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PARAMETRIC ANALYSIS OF THE STABILITY AND LOAD 
CARRYING CAPACITY OF PRISMATIC SEGMENT SHELLS 

SUBJECTED TO COMPRESSION 

The study is devoted to a parametric analysis of the stability and load carrying 
capacity of prismatic segment shells built of rectangular sections of cylindrical shells 
and subjected to compression. Segment shells (columns) with a constant cross­ 
sectional area (weight) have been analysed and all the results obtained have been 
compared with the results obtained for the cylindrical shell with a radius R and 
a thickness c;

First, an influence of geometrical parameters of the cross-section of single-layer 
isotropic shells has been analysed and such profiles have been sought for which the 
load carrying capacity is significantly higher than in the case of the cylindrical shell. 

Then, for a selected shape of the shell (apart from higher load carrying capacity, 
this choice could be influenced by other factors such as, e.g. easiness of manufac­ 
turing), an effect of the arrangement and thickness of orthotropic layers of the shell 
(laminate) on the stability and load carrying capacity has been investigated. 

The analysis has shown that one can design a segment shell made of the same 
orthotropic material and characterised by higher resistance to buckling and load 
carrying capacity than a single-layer cylindrical orthotropic shell. The results are 
depicted in the form of plots. 

1. Introduction 

In the present study, the notion of prismatic segment shells will be 
referred to the shells that are circumscribed on the cylinder with a radius R,
built of n segments (sections) of cylindrical shells with a radius r, whose 
geometry is determined additionally by angles 2a and 2y (Fig. 1), and built of 

*) Departament of Strenght of Materials and Structures Technical University of Lodz,
Stefanowskiego 1/15, 90-924 Łódź, Poland; E-mail: kola@orion.p.Lodz.pl



126 MARJAN KRÓLAK, ZBIGNIEW KOŁAKOWSKI, TOMASZ KUBIAK

n segments of cylindrical shells with a radius R and a central angle 8. For
small angles 8, sections of cylindrical shells with a radius R can be replaced by

plates with the width bR = 2Rsin £ = R8. 

L 

Fig. I. Segment shell with notation of overall dimensions

The decision to carry out a parametric analysis of the stability and to
estimate initially the load carrying capacity of segment shells has been made
because of two reasons, namely:

it has been expected that segment shells, at their certain geometrical
parameters, will be characterised by significantly higher resistance to
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buckling than cylindrical shells made of the same material and with the
same cross-sectional area;

- a computer program has been developed that allows for conducting the
above-mentioned analysis in a fast way.

An increase in the resistance to buckling of thin-walled structures that are
often subjected to buckling at very low values of effective (reduced) stresses,
without increasing their weight, is mostly desirable because in numerous
modem structures lightness combined with high load carrying capacity is the
fundamental requirement these structures have to satisfy.

In order to make a structure that is light and characterised simultaneously
by high load carrying capability, the high strength properties of the material it
is made of should be taken advantage of in the best way. These high strength
properties can be utilised better in properly profiled load carrying elements of
thin-walled structures than in elements with compact cross-sections.

In recent years, mainly thanks to fibrous composites, it has been possible
to design strength properties of materials in such a way as to make the load
carrying capacity of elements made of these composites very high indeed.

However, the reliability of thin-walled structure operation can be
endangered not due to the effort of the structural material but to its buckling (a
loss of stability).

In the present study, some suggestions how to enhance the resistance of
compressed thin-walled structures to a loss of stability (buckling) without
increasing their weight (maintaining the same cross-sectional area) and
applying the same material will be presented.

In the case of thin-walled structures made of an isotropic material, one of
the basic ways proposed to increase the structure resistance to buckling is
a selection of the proper profile (cross-section shape), at which critical
stresses are significantly higher than in the profiles that have been used so far.

In thin-walled structures made of an orthotropic material, apart from
a selection of the proper profile of the cross-section, it is proposed that
a multilayered wall should be made of the same orthotropic material but with
such an arrangement of its individual layers that the bending rigidities of these
multilayered walls will be approximately equal (,,isotropic" wall to bending)
in two directions perpendicular to each other (that is to say, in the direction of
compression and in the direction perpendicular to it) (Królak, Kowal­
Michalska, Świniarski, 2002). Among other known ways of increasing the
resistance to bending of thin-walled structures, one can mention the
following:
- reinforcement of the thin-walled element with appropriate stiffeners (both

the position and the dimensions of stiffeners are important) and/or
membranes;
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- selection of appropriate geometrical ratios (dimensions), provided it is
possible in a given structure.

Modem technologies allow for manufacturing composite materials and
laminates with required characteristics, as well as for making thin-walled
elements with complex shapes of the cross-section and small geometrical
imperfections.

The present study is aimed mainly at the determination of such parameters
of thin-walled segment shells made of isotropic or orthotropic materials,
including shells with multilayered walls made of orthotropic layers, at which
values of critical loads under axial compression are significantly higher than
those for cylindrical shells made of the same material, with the same
cross-sectional area and the identical length.

The computations will be performed with a computer program developed
on the basis of the equations of stability and the formulas for calculations of
stability and initial post-buckling equilibrium paths of thin-walled shell/plate
structures with complex profiles that have been generated earlier. The
computational results, especially those referring to critical loads of segment
shells under axial compression ,will be compared with the results obtained for
the ideal cylindrical shell. We will show a possibility of achieving
a significant increase in the resistance to a stability loss for prismatic segment
shells under compression, at their certain geometrical parameters, in
comparison with the ideal cylindrical shell with a radius R and the same
cross-sectional area, mainly through a modification of the cross-section
shape, will be shown.

2. Formulation of the problem 

Let us consider a thin-walled structure circumscribed on the cylinder with
a radius Rand a length L, built of n segments (sections) of cylindrical shells
with a radius r, whose geometry is determined additionally by angles a and
y and built of n sections of cylindrical shells with a radius R and a central
angle 8 (Fig. 1 ). For small angles 8, sections of cylindrical shells with a radius

R can be replaced by plates with the width bR = 2Rsin f. For the angle a= O,

we obtain the ideal cylindrical shell with a radius R. The wall thickness of this
shell will be denoted by i; In turn, for the angle 8= O, we obtain a thin-walled
segment structure built of n identical sections of cylindrical shells with
a radius r and a thickness t, whose geometry depends on angles a and y. 

The cross-section through 3 segments of the segment shell presented in
Fig. 1 is shown in Fig. 2.
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Fig. 2. Overall dimensions of analysed segment shell 

The middle segment is described by radii R and r, angles a, /3 and y and 
a shell thickness t. In the general case of the shell depicted in Fig. 1, the angle 

(1)

The angle /3between the radius R going through the segment edge and the 
tangent to the shell segment with the radius r on the same edge, depends on 

a rise f of the shell section and can vary within the range O ::; /3 ::; i (Fig. 2) 
The quantities n, R, L, Iw, 8 and /3 will be treated as the known (given) ones. 
The quantities y, r, and f can be calculated from the following formulas: 
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n r= 2 + a- /3, 
r = sin a R = sin a R 

cos(a- /3) siny '
J = r(l - cosy). 

(2) 

From the condition saying that cross-sectional areas of the ideal
cylindrical shell with a radius R and a wall thickness t; and of the segment
shell shown in Fig. 1 are identical, the following formula for the constant
thickness of the segment shells under consideration has been obtained:

2a+ 8 
f = . • fw. 

8 + 2 sm a 
r sin r 

(3)

In the further part of this study, the stability (critical loads) of segment
shells made of isotropic, orthotropic (composite) and multilayered (orthot­
ropie laminates) materials subjected to axial compression will be analysed
and their load carrying capacity will be estimated.

Owing to this analysis, it will be possible to determine under what
geometrical parameters these segment shells will be characterised by
significantly enhanced resistance to buckling (i.e. by higher values of critical
stresses) and thus by higher load carrying capacity than the ideal cylindrical
shell with a radius R and the identical cross-sectional area.

3. Basic equations and a description of capabilities of the computer 
program developed 

The equations of stability for a section of the multilayered cylindrical
shell have been generated by means of the variational method (Królak,
Kołakowski, 2002), employing the asymptotic theory of conservative
systems (Koiter, 1976). The rigidity of multilayered shells has been described
with formulas of the classical theory of multilayered plates (Jones, 1975).

The geometrical equations have been assumed in the following form:

£2 = U2,2 + 0.5um.2 Um,2 - ku«, 

£2 = 0.5 (uu + U2,1) + 0.5Um,l Um,2, 
(4) 
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where k is the curvature of the cylindrical shell section (k, = ! or kR = -R1 ), and r
the summation with respect tom is from 1 to 3 (m = 1, 2, 3). It is necessary to 
take into account the additional terms in the expressions concerning 
variations in curvatures in order to expand the range of application of the 
obtained equations of stability to shells characterised by larger rises (than, for 
instance, in Volmir, 1967) and at analysing interactive buckling (e.g. 
accounting for an influence of the global buckling on the local one). 

The physical equations have been written in such a way as to make it 
possible to use them for multilayered walls made of linearly elastic 
orthotropic materials as well. 

The equations of equilibrium have been obtained in the following form: 

[Ni(l + u 1.1) + N3u1,2],1 + [N2u1.2 + N3(l + uu)],2 =O, 
[N1u2,1 + N3(l + Uz,2) - ktN6],1 + [N2(1 + Uz,2) + N3u2,1 - ktNs],2 =O, (5) 

(tN4,1 + N1u3,1 + N3u3,2),1 + (tNs.1 + 2tN6,l + N2U3,2 + N3U3,1),2 + kN2 = O. 

In the above-mentioned equations, N1, N2, N3 are the dimensionless 
sectional forces, N4, N5, N6 - the dimensionless sectional moments, u1, u2, u3

-the components of the displacement vector, t-the shell thickness, and k-its 
curvature. 

As it has been mentioned above, after expanding the fields of disp­ 
lacements [h and the fields of sectional forces Nk into power series with 
respect to the buckling mode amplitudes (0 (the amplitude of the n-th 
buckling mode divided by the thickness t of the wall assumed to be the first 
one), Koiter's asymptotic theory has been employed. 

n= }.[/fl + Śn Din) + . 
Nk = ANiO) + (nNkn) + . (6) 

where Di0l, Ni0l are the pre-buckling state fields, and Dinl, Nin) the n-th
buckling mode fields. 

After the substitution of the expansions (Koiter, 1976) into the equilib­ 
rium equations, the continuity conditions and the boundary conditions 
(corresponding to the jointed support at the girder ends), the boundary 
problem of the zero and first order for the case of uniform compression along 
the generating lines of the cylindrical shell segment has been obtained. 

In the case of the load that varies along the shell perimeter in the 
pre-critical state (e.g. at bending), such a load can be modelled with a step-like 
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varying load (constant in individual strips the shell is divided into).
The obtained system of homogeneous ordinary differential equations,
with the corresponding conditions of the interaction of segments, has
been solved by the transition matrix method, having integrated numerically
the equilibrium equations along the circumferential direction in order
to obtain the relationships between the state vectors on two longitudinal
edges. During the integration of the equations, Godunov's orthogonalization
method is employed.

On the basis of the obtained solution to the task, a computer program has
been developed. Thanks to this computational code, critical loads and initial
post-buckling equilibrium paths can be calculated and the load carrying
capacity of thin-walled shell/plate structures (shells, beams, columns) with an
arbitrary prismatic cross-section, with at least one axis of symmetry,
subjected to axial compression, eccentric compression or bending in the
symmetry plane of the structure, can be estimated. Structure walls can be
made of isotropic and/or orthotropic (composite) materials that are single- or
multilayered (laminates).

The structure can be reinforced with longitudinal edge stiffeners (open
profiles) or/and intermediate stiffeners. Different modes of buckling, i.e.
global (flexural, flexural-torsional and torsional), distorsional, local and
interactive buckling, can be analysed.

4. Numerical calculation results and their analysis 

The numerical calculations have been performed for segment shells with
a constant thickness of walls, subjected to uniform axial compression. The
shell walls made of isotropic, orthotropic and multilayered materials with
orthotropic layers have been analysed.

The calculations have been aimed at the determination of such geomet­
rical parameters of segment shells and such an arrangement of orthotropic
layers in multilayered shell walls at which critical loads of the local or global
buckling are significantly higher than for the ideal cylindrical shell with
a radius R and the identical cross-sectional area. In thin-walled structures
(that are subject to buckling at low values of effective stresses), an increase in
values of critical stresses is equivalent to an increase in their load carrying
capacity.

4.1. Calculations of isotropic shells built of n segments of cylindrical 
shells (ó = O) subjected to compression 

The calculations have been carried out for shells with 4-18 segments,
whose cross-sections are shown in Fig. 3.
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n=6 

Fig. 3. Cross-section of shells with 6 and 12 segments 

The calculations have been made for the following data: R = 400 mrn, 
L = 800 mm, n= 4+18, t ~ 1 mm, /3 = 0+90°, E = 2 x 105 MPa, v = 0.3. 
Some selected results of these calculations are presented in Table 1 and 
plotted in Figs. 4 and 5. 

Table I. 
Critical stress value for different /3 angle and number of segments n 

~ 
4 6 8 10 12 16 18 

o 98.805 217.795 324.885 411.5775 512.161 699.033 657.336 

7.5 113.293 263.092 379.941 495.237 529.07 635.849 688.793 

15 164.767 298.682 401.596 480.227 628.147 638.128 794.184 

22.5 198.048 319.733 448.753 500.114 644.263 691.131 856.01 

30 226.088 359.779 425.767 556.405 493.89 733.184 663.917 

45 260.974 353.283 401.371 378.631 405.927 422.489 334.302 

60 232.8 236.4 245.3 136.I 261 216 169.4 

75 91.1 79.9 88.9 68.2 76.4 77.9 204.1 

82.5 131.0 97.5 161.3 181.0 146.4 197.8 78.9 

90 298.0 298.0 298.0 298.0 298.0 298.0 298.0 

The calculation results for shells with n 2: 20 are not included in the 
present study as for these shells (especially at smaller values of the angle /J), 
the ratio Lir has not fallen within the range 
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Fig. 4. Critical stress vs. ~ angle for shells with 4-18 segments
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iL i 1.38 < - < 0.57 -r r t 

that holds for the theory of cylindrical shells with a small rise (Volmir, 1967).
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It follows from the conducted computations that for angles f3 > 55° 
(independent of the number of shell segments), values of critical stresses in 
the segment shells under analysis are lower or at most equal to the value of 
critical stress a;,= 297.9 MPa in the ideal cylindrical shell with the radius 
R = 400 mm and the thickness t; = I mm (with the same cross-sectional 
area). Also in the four-segment shell, the values of critical stresses are lower 
than in the whole range of changes in the angle (Fig. 4). Maximum values of 
critical stresses for shells with n ~ 6 increase with an increase in the number 
of shell segments and in practice occur for angles /3 that fall within the range 
20° ~ f3 ~ 30°. A sharp increase in these stresses, in comparison to stresses 
for the ideal cylindrical shell, occurs already for shells with n = 10, for which 
maximum critical stresses are more than twice as high I= 650 MPa) as in the 
ideal cylindrical shell (""' 300 MPa). 

Taking into account the fact that the lower critical stress in the cylindrical 
shells under compression is approximately three times lower than the upper 
critical stress, and that the lower critical stress in the cylindrical panel under 
compression is equal to more than 1/2 of the upper critical stress, it should be 
expected that the load carrying capacity will increase more than 3 times in the 
1 O-segment shell under analysis in comparison to the ideal cylindrical shell. 
Such a high increase in the load carrying capacity is caused by refractions at 
the angle 2/3 that occur where segments contact each other. It can be seen in 
Fig. 3 that, in particular, refractions at the angle 30° ~ 2/3 ~ 60° play a role of 
longitudinal stiffeners and cause an increase both in the critical stresses and 
the load carrying capacity. 

4.2 Analysis of the influence of the angle ~ on the values of critical stresses 
in shell segments 

The computations have been carried out for IO-segment shells charac­ 
terised by the following data: R = 400 mm, L = 800 mrn, n= 10, f3 = 30°, 
8 = 1-10 [deg], t = 0.73-0.82 mm. The results of calculations are shown in 
Fig. 6. 

It follows from this diagram that with an increase in the angle 8, the 
critical stress first decreases slowly (in the range O ~ 8 ~ 5.5°) and next 
(for 8 > 5.5°) decreases quite sharply. Moreover, with a change in the 
angle 8, a number of half-waves of the buckling mode changes along 
the shell length. 

If we treat shell elements with a radius R and a central angle 8 as plate 
elements, then the values of critical stresses vary slightly, and for small angles 
8, they do not change in practice. 
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Fig. 6. Envelope of critical stresses for I O segment shells vs. o angle for different buckling modes

4.3 Influence of the material orthotropy on the stability of shell segments 

The influence of the material orthotropy on the stability of segment shells
has been analysed for shells characterised by the following dimensions:
R = 400 mm, L = 800 mm, a= 30°, 22.5°, 18°, 15° and 11.25°, i.e. for n= 6,
8, 10, 12 and 16 and for fJ = 0°, 15°, 30° and 45°. The remaining quantities
that describe the geometry of shells have been calculated from the formulas:

n r=-+a-fJ 2 

r =sina. R 
siny

a sin r 
t=--.-·t r sma 

where t; = 1 mm is the thickness of the cylindrical shell of the same
cross-sectional area as the segment shells under analysis. The calculations
have been carried out for shells made of an isotropic material and four
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orthotropic materials, whose coefficient of orthotropy is TJ= Ei/E2 and whose
other material properties (Poisson's ratios and the Young modulus) are
presented in Table 2.

Table 2.
Poisson's ratios and the Young the Young modulus for orthotropic materials

TJ=E,!£2 V12 V21 G/£2 

I I 03 0.3 0.3846 
2 1.9797 0.3 0.15192 0.39375 
3 3.2992 03 0.09093 0.40019 
4 7.6045 0.3 0.03945 0.40912 
5 13.7362 0.3 0.02184 0.40659 

The properties of orthotropic materials are quoted after Chandra and
Raju (1973).

The calculated dimensionless values of the critical stresses ą, = ~: are

shown in Table 3 (3a-3e).

Table 3 .
;;-r:-~ '°'.{;i%· t<w:,iltt '-·it/'c' 

..•. u!t;''\;}t?(f: j>d .!i;[llitF,;, "- .. , ... ., .

B=O B = 15 B = 30 B = 45 B = 90 
m o m o m o m o m o

I 22 Il I 15 I 18 I 18 2 15 

2 17 12 18 18 16 23 I 24 IO 17 

3 16 13 15 20 14 25 13 28 8 19 

4 12 16 12 24 li 31 IO 34 7 23 

5 IO 18 IO 28 9 35 8 39 5 26 

2 

3 

4 

5

"" ,. w 
B=O B = 15 B = 30 B = 45 B = 90 

m o m o m o m o m o

I 16 I 20 I 21 I 20 2 15 

20 19 19 26 18 31 I 27 10 17 

17 21 17 30 16 35 I 35 8 19 

13 25 13 36 12 42 li 44 7 23 

Il 28 li 41 10 48 10 51 5 26 
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'-' 

f3=0 f3 = 15 f3 = 30 f3 = 45 

m CJ m CJ m CJ m CJ

1 1 21 1 24 I 28 1 19 

2 17 26 22 34 1 35 1 31 

3 18 28 19 38 17 44 16 45 

4 14 34 14 46 13 53 13 55 

5 12 38 12 53 Il 60 10 62 

lH w,, 
f3=0 f3 = 15 f3 = 30 f3 = 45 

m CJ m CJ m CJ m CJ

1 1 26 1 31 1 25 1 20 

2 23 32 I 39 1 40 1 28 

3 20 35 20 47 19 53 I 39 

4 15 42 15 57 14 64 14 65 

5 13 47 13 65 12 72 10 73 

f3 = o f3 = 15 f3 = 30 f3 = 45 

m CJ m CJ m CJ m CJ

35 32 37 21 

2 26 45 46 46 39 

3 23 49 64 56 53 

4 17 59 19 79 17 85 73 

5 15 67 14 89 14 98 12 95 

For an isotropic material (17 =1), at £2 = 2 x 105 MPa, the results of
calculations are the same as the results included in section 4.1.

In Figs. 7a-7e, a change in values of the dimensionless critical stresses
O'er = O-cri E2 for the shells under analysis as a function of the angle /3 can be
seen. It is easy to read the values of the angle /3 at which maximum values of
critical stresses occur in shells made of a given material. For a shell with the
defined number of segments, critical stresses grow with an increase in the
coefficient of orthotropy 1J (£1 - is the modulus of elasticity of the material
along the axial direction of the shell, that is to say, along the direction of
compression). However, more than a 13-times increase in the coefficient of
orthotropy (modulus £1) causes high but not larger than a 5-times increase in
critical stresses.
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d) n= 12
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Fig. 7. Critical stress vs. j3 angle for orthotropic shells (material properties given in Table 2) with 6, 8, 10, 12
and 16 segments

It can be seen from the diagrams presented in Fig. 8 that critical stresses
for orthotropic shells grow with an increase in the number of shell segments,
in the range of n = 6+ 16 under analysis.

4.4. Multilayered segment shell 

The calculations have been made for a segment shell built in the following
way: 10 cylindrical segments with the radius r = 123.2 mm and the obtuse
angle 2y = 155° and 10 segments with the radius R = 400 mm and the central
angle 8 = 1 °. The remaining dimensions have been assumed as follows:
L = 800 mm, a = 17 .5°, f3 = 30°. The shell wall is built of five layers with the
respective thicknesses: t1 = t5 = 0.06 mm, t2 = t4 = 0.13 mm and the middle
layer t3 = 0.37 mm. All the layers are made of the same orthotropic material
with the coefficient of orthotropy r, = 13.7362, V12 = 0.3, v21 = 0.02184 and
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GIE2 = 0.40659, where £1 is the modulus in the axial direction of the shell
(the direction along which compressive loading acts) in layers 1, 3 and 5,
whereas £1 is the modulus in the circumferential direction and E2 is the
modulus in the axial direction in layers 2 and 4. Thus, this is a shell with the
symmetrical arrangement of layers, in which the material of layers 2 and 4 is
turned through an angle of 90° with respect to the material of layers 1, 3 and 5.
The thickness and arrangement of layers have been selected in such a way as
to make the shell bending rigidity in the axial and circumferential direction
approximately equal, and to make the compression rigidity of the shell in the
axial direction higher than in the circumferential direction (Królak, Kowal­
Michalska, Świniarski, 2002).

a) b)
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Fig. 8. Bar charts of critical stress for orthotropic shells (see Table 2) with 6, 8, 1 O, 12 and 16 segments and
angle 13 equal to 0°, 15°, 30° and 45°

As a result of these calculations, the following values of dimensionless
critical stresses have been obtained:
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a) aa= ~: = 2.667 x 10-3 for the isotropic shell (at the number of half­

waves along the shell length m = 13, £1 = £2 = E); 

b) acr = ~: = 5.564 x 10-3 for the orthotropic single-layer shell with

TJ= E,IE2 = 13.7362 (atm= 8);

c) aer = ~: = 5.556x 10-3 for the orthotropic single-layer shell with

TJ= E2I E, = 13.7362 (atm= 31);

d) aer = ~: = 7.969 x 10-3 for the five-layer shell described above (at

m = 17).

The results presented in points b) and c) refer to single-layer shells made
of the same material turned through an angle of 90°. The values of the critical
stresses in these shells are practically equal.

On the other hand, the critical stress in the five-layer shell is nearly
three times higher than the critical stress in the isotropic shell (at
the same value of the modulus £2) and nearly 1.5 times higher than
the critical stresses in the orthotropic single-layer shells. In the isotropic
shells (see section 4.1), it has been assumed that £2 = £1 = E = 2 x 105

MPa. For this value of £2, the critical stresses in the five-layer shell
would be equal to:

ą, = 15.938 · 102 MPa.

4.5 Shell with a complex cross-section 

The cross-section of the shell under consideration is shown in Fig. 9. The
shell is composed of three shells combined with each other (for instance, by
welding), namely:
- an inner cylindrical shell with the radius Rw-::,;R and the thickness
t, = 0.3 mm;
- a segment (middle) shell with the same dimensions as the shell calculated

in section 4.4, but with the different wall thickness t2 = 0.2 mm;
- an outer cylindrical shell with the radius R2 and the wall thickness
t3 = 0.36 mm.

The thicknesses t1, t2 and t3 have been selected in such a way that the ratio
of the circumference of the respective shell between welds to its thickness is
approximately equal, i.e. b.lt, = const, and the shell cross-sectional area and
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its length L = 800 mm are the same as in the case of all the shells
calculated so far.

Fig. 9. Cross-section of a complex shell

The calculations of critical stresses for the shell under analysis have been
performed with the MES ANSYS version 5.7 software package. Very low
values of the critical stresses ą, = 1.19 · 102 MPa (the stresses that are 2.5
times lower than for the cylindrical shell with the radius R = 400 mm and
t; = 1 mm) have been obtained. As far as buckling is concerned, the outer
shell was the weakest one. The buckling modes of the whole shell and of its
individual elements are shown in Fig. 10.
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a) whole shell b) inner element
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Fig. IO. Buckling modes for elements of complex shell presented in Fig. 9

5. Conclusions 

From the parametric analysis that has been conducted, an influence of
individual geometrical parameters of the cross-section of multilayered shells
on the stability (values of critical stresses) and load carrying capacity of shells
under axial compression can be seen easily.

From the diagrams included in this study, one can see at which values of
geometrical parameters the resistance of shells to buckling increases and at
which values it decreases (at the same cross-sectional area). It is visible that
the profile is very significant as regards the stability.

In the segment shells under consideration, the stability has been strongly
affected by two parameters, namely: the number of segments (angle a) and
the way the segments are combined with each other (angle {J). For
certain angles /3, this combination plays the role of a longitudinal stiffener.
A very small rise of segments (for instance for angles /3 in the range
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70° :S: /3 :S: 80°) causes that the segment shell behaves like a cylindrical shell
with large imperfections, which results in· a decrease in the load carrying
capacity of this shell.

In this study, the arrangement and thickness of orthotropic layers in
multilayered shells (laminates) that is advantageous as regards the stability
(value of critical stress) and strength of the structure have been determined as
well. The general conclusion to be drawn is that the parametric analysis
allows for designing a lightweight multilayered segment shell (column)
characterised by high load carrying capacity in such a way as to exploit the
strength properties of the material most beneficially.

Manuscript received by Editorial Board, January 22, 2003
final version, July 9, 2003.
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Analiza parametryczna stateczności i nośności pryzmatycznych segmentów powłokowych
poddanych ściskaniu

Streszczenie

Praca dotyczy analizy parametrycznej stateczności i nosnosci pryzmatycznych powłok
segmentowych zbudowanych z prostokątnych wycinków powłok walcowych i poddanych ścis­
kaniu. Analizowane są powłoki segmentowe (slupy) D stałej powierzchni przekroju poprzecznego
(ciężarze), przy czym wszystkie uzyskane wyniki porównane są z wynikami uzyskanymi dla
walcowej powłoki o promieniu R i grubości Iw. 
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Najpierw analizowano wpływ parametrów geometrycznych przekroju poprzecznego dla powłok
jednowarstwowych izotropowych i poszukiwano takich kształtów przekroju przy których nośność
była znacznie wyższa niż dla powłoki walcowej.

W następnej kolejności, dla wybranego kształtu powłoki (na ten wybór oprócz większej nośności
mogły mieć wpływ inne czynniki np. łatwość wykonania), analizowano wpływ układu i grubości
ortotropowych warstw powłoki (laminatu) również na stateczność i nośność.

Analiza wykazała, że z tego samego materiału ortotropowego można zaprojektować powlokę
segmentową warstwową o znacznie większej odporności na wyboczenie i o większej nośności
w porównaniu z jednowarstwową powloką walcową ortotropową. Wyniki analizy przedstawiono
w postaci wykresów.


