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Abstract: The paper presents an approach to differential equation solutions for the stiff
problem. The method of using the classic transformer model to study nonlinear steady
states and to determine the current pulses appearing when the transformer is turned on is
given. Moreover, the stiffness of nonlinear ordinary differential state equations has to be
considered. This paper compares Runge–Kutta implicit methods for the solution of this stiff
problem.
Key words: circuit model of a three-phase transformer, Runge–Kutta implicit methods, stiff
nonlinear ordinary differential equations

1. Introduction

At present, Runge–Kutta methods are commonly used for the solution of ordinary differential
equations [5,6,16], partial differential equations [14,15], and integral equations [17]. The implicit
Runge–Kutta algorithms are applied for transient state analysis of electromagnetic problems
[13–15,18].
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The present work is a continuation of the work by the authors [3] that concerned the model-
ing of current pulses when supplying an unloaded single-phase transformer. The current paper
presents approaches to the numerical analysis of differential states equations that describe tran-
sient states of a nonlinear transformer at a no-load state of work [7–9,19,21]. The monograph [11]
presents the numerical analysis of the magnetic field that occurs around the transformer after it
has been switched off. The purpose of this analysis was to determine if it is possible to define the
residual fluxes in the legs of the transformer based on the measurements of this field. These studies
have allowed us to determine the quantity and location of the sensors. The influence of the Earth’s
magnetic field has also been studied. In these works [10,11] also on the basis of description inrush
current, the influence of residual magnetism has been determined. Residual flux in the legs was
considered as an initial condition. Nowadays, an increase in the maximal magnetic flux density
of the transformer core results in a decrease in dimensions. As a physical consequence, the mag-
netizing current decreases. A mathematical consequence appears while the transformer circuit
model is being derived. The differential equations become stiffer and stiffer. Further consequences
are as follows: impulse inrush currents appear and insulation tension significantly increases as the
transformer is being switched on. In order to calculate values of both dangerous phenomena, the
stiff nonlinear ordinary differential equations for the transformer circuit model have to be solved.
For this purpose, Runge–Kutta implicit methods are derived [1–4, 7]. This paper also presents a
comparison of proposed methods for the solution of the stiff problem considered.

Anisotropic transformer sheets are characterized by a narrow hysteresis loop and a relatively
low residual magnetism associated with an increase in the maximum allowable magnetic in-
duction. This problem can also be solved by using field methods considering anisotropy and
hysteresis [17, 21]. However, according to the authors, proposing an approach based on circuit
methods is effective and allows for faster results.

2. Nonlinear model of a three-phase transformer
with a nonlinear magnetizing curve

The three-phase transformer (primary winding star-connected) considered is described by
circuit differential equations. The three-phase transformer equations are derived based on the
well-known transformer circuit model as shown in Fig. 1.

The H-B curve for transformer steel is given by polynomial 𝐻𝑆 (𝐵) of 11th degree in the
following form:

𝐻𝑆 (𝐵) =
11∑︁
𝑘=1

𝑎𝑘𝐵
2𝑘−1, (1)

and is graphically presented in Fig. 2.
Operating solely with characteristics, however, does not allow for the inclusion of loss of

iron in modeling (due to over magnetization and eddy currents). For this purpose, a dynamic
term proportional to the induction derivative 𝐵 with constant is added to the unambiguous
characteristic (1):

𝐻 (𝐵) = 𝐻𝑆 (𝐵) + 𝑘𝐵
d𝐵
d𝑡

. (2)
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Fig. 1. Three-phase transformer equivalent circuit

Nomenclature:
𝑧𝑔 coil number of high voltage winding (equal for each winding)
𝑙Fe1, 𝑙Fe2 average length of transformer column and yoke, respectively
𝑆Fe cross-section of transformer core
𝑅Fe,𝑘 resistances representing core power losses
𝐿𝑔 leakage inductance for high voltage winding
𝑅𝑔 resistance for high voltage winding
𝐿𝑠 source inductance
𝑅𝑠 source resistance
Ψ𝑘 (𝑡) flux linkages of primary windings for 𝑘 = 1, 2, 3
Φ𝑘 (𝑡) flux of 𝑘-th magnetic circuit column for 𝑘 = 1, 2, 3
𝑖
(𝑔)
𝑘

(𝑡) current of primary 𝑘-th winding for 𝑘 = 1, 2, 3
𝑖Fe,𝑘 (𝑡) current no-load component at resistance on equivalent 𝑧𝑔 coils
𝑒
(𝑠)
12 (𝑡) source voltages: 𝑒 (𝑠)12 (𝑡) = 𝐸𝑚12 cos

(
𝜔𝑡 − 𝜋

6 + 𝜑0
)
,

𝑒
(𝑠)
23 (𝑡) 𝑒

(𝑠)
23 (𝑡) = 𝐸𝑚23 cos

(
𝜔𝑡 + 𝜋

2 + 𝜑0
)
,

𝑒
(𝑠)
31 (𝑡) 𝑒

(𝑠)
31 (𝑡) = 𝐸𝑚31 cos

(
𝜔𝑡 + 7𝜋

6 + 𝜑0
)

𝜙0 initial phase
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Fig. 2. Magnetizing curve for transformer steel of the type Power Core H 105-30
(Thyssen Krupp Elektrical Steel)

The magnetic voltage drop in the kth transformer column is approximately in the form of

𝑈𝑚,𝑘 (Ψ𝑘 (𝑡)) = ℎFe,𝑘𝐻

(
Ψ𝑘 (𝑡)
𝑧𝑔𝑆Fe

)
= ℎFe,𝑘𝐻𝑆

(
Ψ𝑘 (𝑡)
𝑧𝑔𝑆Fe

)
+
ℎFe,𝑘 𝑘𝐵,𝑘

𝑧𝑔𝑆Fe

dΨ𝑘 (𝑡)
d𝑡

, (3)

where ℎFe,𝑘 is the average length of the 𝑘-th branch of the transformer’s magnetic circuit and
𝑘 = 1, 2, 3.

It can be assumed that the flux derivative
dΨ𝑘 (𝑡)

d𝑡
appearing in this equation is the electro-

motive force of induction on the terminals of a coil with 𝑧𝑔 coils with zero resistance wound on
the 𝑘-th transformer column, which is short-circuited with resistance 𝑅Fe,𝑘 (Fig. 1).

dΨ𝑘 (𝑡)
d𝑡

= 𝑅Fe,𝑘𝑖Fe,𝑘 (𝑡), (4)

where 𝑖Fe,𝑘 is the current of this coil.
In such a circuit modelling of the transformer’s magnetic circuit, the second term of the

magnetic voltage drop can be expressed in Formula (3)
ℎFe,𝑘 𝑘𝐵,𝑘

𝑧𝑔𝑆Fe

dΨ𝑘 (𝑡)
d𝑡

by the additional

magnetomotor force 𝑧𝑔𝑖Fe,𝑘 (𝑡) expressed by Formula (5):

𝑧𝑔𝑖Fe,𝑘 (𝑡) =
ℎFe,𝑘 𝑘𝐵,𝑘

𝑧𝑔𝑆Fe

dΨ𝑘 (𝑡)
d𝑡

, where 𝑘 = 1, 2, 3. (5)

From Eq. (5) it follows that the constant 𝑘𝐵,𝑘 is given by the formula:

𝑘𝐵,𝑘 =
(𝑧𝑔)2𝑆Fe

ℎFe,𝑘𝑅Fe,𝑘
, where 𝑘 = 1, 2, 3. (6)
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The parameters 𝑅Fe,𝑘 in the model can be determined from the measurement of the trans-
former’s active power an no load state of work. Such a mathematical model of the transformer
can therefore be used to determine the state established as a limit cycle of the solution of the rele-
vant differential equations, which will be shown in the following points. The given mathematical
model does not take into account magnetic hysteresis because it does not follow the “history”
of magnetization of the core, i.e. the points at which the directions of changes in currents and
magnetic fluxes are reversed. The history of magnetization of the core can be known at the time
of switching the transformer to the network in the form of residual magnetism. So, if we know
the residual magnetism of the transformer, we have the possibility of setting initial conditions for
state variables Ψ1 (𝑡0), Ψ2 (𝑡0) which are coupled fluxes. As you know (e.g. [10, 11]), when the
transformer is connected to the network, current pulses many times higher than the rated values
appear in the first voltage period. So, if the analysis of the transient state of the transformer is
limited to the first period, the use of the proposed model with initial conditions allows to study the
influence of the values of these current pulses depending on the residual magnetism. Physically
speaking, current pulses appear at the first entry into the area of saturation of the core. Therefore,
in addition to taking into account residual magnetism in modeling, accurate approximation in
the magnetization characteristics in the saturation area should be used. This article uses the odd-
numbered polynomial (1). In the construction of the mathematical model of the transformer, the
magnetomotor forces generated by the currents of the coils 𝑖 (𝑔)

𝑘
(𝑡) (𝑘 = 1, 2, 3) should be supple-

mented by magneto motor forces generated by certain substitute currents 𝑖Fe,𝑘 (𝑡) corresponding
to power losses in the core and expressed in the form of 𝑧𝑔𝑖Fe,𝑘 (𝑡).

The magnetomotive forces for the no-load state of work 𝜃𝑘 (𝑡) for 𝑘 = 1, 2, 3 are given by the
relations as follows for three transformers column.

𝜃𝑘 (𝑡) = 𝑧𝑔

(
𝑖
(𝑔)
𝑘

(𝑡) − 𝑖Fe,𝑘 (𝑡)
)
. (7)

For nonlinear magnetic circuit voltage Kirchhoff’s law lead to the following equation set:[
𝜃1 (𝑡) −𝑈𝜇,1 (Ψ1 (𝑡)) − 𝜃2 (𝑡) +𝑈𝜇,2 (Ψ2 (𝑡))
𝜃2 (𝑡) −𝑈𝜇,2 (Ψ2 (𝑡)) − 𝜃3 (𝑡) +𝑈𝜇,3 (Ψ3 (𝑡))

]
= 0, (8)

where Ψ𝑘 (𝑡) = 𝑧𝑔Φ𝑘 (𝑡), ℎFe,𝑘 means average length of 𝑘-th phase magnetic circuit and

𝑈𝜇,𝑘 (Ψ𝑘 (𝑡)) =
ℎFe,𝑘𝐻 (Ψ𝑘 (𝑡))

(𝑧𝑔𝑆Fe)
(9)

denotes magnetic voltage drop for the 𝑘-th phase.
Equations (7) and (8) lead to the following relation:

[
𝑖
(𝑔)
1 (𝑡) − 𝑖Fe1 (𝑡)

]
𝑧𝑔 −

[
𝑖
(𝑔)
2 (𝑡) − 𝑖Fe2 (𝑡)

]
𝑧𝑔[

𝑖
(𝑔)
2 (𝑡) − 𝑖Fe2 (𝑡)

]
𝑧𝑔 −

[
𝑖
(𝑔)
3 (𝑡) − 𝑖Fe3 (𝑡)

]
𝑧𝑔

 =

[
𝑈𝜇,1 (Ψ1 (𝑡)) −𝑈𝜇,2 (Ψ2 (𝑡))
𝑈𝜇,2 (Ψ2 (𝑡)) −𝑈𝜇,3 (Ψ3 (𝑡))

]
, (10)

where equivalent currents 𝑖Fe,𝑘 (𝑡) model the power losses in the ferromagnetic core of the
transformer. After putting the currents 𝑖Fe,𝑘 (𝑡) from the relation

dΨ𝑘 (𝑡)
d𝑡

= 𝑧𝑔
dΦ𝑘 (𝑡)

d𝑡
= 𝑅Fe,𝑘𝑖Fe,𝑘 (𝑡) (11)
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into Eq. (10), it can be rewritten as follows:[
𝑖
(𝑔)
1 (𝑡) − 1

𝑅Fe1

dΨ1 (𝑡)
d𝑡

]
𝑧𝑔 −

[
𝑖
(𝑔)
2 (𝑡) − 1

𝑅Fe2

dΨ2 (𝑡)
d𝑡

]
𝑧𝑔 = 𝑈𝜇,1 (Ψ1 (𝑡)) −𝑈𝜇,2 (Ψ2 (𝑡)), (12)[

𝑖
(𝑔)
2 (𝑡) − 1

𝑅Fe2

dΨ2 (𝑡)
d𝑡

]
𝑧𝑔 −

[
𝑖
(𝑔)
3 (𝑡) − 1

𝑅Fe3

dΨ3 (𝑡)
d𝑡

]
𝑧𝑔 = 𝑈𝜇,2 (Ψ2 (𝑡)) −𝑈𝜇,3 (Ψ3 (𝑡)). (13)

Current Kirchhoff’s laws for both fluxes linkages and phase currents take the following forms:

Ψ1 (𝑡) +Ψ2 (𝑡) +Ψ3 (𝑡) = 0, (14)

𝑖
(𝑔)
1 (𝑡) + 𝑖

(𝑔)
2 (𝑡) + 𝑖

(𝑔)
3 (𝑡) = 0, (15)

which enable (12) and (13) to be rewritten as follows:

1
𝑅Fe1

dΨ1 (𝑡)
d𝑡

− 1
𝑅Fe2

dΨ2 (𝑡)
d𝑡

= 𝑖
(𝑔)
1 (𝑡)−𝑖 (𝑔)2 (𝑡)−𝑧−1

𝑔 𝑈𝜇,1 (Ψ1 (𝑡))+𝑧−1
𝑔 𝑈𝜇,2 (Ψ2 (𝑡)) ≡ ℎ3 (X), (16)

1
𝑅Fe3

dΨ1 (𝑡)
d𝑡

+
(

1
𝑅Fe2

+ 1
𝑅Fe3

)
dΨ2 (𝑡)

d𝑡

= 𝑖
(𝑔)
1 (𝑡) + 2𝑖 (𝑔)2 (𝑡) − 𝑧−1

𝑔 𝑈𝜇,2 (Ψ2 (𝑡)) + 𝑧−1
𝑔 𝑈𝜇,3 (−Ψ1 (𝑡) −Ψ2 (𝑡)) ≡ ℎ4 (X), (17)

where state vector X = [𝑥1 (𝑡), 𝑥2 (𝑡), 𝑥3 (𝑡), 𝑥4 (𝑡)]𝑇 is defined. Equations (16) and (17) can be
solved with respect to derivatives of the states of the variables 𝑥3 ≡ Ψ1 (𝑡) and 𝑥4 ≡ Ψ2 (𝑡), and
thus the following matrix form is obtained:

d𝑥3 (𝑡)
d𝑡

d𝑥4 (𝑡)
d𝑡

 =


dΨ1 (𝑡)

d𝑡
dΨ2 (𝑡)

d𝑡

 = G−1
[
ℎ3 (X)
ℎ4 (X)

]
=

[
𝑟11 𝑟12
𝑟21 𝑟22

] [
ℎ3 (X)
ℎ4 (X)

]
≡

[
𝑓3 (X)
𝑓4 (X)

]
, (18)

where it is denoted as

G =


1

𝑅Fe1

−1
𝑅Fe2

1
𝑅Fe3

1
𝑅Fe2

+ 1
𝑅Fe3

 , G =

[
𝑟11 𝑟12
𝑟21 𝑟22

]−1

,

𝑟11 =
1

1
𝑅Fe1

+ 1
𝑅Fe2 + 𝑅Fe3

, 𝑟12 =
1

1
𝑅Fe1

+ 𝑅Fe2
𝑅Fe1𝑅Fe3

+ 1
𝑅Fe3

,

𝑟21 =
−1

𝑅Fe3
𝑅Fe1𝑅Fe2

+ 1
𝑅Fe1

+ 1
𝑅Fe2

, 𝑟22 =
1

1
𝑅Fe2

+ 1
𝑅Fe3

+ 𝑅Fe1
𝑅Fe2𝑅Fe3

.

Voltage Kirchhoff’s law for two independent circuits of primary transformer windings leads
to two independent relations

𝐿𝑧

d𝑖 (𝑔)1 (𝑡)
d𝑡

+ 𝑅𝑧𝑖
(𝑔)
1 (𝑡) + dΨ1 (𝑡)

d𝑡
− 𝐿𝑧

d𝑖 (𝑔)2 (𝑡)
d𝑡

− 𝑅𝑧𝑖
(𝑔)
2 (𝑡) − dΨ2 (𝑡)

d𝑡
= 𝑒

(𝑠)
12 (𝑡), (19)
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𝐿𝑧

d𝑖 (𝑔)2 (𝑡)
d𝑡

+ 𝑅𝑧𝑖
(𝑔)
2 (𝑡) + dΨ2 (𝑡)

d𝑡
− 𝐿𝑧

d𝑖 (𝑔)3 (𝑡)
d𝑡

− 𝑅𝑧𝑖
(𝑔)
3 (𝑡) − dΨ3 (𝑡)

d𝑡
= 𝑒

(𝑠)
23 (𝑡), (20)

which can be written in matrix notation as follows:[
𝐿𝑧 −𝐿𝑧

𝐿𝑧 2𝐿𝑧

] 
d𝑖 (𝑔)1 (𝑡)

d𝑡
d𝑖 (𝑔)2 (𝑡)

d𝑡

 =

[
ℎ1 (X)
ℎ2 (X)

]
, (21)

where
ℎ1 (X) = 𝑒

(𝑠)
12 (𝑡) − 𝑅𝑧𝑖

(𝑔)
1 (𝑡) + 𝑅𝑧𝑖

(𝑔)
2 (𝑡) − 𝑓3 (X) + 𝑓4 (X),

ℎ2 (X) = 𝑒
(𝑠)
23 (𝑡) − 𝑅𝑧𝑖

(𝑔)
1 (𝑡) − 2𝑅𝑧𝑖

(𝑔)
2 (𝑡) − 𝑓3 (X) − 2 𝑓4 (X).

The solutions of Eq. (21) with respect to current derivatives are as follows:


d𝑥1 (𝑡)

d𝑡
d𝑥2 (𝑡)

d𝑡

 ≡


d𝑖 (𝑔)1 (𝑡)

d𝑡
d𝑖 (𝑔)2 (𝑡)

d𝑡


=

1
2𝐿𝑧

[
2ℎ1 (X) + ℎ2 (X)
−ℎ1 (X) + ℎ2 (X)

]
≡

[
𝑓1 (X)
𝑓2 (X)

]
. (22)

Equations (18) and (22) constitute the differential state equation set for the state vector
X = [𝑥1 (𝑡), 𝑥2 (𝑡), 𝑥3 (𝑡), 𝑥4 (𝑡)]𝑇 , and describe the no-load state of work of the transformer where
primary windings are star-connected (Fig. 4(a)). The resulting system of Eqs. (18) and (22)
does not take into account magnetic hysteresis in general and the question arises with what
simplifications we are dealing with when applying it. This model is used to study the steady states
of the transformer if the resistance 𝑅Fe,𝑘 is determined based on the idle losses of the transformer,
which take into account eddy currents and magnetic hysteresis. Starting from any initial conditions
(e.g. zero) of the system of Eqs. (18) and (22) we will reach a steady state that is the limit cycle of
this solution. The result of this integration can be verified by simple metrological techniques. For
this type of issue, in the article below, a special algorithm has been developed for determining
such initial conditions for which, despite the high rigidity of these equations, the total calculation
cost is the smallest possible (point 5). The trajectories of the transition to this boundary cycle do
not have a physical interpretation in this case. As mentioned, the given mathematical model does
not take into account magnetic hysteresis because it does not track the "history" of magnetization
of the core, i.e. the points at which the directions of changes in currents and magnetic fluxes
are reversed. The history of magnetization of the core can be known at the time of switching
the transformer to the network in the form of residual magnetism. So we have the ability to set
initial conditions for state variables Ψ1 (𝑡0), Ψ2 (𝑡0) that are conjugate streams Ψ1 (𝑡0) = 𝐵1𝑆Fe𝑧𝑔,
Ψ2 (𝑡0) = 𝐵2𝑆Fe𝑧𝑔 where 𝐵1, 𝐵2 are the residual induction of transformer cores. By performing
integration under such initial conditions, the first input into the core saturation area for which
the largest current pulses are obtained gives an accurate solution. Therefore, the article conducts
research on the effect of residual magnetism on the maximum values of the transformer current
in the first period of supply voltage. Studies were also carried out to determine the influence of
the 𝑅Fe,𝑘 parameter of the model on the maximum value of current pulses when switching on the
voltage. Studies have shown that the change in total losses in iron per unit volume given by the
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manufacturer of transformer sheets within the wide limits on the basis of which this parameter
is determined does not have a significant impact on the maximum values of currents obtained
from solving the mathematical model. Therefore, the developed model can be successfully used
to test the steady state of the transformer and to calculate the maximum current pulses when the
transformer is connected to the network.

3. Application of implicit Runge–Kutta methods

The paper proposes to apply Runge–Kutta implicit methods for the solution of the differential
set obtained in paragraph #2. The general form of Runge–Kutta implicit methods has the form of:

X𝑖+1 = X𝑖 +
𝑚∑︁
𝑗=1

𝑤 𝑗K (𝑖)
𝑗
, (23)

where 𝑤 𝑗 are constants, and vectors K (𝑖)
𝑗

are as follows:

K (𝑖)
𝑗

= ℎ𝑖F
(
X𝑖 +

𝑚∑︁
𝑙=1

𝑎 𝑗𝑙K (𝑖)
𝑙
𝑡𝑖 + 𝑐 𝑗ℎ𝑖

)
, (24)

where ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 for 𝑗 = 1, . . . , 𝑚 and 𝑐 𝑗 =

𝑚∑︁
𝑙=1

𝑎 𝑗𝑙 .

For implicit 𝑚-stages Runge–Kutta methods can be chosen for some nodes 𝑐1, 𝑐2, . . . , 𝑐𝑚, or
those can be derived by high order approximation algorithms. It is well-known, that the highest
order quadrature constitutes the Gaussian quadrature. Therefore, it is convenient to choose the
nodes 𝑐1, 𝑐2, . . . , 𝑐𝑚 since they are roots of a high-order quadrature. The paper presents some test
methods based on Gauss–Legendre, Radau, and Lobatto quadrature approximations of the orders
2𝑚, 2𝑚 − 1, and 2𝑚 − 2, respectively. It can be proved that the implicit Runge–Kutta methods
mentioned are A-stable, and are thus are most appropriate for the solution of stiff differential
equations [1–4,6, 16–18].

For the implicit Runge–Kutta algorithms there are derived the so-called embedded formulas [5,
6] that enable local error monitoring. The authors elaborated a numerical library for the C#
language [1], which contains all implementations of the methods mentioned. Moreover, the
Jacques J.B. de Swart and Gustaf Soderlind idea of integration error estimation is adopted [7].
This idea defines the error vector of 𝑖-th iteration as a difference between solution X𝑖+1 and
approximation 𝑋

(1)
𝑖+1 :

E𝑖 = E𝑖 (𝑡𝑖 + ℎ𝑖ℎ𝑖)X𝑖+1 − 𝑋
(1)
𝑖+1 . (25)

The error can be written in the form of [1, 6]:

E𝑖 (𝑡𝑖 + ℎ𝑖ℎ𝑖) = [1 − 𝛾ℎ𝑖J(X𝑖+1𝑡𝑖 + ℎ𝑖)]−1


𝑚∑︁
𝑗=0

𝑒 𝑗K (𝑖)
𝑗

− 𝛾ℎ𝑖F(X𝑖+1, 𝑡𝑖 + ℎ𝑖)
 , (26)
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where J(X, 𝑡) is the Jacobi matrix for the vector function F(X, 𝑡), and

𝑒 𝑗 =

{
−𝑤0 for 𝑗 = 0
−𝑤0𝑣 𝑗1 + 𝛾𝑝 𝑗 for 𝑗 = 1, 2, ..., 𝑚

, 𝑝𝑖 =

𝑚∑︁
𝑗=1

𝑣𝑖 𝑗 ,

are elements of the inverse of Vandermonde’s matrix [𝑣𝑖 𝑗 ] = U−1, where U = [(𝑐 𝑗 )𝑖−1].
It is proved [5] that for the stability of the embedded method the following condition is

necessary:
|𝑤0/𝛾 | < 1. (27)

Theoretical investigations [7] and our own experimental tests indicate that the stability area
for the embedded method for parameters |𝑤0/𝛾 | = 0, 067, 𝑤0 = 0.01 is very close to the stability
area of implicit Runge–Kutta methods. The numerical library elaborated is applied for designing
objected-oriented programming to approach transient states of work of the transformer in a no-
load work state.

4. Numerical example

For example, for testing the algorithm the following data for a three-phase transformer were
chosen as shown in Table 1.

For example, three-phase transformer electrical steel sheets are chosen as the type Power Core
H 105-30 ThyssenKrupp Elektrical Steel (Table 2).

The source voltages are sine varying of angular frequency 𝜔 = 2𝜋 𝑓 and are given arbitrary
line-to-line voltage modules 𝐸12, 𝐸23, 𝐸31, and phase for one of these voltages. The next two
voltage phases result from the voltages triangle shown in Fig. 3. In Fig. 3 the complex voltage
𝐸 23 is assumed as follows, 𝐸 23 = j𝐸23.

Fig. 3. Complex voltages diagram

Other effective complex values, i.e. their phases, result from the geometry of the triangle on
Fig. 3.

𝐸 12 = 𝐸12 sin(𝜑) − j𝛼, (28)
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where

𝛼 = 𝐸12 cos 𝜑 =
𝐸2

12 + 𝐸2
23 − 𝐸2

31
2𝐸23

, (29)

𝜑 = 𝑎 cos
(
𝛼

𝐸12

)
. (30)

Table 1. Transformer model parameters

Primary winding nominal voltage 𝑈𝑛𝑔 [V] 3 637

Secondary winding nominal voltage 𝑈𝑛𝑑 [V] 156

Primary winding nominal current 𝐼𝑛𝑔 [A] 1 100

Coil number of high voltage winding 𝑧𝑔 93

Winding power losses Δ𝑃𝐶𝑢 [kW] 36

Core power losses Δ𝑃Fe [kW] 11

Short-cut voltage 𝑢𝑧𝑤 [%] 5

Core cross-section 𝑆Fe [m2] 0.110565

Column length 𝑙Fe2 [m] 1.4

Yoke length 𝑙Fe1 [m] 0.76

Source line (line-to-line) voltage 𝐸 12 [V]: 𝐸21 [V], 𝐸12 [V] 6 000

Source line voltage 𝐸23 [V] 6 000

Source line voltage 𝐸31 [V] 6 000

Initial phase 𝜑 [deg] 0

Frequency 𝑓 [Hz] 50

Equivalent resistance of line and source 𝑅𝑠 [Ω] 0.040

Equivalent reactance of line and source 𝑋𝑠 [Ω] 0.100

Table 2. Coefficient for curve 𝐻 (𝐵) approximation for transformer core type Power Core H 105-30

i ai i ai

1 29.9624271037522 7 1516.77585894405

2 –76.4912078883278 8 –630.577358829122

3 420.867774746849 9 160.397849549712

4 –1 274.37623231261 10 –22.7840824031901

5 2 196.27285444425 11 1.38472183966324

6 –2 301.93260519503
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Complex RMS voltages 𝐸 23, 𝐸 12 enable the complex RMS voltage 𝐸 31 to be determined as
follows:

𝐸 31 = −𝐸 12 − 𝐸 23. (31)

Complex RMS voltages 𝐸 12, 𝐸 23, 𝐸 31 lead to cosine instantaneous voltages e.g.

𝑒
(𝑠)
12 (𝑡) =

√
2
��𝐸 12

�� cos
(
𝜔𝑡 + arg(𝐸 12) + 𝜑0

)
. (32)

The source voltage functions (32) force currents in transformer windings and are put into (21)
and (22). The initial phase 𝜑0 is arbitrarily chosen and this gives insight into the influence on
transient states of the initial time point 𝑡 = 0. For the angle, 𝜑0 = 0 the phases of line-to-line
voltages are shown in Fig. 3. To solve the equations of state (18) and (22), the initial conditions
for the state vector are also necessary.

X = [𝑥1 (𝑡), 𝑥2 (𝑡), 𝑥3 (𝑡), 𝑥4 (𝑡)]𝑇 = [𝑖 (𝑔)1 (𝑡), 𝑖 (𝑔)2 (𝑡),Ψ1 (𝑡),Ψ2 (𝑡)]𝑇 . (33)

While for currents 𝑖 (𝑔)1 (𝑡), 𝑖 (𝑔)2 (𝑡) the assumption of zero initial conditions is obvious from the
point of view of tests when switching the voltage to the transformer at idle, the initial conditions
for coupled magnetic fluxes Ψ1 (𝑡), Ψ2 (𝑡) should result from residual magnetism after the last
transformer was switched off from the network. To show the influence of transformer switching
currents from residual magnetism, a computational experiment was first carried out in which all
initial conditions and thus fluxes were assumed to be zero. This solution is given in Fig. 4(a).

Figure 4(a) shows the solution of state variables Ψ𝑘 (𝑡), 𝑖 (𝑔)𝑘
(𝑡) for 𝑘 = 1, 2, 3 received from

solutions of the differential sets (18) and (22) for two time periods 2𝑇 = 2/ 𝑓 of source voltage at
at initial phase 𝜑0 = 0 with an automatically chosen integration step for a given absolute error of
value 𝜀𝑎 = 1𝑒 − 7 and relative error of value 𝜀𝑤 = 1𝑒 − 11. The currents 𝑖 (𝑔)

𝑘
(𝑡) for 𝑘 = 1, 2, 3

presented take forms of impulses which gradually decrease.
To show the range of stiffness of the system of equations, we take into account, for example,

phase 3 for the waveforms from Fig. 4(a). Starting from zero initial conditions, the magnetic
flux associated with 𝑧𝑔 turns Ψ3 (𝑡) slowly increases. This is accompanied by a slight increase in
current 𝑖 (𝑔)3 (𝑡) from zero to several amperes not visible in the figure in the range from zero to
5 ms. However, this current generates a flow generating the combined flux Ψ3 (𝑡), the derivative
of which is the electromotive force dΨ3 (𝑡)/d𝑡 induced in the coil of the upper side not much
different from the phase voltage of the transformer. After 5 milliseconds of growth, the associated
flux Ψ3 (𝑡) causes a gradual saturation of magnetic induction in the core, which with a further
increase in current 𝑖 (𝑔)3 (𝑡) gives a slight increase in the flux, which after some time reaches its
maximum. The derivative of this flux, i.e. the electromotive force induced in the coil, decreases
rapidly in this time interval, which causes a sharp increase in the current 𝑖 (𝑔)3 (𝑡), which reaches
its maximum at the moment of passage of the flux Ψ3 (𝑡), through the maximum.

Figure 4(b) and Fig. 4(c) give the solution of the state variables Ψ1 (𝑡),Ψ2 (𝑡),Ψ3 (𝑡), 𝑖 (𝑔)1 (𝑡),
𝑖
(𝑔)
2 (𝑡), 𝑖 (𝑔)3 (𝑡) from the solution of the system of differential Eqs. (18) and (22) in the integration

interval of two periods of supply voltage with the initial phase of voltage 𝜑0 = 0 for a given
residual magnetism respectively 𝐵1 = 0.2𝑇 , 𝐵2 = −0.4𝑇 , 𝐵3 = 0.2𝑇 , and 𝐵1 = 0.4𝑇 , 𝐵2 = −0.8𝑇 ,
𝐵3 = 0.4𝑇 . The second residual magnetism dataset is twice as large as the first. In this set, the
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(a) Presentation of chosen variables of the transformer with zero initial phase 𝜑0 = 0
and zero residual magnetism

(b) Presentation of chosen variables of the transformer with zero initial phase 𝜑0 = 0
and with residual magnetism 𝐵1 = 0.2𝑇 , 𝐵2 = −0.4𝑇 , 𝐵3 = 0.2𝑇
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(c) Presentation of chosen variables of the transformer with zero initial phase 𝜑0 = 0
and with residual magnetism 𝐵1 = 0.4𝑇 , 𝐵2 = −0.8𝑇 , 𝐵3 = 0.4𝑇

(d) Presentation of chosen variables of the transformer with zero initial phase 𝜑0 = 100
and with residual magnetism 𝐵1 = 0.2𝑇 , 𝐵2 = −0.4𝑇 , 𝐵3 = 0.2𝑇

Fig. 4. Presentation of chosen variables of the transformer
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maximum values of phase currents existing in the first integration period are proportionally
greater in relation to the data from the first set.

Subsequently, a numerical experiment was carried out, assuming residual magnetism in the
form of 𝐵1 = 0.2𝑇 , 𝐵2 = −0.4𝑇 , 𝐵3 = 0.2𝑇 as in the experiment shown in Fig. 4(b), while the
initial phase of supply voltages was assumed 𝜑0 = 100 (Fig. 4(d)). In this example, significant
reductions in the value of current pulses can be observed, which can be explained by the initial
demagnetization of residual magnetism by appropriate voltage forcing in a given initial phase.

The investigations of the transient state of work at zero initial conditions and the automatically
chosen integration step are provided by applying different methods of quadrature approximation
such as Gauss–Legendre, Radau, and Lobatto. Table 3 presents the number of iterations necessary
for integrations for five time periods of voltage source which are presented in Fig. 4(a). The
minimal number of iterations needs methods Radau IIA and Lobatto IIIC. The total numerical
effort is minimal for the Lobatto IIIC method.

Table 3. Coefficient for curve 𝐻 (𝐵) approximation for transformer core type Power Core H 105-30

Method name Step
number

Method
order

Iterations
number

Time
[ms]

Gauss–Legendre 5 10 1 127 1 531

Radau IA 5 9 2 005 2 830

Radau IIA 5 9 438 1 653

Lobatto IIIC 5 8 444 1 241

The stiffer the differential Eqs. (18) and (22), the higher the current impulses of primary
windings 𝑖 (𝑔)

𝑘
(𝑡) will be (Fig. 5). The maximal impulse values also depend on the initial phase

𝜑0 of source voltage (28) and may exhibit some minimal and maximal values. The solutions
are obtained for initial angles 𝜑0 from 0°to 180°for searching the maximal value of all current
impulses

max
𝑡

{���𝑖 (𝑔)1 (𝑡)
��� , ���𝑖 (𝑔)2 (𝑡)

��� , ���𝑖 (𝑔)3 (𝑡)
���} ,

during the startup of the transformer at a no-load state of work. The numerical analysis inves-
tigations with zero residual magnetism show that the greater the voltage per coil number, the
greater the current impulses will be, as is shown in Fig. 5. The ratio voltage per coil number is
important for the design process because it is decisive for saturation effects. Moreover, the greater
the saturation effect, the greater the current impulses during the startup of the transformer. The
maximal current impulses at the startup of the transformer also depend on source resistances
(Fig. 6).

However, the question arises what effect the residual magnetism in the transformer has on
these pulses, which can be taken into account in the given model in the form of initial conditions
for conjugated fluxes Ψ1 (𝑡), Ψ2 (𝑡). These conditions depend on the time moment of a given
period of network voltage from which the short process of switching off the transformer power
supply begins. In the process of extinguishing current and flux in transformer columns, at any
moment of this process, Kirchhoff’s first law for fluxes occurs (7). When the current reaches zero
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Fig. 5. Maximal inrush current at startup vs. input voltage initial angle with zero residual magnetism

Fig. 6. Maximal inrush current at startup vs. input voltage initial angle for different residual magnetism value

values after some time, the magnetic fluxes due to residual magnetism will be different from zero
but will also meet the conditio Ψ1 (𝑡0) +Ψ2 (𝑡0) +Ψ3 (𝑡0) = 0. Since the state variables are Ψ1 (𝑡0),
Ψ2 (𝑡0), the third condition for Ψ3 (𝑡0) is automatically satisfied because the above equation is
included in the construction of the state equations of the modeled transformer. Since the initial
conditions Ψ1 (𝑡0), Ψ2 (𝑡0) depend on the time moment of a certain period in which the process
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of extinguishing transformer streams began, it is proposed in numerical experiments to introduce
a certain parameter 𝜑𝐵 to set these quantities:

𝐵𝑖 = 𝐵res𝑖 cos
(
𝜑𝐵 + (𝑖 − 1) 2𝜋

3

)
Ψ1 (𝑡0) = 𝐵1𝑆Fe𝑧𝑔Ψ2 (𝑡0) = 𝐵2𝑆Fe𝑧𝑔 , (34)

were 𝐵res𝑖 is the maximum residual magnetism value for transformer sheets.
Figure 6 shows the results of calculations of the maximum values of currents for 𝑧𝑔 = 93

and when switching on the transformer voltage depending on the initial phase of these voltages

for different values of residual magnetism 𝐵1 = 𝐵res𝑖 cos 𝜋𝐵2 = 𝐵res𝑖 cos
(
𝜑𝐵 + 2𝜋

3

)
, taking as

𝐵res𝑖 the values of 0 T respectively; 0.2 T; 0.4 T; 0.6 T; 0.8 T. It can be noted that for the selected
proportion of residual magnetism in individual columns of the transformer core, the maximum
values of the switching currents increase proportionally with an increase 𝐵res𝑖 from 0 to 0.8 T for
all values of the initial phase of switching on the voltage. This is shown exactly in Fig. 7 where
it can be seen that for selected initial phases of switching on the voltage, the maximum values of
currents increasing linearly starting from the zero value of residual magnetism. Such a regularity
is paid attention to in the works [10] and [11].

Fig. 7. Maximal inrush current at startup vs. input voltage initial angle and differential 𝜑0 value

The characteristics of the distribution of the maximum values of current pulses when the
transformer voltage is switched on as a function of the initial phase of this voltage depend
not only on the proportion of residual magnetism in individual columns of the transformer but
also on their level. It can be noted that for the selected proportion of residual magnetism in
the individual columns of the transformer core, the maximum values of the switching currents
increase proportionally with an increase 𝐵res𝑖 from 0 to 0.8 T (Fig. 8) for all values of the initial
phase of switching on voltages less than 𝜑0 < 90. For all initial phase greather then 𝜑0 > 90
smaller values of current pulses are observed compared to the case of the existence of zero
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residual magnetism. Figure 9 shows that for the selected initial phase of switching on the voltage
𝜑0 = 50, the maximum values of currents increasing linearly starting from the zero value of
residual magnetism. If, on the other hand, the initial phase 𝜑0 = 110, a decrease in the values
of the maximum current pulses is observed, starting from the zero value of residual magnetism
(Fig. 9). Such a regularity is paid attention to also in the works [10] and [11].

Fig. 8. Maximal inrush current at startup vs. input voltage initial angle for different residual magnetism value

Numerical experiments show that in each case of switching on the transformer voltage in
the idle state, there is freedom of proportions of residual magnetism and their values, as well as
freedom of the moment of switching on this voltage. This creates a great variety of responses in
the form of current pulses. The maximal current impulses at the startup of the transformer also
depend on source resistances (Fig. 10).

The values of current pulses depend not only on residual magnetism and the initial phase of
the supply voltage, but also on the resistance of the windings 𝑅𝑔 as well as on the equivalent
resistance of the 𝑅𝑠 mains supply. For example, Fig. 6 shows the distribution of maximum values
of current pulses when switching the supply voltage to a three-phase transformer not loaded
at zero residual magnetism, depending on the replacement resistance of the power source. The
implementation of the integration process in the first period of the supply voltage despite the
rigidity of its differential Eqs. (18) and (22) (see the waveforms in Figs. 4(a)–4(d)) does not
pose any problems due to the absolute stability of the implicit methods used in the calculation
process. The own numerical library [1] used for the implementation of calculations is additionally
equipped with methods that record the error estimated both in the calculation process with a fixed
integration step and in its automatic selection.
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Fig. 9. Maximal inrush current at startup vs. input voltage initial angle and differential 𝜑0 value

Fig. 10. Maximal current impulses at transformer switch on vs. source resistance

Figure 11 shows the decimal logarithm of the estimated error vector norm for the examples
presented in Fig. 4(a). In particular, the numerical calculations have been performed with auto-
matically chosen integration steps for given absolute error of the value absolute error 𝜀𝑎 = 1𝑒 − 7
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and relative error of value 𝜀𝑤 = 1𝑒 − 11. Figure 11 confirms that the applied algorithm always
keeps the absolute error limit. In conclusion, it could be stated that for the transient and steady
states investigated of the three-phase transformer the applied algorithm always satisfies the given
absolute error.

Fig. 11. Decimal logarithm of estimated error (21) norm vs. time for solutions presented in Fig. 4(a)

5. Steady-state analysis of a three-phase nonlinear transformer

The important problem is to reach steady state variable values without integrating differential
Eqs. (18) and (22) over the long-time domain from zero initial conditions. As mentioned above,
implicit Runge–Kutta algorithms enable stable integration of a stiff differential equation set, but
this requires a significant numerical effort. It is reasonable to try to find some nonzero initial
conditions which are close to steady state variable values. For such initial conditions, the steady-
state solutions can be derived by means of integrations over only a few time periods of the
source voltage. The approximation of such initial conditions can be obtained while assuming
the linearity of the magnetizing curve of the transformer core. Based on this assumption the
differential Eqs. (18) and (22) are linear and have analytical solutions. In this case, the phase
plane shows limit cycles in the shape of eclipses. Moreover, to find analytical solutions for the
steady state of a linear transformer the complex method of circuit analysis can be applied.

The process of algorithm design starts with the assumption that the magnetizing curve is
linear. The magnetic voltage drops for transformer branches (𝑘 = 1, 2, 3) and is approximated in
the following linear formula:

𝑈𝜇,𝑘 (Ψ𝑘 (𝑡)) = ℎFe,𝑘𝐻

(
Ψ𝑘 (𝑡)
𝑧𝑔𝑆Fe

)
=

ℎFe,𝑘

𝑧𝑔𝜇𝑝𝑆Fe
Ψ𝑘 (𝑡) =

𝑅𝜇,𝑘

𝑧𝑔
Ψ𝑘 (𝑡), (35)

where 𝜇𝑝 = 𝐵𝑝/𝐻𝑝 magnetic permeability for linear subinterval of magnetizing curve,
𝑅𝜇,𝑘 = ℎFe,𝑘/(𝜇𝑝𝑆Fe) approximated magnetic permeance of magnetic circuit phase number 𝑘 .
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Linear approximation (33) of the magnetization curve is applied to Eq. (14), and taking into
account (18) a linear differential equation set is obtained, which can be analytically solved for
sinusoidal steady state based on a complex steady state in the algebraic form of



𝑍 𝑍 −𝑍 𝑍 0 j𝜔 j𝜔 0
0 𝑍 𝑍 −𝑍 𝑍 0 j𝜔 −j𝜔
1 1 1 0 0 0
1 −1 0 −𝑍 𝑓 𝑒,1 𝑍 𝑓 𝑒,2 0
0 1 −1 0 −𝑍 𝑓 𝑒,2 𝑍 𝑓 𝑒,3

0 0 0 1 1 1





𝐼
(𝑔)
1

𝐼
(𝑔)
2

𝐼
(𝑔)
3

Ψ 1

Ψ 2

Ψ 1


=



𝐸
(𝑔)
12

𝐸
(𝑔)
23

0
0
0
0


, (36)

where 𝑍 𝑧 = 𝑅𝑧 + j𝜔𝐿𝑧 , 𝑍 Fe,𝑘 = 𝑅𝜇𝑘/𝑧2
𝑔 + j𝜔/𝑅Fe,𝑘 , 𝐸 (𝑠)

12 =
√

2𝐸 12𝑒
j𝜑0 , 𝐸 (𝑠)

23 =
√

2𝐸 23𝑒
j𝜑0 .

The solutions of linear differential equation set (35) are denoted by Ψ 𝑘 , 𝐼 (𝑔)
𝑘

for 𝑘 = 1, 2, 3.
Equations (18) and (22) at steady state for cosine source voltages 𝐸

(𝑠)
12 , 𝐸 (𝑠)

23 for linear approxi-
mation can be given as follows:

𝑖̃
(𝑔)
𝑘

(𝑡) = Re
{
𝐼
(𝑔)
𝑘

exp(j𝜔𝑡)
}
= 𝐼

(𝑔)
𝑚,𝑘

cos(𝜔𝑡 + 𝛽𝑘 ),

Ψ̃𝑘 (𝑡) = Re
{
Ψ 𝑘 exp(j𝜔𝑡)

}
= Ψ𝑚,𝑘 cos(𝜔𝑡 + 𝛽𝑘 ).

(37)

The phases of currents 𝑖̃ (𝑔)
𝑘

(𝑡) and flux linkages Ψ̃𝑘 (𝑡) for steady state are usually different
𝛼𝑘 ≠ 𝛽𝑘 , and thus in the phase plane, these complex vectors describe an ellipse during one
period. For a nonlinear transformer core, the limit phase diagram will be different than that of
an ellipse (i.e. oval) but relatively close to it. Based on this knowledge it is assumed that the
initial conditions are equal to steady state solutions for a linear steady state of work, i.e. the initial
conditions for (17) and (20) are as follows:

𝑥𝑘 (0) = 𝑖
(𝑔)
𝑘

(0) = 𝑖̃
(𝑔)
𝑘

(0) = Re
{
𝐼
(𝑔)
𝑘

}
,

𝑥𝑘+2 (0) = Ψ𝑘 (0) = Ψ̃𝑘 (0) = Re
{
Ψ

(𝑔)
𝑘

}
,

(38)

for 𝑘 = 1, 2.
Numerical experiments confirm that the number of time periods of source voltages needed

for the integration of equation sets (17) and (20) is relatively small. Steady-state detection can be
provided by means of discrete Fourier transform [1, 3, 4, 22]. Zero (constant item) of the Fourier
transform of state variables is evaluated based on one period of source voltage.

Based on the analysis carried out the following algorithm can be proposed:
1. Data introduction based on Tables 1 and 2.
2. Defining steady-state level 𝜀𝑠𝑡 > 0.
3. Formulation of differential sets of Eqs. (18) and (22).
4. Introduction of initial conditions (37) as solutions of algebraic equation set (36).
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5. Choosing implicit Runge–Kutta method for integration of nonlinear differential equation
sets (18) and (22).

6. Integration with an automatically chosen step over the time interval in which length is an
integer multiple 𝑁𝑜 of source voltage period.

7. Continuation of integration #6 with constant step and calculation of simple Fourier trans-
formation coefficients of state variable.

8. If the module of zero coefficient (constant item) satisfies steady-state level 𝜀𝑠𝑡 then go to
#9. If not go to #6 and continue the procedures.

9. Acquisition of state variables and output functions.
10. Graphical presentation of results.
In the algorithm presented above the numerical program in C# language has been elaborated.

The program applies the design of the authors’ numerical library [1–3], which contains the
implementation of implicit Runge–Kutta methods based on Gauss–Legendre, Radau, and Lobatto
approximation quadratures. For example, a three-phase transformer with data presented in Tables 1
and 2 was considered. With initial conditions (36) and integration over the interval of 𝑁𝑜 = 15
time periods of source voltage, a steady state is reached. The limit cycle for a nonlinear transformer
is presented in Fig. 12. Moreover, Fig. 12 also shows the limit cycle for the linear model of the
transformer where initial condition (35) is drawn as one point on this limit cycle.

Fig. 12. Phase plane for steady state for a linear and nonlinear model of a three-phase transformer

The integration process was carried out with the help of Radau IIA and Lobatto IIIC methods
applying automatically chosen steps for the required absolute error 𝜀𝑎 = 1𝑒−7 and relative error
of value 𝜀𝑤 = 1𝑒−11.
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Fig. 13. Decimal logarithm of estimated error (21) norm vs. time for solutions
presented in Fig. 4(a)

The results in Fig. 12 prove that the applied algorithms satisfy the required absolute error. The
numerical calculations were performed for a few orders of Radau IIA and Lobatto IIIC methods.
The number of iterations, calculation times, and algorithm parameters are set in Table 4. Radau
IIA and Lobatto IIIC methods have a very similar number of iterations needed for satisfying the
required absolute error with automatically chosen steps. However, the Lobatto IIIC method needs
lower total time for calculations such that the numerical effort is lower than for the Radau IIA
method.

Table 4. Comparison of Radau IIA and Lobatto IIIC methods

Radau IIA method
(𝜀𝑎 = 1𝑒 − 7, 𝜀𝑤 = 1𝑒 − 11)

Lobatto IIIC method
(𝜀𝑎 = 1𝑒 − 7, 𝜀𝑤 = 1𝑒 − 11)

Steps
number Order Number of

iterations
Time
[ms]

Steps
number Order Number of

iterations
Time
[ms]

3 5 635 308 3 4 819 503

4 7 464 785 4 6 392 426

5 9 416 1 330 5 8 362 494

6 11 394 1 801 6 10 289 517

7 13 312 1 871 7 12 229 682

The algorithm for steady-state nonlinear transformer determination can be used for defining
the nominal state of work and pointing out the loci on a magnetizing curve in order to reduce
higher harmonic content. For this purpose, a discrete Fourier transform is used and applied for
data acquisition during one source voltage time period of integration with constant step. For the
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steady state of the nonlinear transformer higher harmonics for each locus for the no-load state of
work can be determined. For example, for integrations depicted in Fig. 11, a higher harmonics
content for primary winding no-load current is presented in Fig. 14 and Fig. 15 [5–7, 23]. The
asymmetry of no-load phases A, B, and C currents’ results from the asymmetry of the three-phase
transformer magnetic circuit which is accounted for in the model by assuming different magnetic
circuit lengths for transformer phases.

Fig. 14. Higher harmonics of no-load current of primary winding at line-to-line voltage 6 kV

Fig. 15. Waveform deformation of no-load currents of primary windings at line-to-line voltage 6 kV

Moreover, the proposed algorithm and library are also used to evaluate higher harmonics
(ℎ = 1, 3, 5, 7, . . .) of magnetizing currents 𝐼

(ℎ)
𝜇1 , 𝐼 (ℎ)

𝜇2 and 𝐼
(ℎ)
𝜇3 , such as for different primary
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winding coil numbers 𝑧𝑔 for source line-to-line voltages 6 kV. Additionally, the results are
presented as a ratio to voltage per one coil.

Tracking of higher harmonic values helps in designing the proper locus of a three-phase
transformer for a nominal state of work. Table 5 indicates that when a certain voltage value is
reached then harmonic values rise significantly higher.

Table 5. Magnetizing current RMS and higher harmonics values for different transformer loci at constant
primary voltage per coil

Parameter Phase A (k = 1) Phase B (k = 2) Phase C (k = 3)

𝑒1 [V] 39.11 39.11 39.11

𝐼𝜇𝑘 [A] 0.8652 0.6104 0.8651

𝐼
(1)
𝜇𝑘

[A] 0.8639 0.6095 0.8639

𝐼
(3)
𝜇𝑘

[A] 0.0035 0.0070 0.0035

𝐼
(5)
𝜇𝑘

[A] 0.0446 0.0314 0.0446

𝐼
(7)
𝜇𝑘

[A] 0.0104 0.0073 0.0104

𝐼
(0)
𝜇𝑘

[A] 0.000000998 0.000000281 0.000000716

6. Conclusions

Technological innovation of a transformer core, such as that of electrical sheets, leads to
a significant increase in magnetic flux density. This ensures the decrease of the transformers’
magnetic circuit dimensions. On the other hand, the magnetizing currents increase at transients
and often contain higher harmonics during work at a steady state. However, the mathematical
consequence is that the differential state equation set becomes stiff. In order to solve the differential
state equation set for transient states of a three-phase transformer, Runge–Kutta with Gauss–
Legendre, Radau, and Lobatto methods with maximal order quadrature formulas were applied.
Based on the authors’ numerical library [1] is elaborated in C# program language, objective
oriented. For example, the algorithms and program for a three-phase transformer at a no-load
state of work were applied. The results presented can improve the design process of three-phase
transformers in choosing the nominal state of work, higher harmonics content, peak current
values, and transient state analysis. The authors emphasize that the transient states’ analyses of
nonlinear three-phase transformers at a no-load state of work are important for investigating their
maintenance and reliability, as well as for power-system automation work.
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