. 3), the thus 
obtained deflections u3 in the nodal points of an evaluation grid have been 
subjected to a process of smoothing and adjustment, yielding the ap­ 
proximation-function of the deflection surfacef = u3 · (x1, Xz) (Fig. 4). The 
respective derivatives of the approximation function are the input data to 
execute the calculations according to eq. (22), yielding the material 
characteristic parameters K(t), G(t) and in addition E(t) as shown in Fig. 5. 
The results are in good coincidence with those obtained in the material 
testing. 
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Fig. 2. Example of a clamped plate, dimensions and materials 
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Fig. 3. Saw-tooth image, recorded I O sec. after loading 
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Fig. 4. Deflection-surface u 3 (x 1, x,), 1 O sec. after loading 
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Fig. 5. Material parameters K(t), C(t), E(t) 
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In practical application, notwithstanding the fact that depending on the 
geometry of the object parts of the surface can not be observed, it is not 
necessary to carry out the analysis for the entire object surface. A sector of the 
surface only can be selected, considering as many neighbouring nodal points 
of the evaluation grid as necessary to determine an approximation function of 
at least grade three. 

7. Conclusion 

Monitoring and supervising structures and structural elements, respec­ 
tively, consisting of polymer or composite material becomes increasingly 
important as the strength of the material defines the bearing capacity and 
safety of the structures. Based on the theory of linear visco-elasticity, 
algorithms have been derived enabling the determination of time-depending 
material characteristic parameters from in-situ measured deformations of the 
object/structure under consideration. Optical measurement techniques yield 
the necessary data for evaluation. As an example of application a plate-in­ 
bending has been chosen, the results of the analysis are reported. 

The presented method is based on the assumption, that the measurements 
start at the time of initial loading of the structure. However, in reality the more 
interesting case must be considered that the state of structure and the material 
response are to be determined more or less long ago after production or 
construction or initial loading, and no information of the structural history is 
available. At present, the author is working out a method, based on applying 
a test-load, to get at least approximate information on the actual state of 
structural stability and on the history of the material parameters. 

It must be mentioned that the algorithms refer to iso-thermal conditions. 
In further investigations, the influence of temperature will be analysed. 

Manuscript received by Editorial Board, May 25, 2004. 
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Eksperymentalna i numeryczna identyfikacja parametrów w zagadnieniach
lepko-sprężystych

Streszczenie

Względy niezawodności, stabilności, bezpieczeństwa i ekonomii powodują, że rośnie znaczenie
kontrolowania i monitorowania, permanentnie lub w sposób wyrywkowy, czasowych charakterys­
tyk odpowiedzi struktury. Metody eksperymentalne pozwalają mierzyć deformacje w miejscu, gdzie
one powstają, w strukturach dowolnego rodzaju, umożliwiają także wyciąganie wniosków co do
rzeczywistego stanu badanych struktur. Niemniej, by uzyskać wiarygodną informację o realnych
warunkach wewnętrznych, takich jak wytrzymałość materiałów, rzeczywisty stan naprężeń, a także
o zmianach tych wielkości w czasie na skutek procesów starzenia, zmęczenia i wpływów
środowiska, trzeba zawsze rozwiązać zagadnienie odwrotne. To zadanie W)'.maga specjalnych
algorytmów matematycznych. W szczególności, dla wyznaczenia czasowej funkcji odpowiedzi
materiału może okazać się bardzo ważna znajomość parametrów materiału w dowolnej chwili czasu,
a co więcej, także stanu naprężeń wewnętrznych.

W pracy będzie więc przedstawiona metoda rozwiązanie zagadnienia odwrotnego identyfikacji
parametrów w odniesieniu do liniowych materiałów lepko-sprężystych.


