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Abstract
Considering the low accuracy and low efficiency of the traditional calibration method for base strain sensi-
tivity of accelerometers, a novel base strain sensitivity calibration system with steady harmonic excitation
is proposed. The required cantilever beam for calibration is driven by an electromagnetic exciter to generate
a base strain varying in a steady harmonic pattern. By applying a Wheatstone bridge circuit, the generated
strain with low distortion can be measured. The measurement system with a compensation function can
automatically calibrate the base strain sensitivity. The amplitude linearity and frequency response charac-
teristics of the base strain sensitivity in two accelerometers are obtained experimentally, and the uncertainty
in the results is 2% (𝑘 = 2).
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1. Introduction

The accurate measurement of vibrations is becoming increasingly dependent on the measuring
characteristics of vibration pick-ups. The piezoelectric type accelerometer is widely used in
vibration measurement because of its small size and mass, simple structure, wide bandwidth,
easy signal conditioning and high stability [1,2]. In most cases, the vibration pick-ups are treated
as sensors with ideal characteristics whose output is totally excited by the vibration stimulations.
In other words, the output signals are assumed as a direct response. However, because of the
fabrication and assembly errors [3, 4], adverse environment [5, 6], and improper mounting [7,8],
the response of the vibration pick-ups can contain spurious signals, which are called a spurious
response.

To verify the characteristics of vibration pick-ups, systems and methods designed for the
calibration of direct responses, including frequency response, phase response and nonlinearity,
have been well developed in some countries [1,9,10,12]. However, little attention has been given to
the spurious response, which can be evaluated by temperature dependency, transient temperature
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sensitivity, transverse vibration sensitivity [13], base strain sensitivity, magnetic sensitivity and
sensitivity to mounting torque [14], even if this kind of response could introduce an error signal
more than 5% [15–18].

The base strain sensitivity, considered as a spurious response of a piezoelectric rectilinear
accelerometer, can reflect the error produced by the pick-up when its base is bending. Indeed,
efforts to decrease base strain sensitivity have been made by accelerometer manufacturers by
optimizing the inner structures, but the method used to calibrate base strain sensitivity, which is
defined with a simple calibration method that requires manual operation with a fixed calibration
frequency [19], suffers from low accuracy and low efficiency.

In response to this lack of research, a novel measurement system for base strain sensitivity
with harmonic excitation has been developed. The novelty of the system is obvious. Firstly, it can
generate the base strain accurately from 50 με to 500 με, measured by strain gauges arranged in
a Wheatstone bridge circuit; secondly, the excitation frequency is continuously adjustable from
1 Hz to 6 Hz, making it convenient to obtain the frequency response of the base strain sensitivity;
Finally, the whole calibration process can be automatically finished by the software, decreasing
the probable errors created by manual interference.

2. Design of the base strain sensitivity measurement system

2.1. Overview

In the process of base strain sensitivity calibration, as shown in Fig. 1, the sensor under test
(SUT) should be mounted 40 mm from the clamped end of a steel cantilever beam, which has
a particular shape with a fixed natural frequency close to 4.5 Hz.

1500 mm

40 mm

76
 m

m

Cantilever BeamSUT

Fig. 1. Model of the cantilever beam used for base strain sensitivity calibration; the thickness is 12.5 mm.

The base strain sensitivity 𝑆𝜀 of the SUT is determined by dividing the maximum output error
𝑎max by the reference strain 𝜀 at 250 × 10−6, with the unit m·s−2/με, which can be expressed as

𝑆𝜀 =
𝑎max
𝜀

. (1)

The proposed novel base strain sensitivity measurement system with harmonic excitation is
shown in Fig. 2. Fig. 2a illustrates the principal diagram and constitution, and Fig. 2b illustrates
the general arrangement of the system. The cantilever beam is suspended vertically with an
electromagnetic exciter at the free end, which is driven by a power amplifier providing a steady
harmonic current from 1 Hz to 6 Hz to generate an adjustable base strain reaching 500 με for the
SUT. The strain is measured by strain gauges in a Wheatstone bridge whose output is transmitted
by the circuit conveyor to the controller. The output of the SUT is transmitted to the controller after
amplification by the charge amplifier. Bilateral communication between the calibration software
and the controller is based on TCP/IP. In addition, a monitor accelerometer is mounted at the free
end of the beam, ensuring that the amplitude does not exceed the limitation and aiding to achieve
a compensating function, which will be introduced in detail later.
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Fig. 2. Principle diagram and constitution of the calibration system (a); Prototype of the calibration system (b).
1. Base strain generator, 2. Wheatstone bridge circuit conveyor, 3. Controller, 4. Power amplifier, 5. Calibration software.

2.2. Design of the base strain generator

A sectional view of the base strain generator is shown in Fig. 3. The generator is divided into
a cantilever beam and an electromagnetic exciter circled with a yellow square in dashed lines.
Both air gaps 𝑎 and 𝑏 in the exciter are filled with uniformly distributed magnetic flux density
𝐵, which is produced by the permanent magnets and yokes. A coil is attached to the free end of
the beam, conducting sinusoidal current 𝑖 and offering harmonic excitation. In this way, the strain
near the mounting position of the SUT varies sinusoidally.

Fig. 3. Structure of the base strain generator (sectional view).

Whether the magnetic flux density is uniformly distributed in both air gaps significantly affects
the distortion of the strain waveform in the time domain. In the built prototype, the exact values
of the density, which are in 20 separated positions numbered both from 1 to 10 covering both
whole air gaps, are measured, and the distribution is illustrated in Fig. 4.
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a) b)

Fig. 4. Distribution of the magnetic flux density in air gaps. Distribution in gap 𝑎 (a); distribution in gap 𝑏 (b).

The uniformity 𝜉 of the magnetic flux density 𝐵 in each air gap can be calculated as

𝜉 = 1 −

√√√
1
10

10∑︁
𝑖=1

(
𝐵̄ − 𝐵𝑖

)2

𝐵̄
, (2)

in which 𝐵̄ is the arithmetical average of the 10 tested points. Therefore, the uniformities in each
gap are 𝜉𝑎 = 𝜉𝑏 = 99.3%, which absolutely meet the design requirement.

The principle of the coil driving the cantilever beam is relatively easy to understand. When
conducting a sinusoidal current, part of the coil in the gaps is subjected to Ampere force. The
magnitude of the force 𝐹 can be calculated as

𝐹 = 𝐵𝑙𝑖, (3)

where 𝑙 is the total length of the coil in the air gaps. To ensure that the Ampere force is sufficient
to drive the beam and generate a maximum strain, the length should be appropriate.

2.3. Design of the base strain measurement system with a compensating function

The measurement of the base strain and output of the SUT and the calculation of the base
strain sensitivity are included as a function of the measurement system.

First, the base strain is measured by a conventional but reliable Wheatstone bridge circuit,
which is shown in Fig. 5. The four identical resistors 𝑅1 to 𝑅4 in the circuit are two pairs of strain
gauges, and to measure the base strain each pair is attached to both sides near the SUT but on the
opposite surfaces of the beam. To demonstrate in more detail, when strain gauges 𝑅1 and 𝑅3 are
compressed, 𝑅2 and 𝑅4 are tensioned with the strain at the same amplitude.

According to the characteristics of the circuit, the following condition is used:

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 𝑅. (4)

When
− Δ𝑅1 = Δ𝑅2 = −Δ𝑅3 = Δ𝑅4 = Δ𝑅 (5)
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Fig. 5. Wheatstone bridge circuit for base strain measurement.

occurs, which exactly happens to the four strain gauges when the beam is bending, the output
variation of the circuit Δ𝑢BD can be expressed as

Δ𝑢BD = 𝐸 · Δ𝑅
𝑅
, (6)

where 𝐸 is the constant voltage supplied by the DC power. Moreover, in the strain gauges,

Δ𝑅

𝑅
= 𝐾 · 𝜀, (7)

where 𝐾 is a constant factor and is always satisfied. Therefore, Δ𝑢BD can be finally expressed as

Δ𝑢BD = 𝐸 · 𝐾 · 𝜀. (8)

Therefore, when Δ𝑢BD is measured in root mean square (RMS), the base strain 𝜀 can also be
calculated in RMS.

Second, the output of the SUT can be measured and displayed by combined action of the
charge amplifier, the controller and the calibration software. After compensating against the
vibration introduced by the oscillating cantilever beam described in the following section, the
base strain sensitivity can be automatically calculated and displayed.

2.4. Compensation method against base vibration

When calibrating the base strain sensitivity, the SUT is expected not to vibrate because the
output should be excited by the applied strain only. However, when the free end of the beam
oscillates, except for the rigid clamped end, the rest of the beam vibrates, including the position
where the SUT is mounted. As a result, the total measured acceleration 𝑎total (𝑡) can be expressed as

𝑎total (𝑡) = 𝑎base (𝑡) + 𝑎𝜀 (𝑡), (9)

where 𝑎𝜀 is the error output caused by the base strain and 𝑎base (𝑡) is the actual acceleration of
the SUT.

To solve this problem, another accelerometer is mounted to serve as a monitor near the free
end, as shown in Fig. 6.
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Fig. 6. To compensate for the base vibration, a monitor accelerometer is applied.

When the oscillating amplitude of the free end is small enough compared with the length of
the beam, which actually occurs, the relationship is satisfied as

𝑘0 =
𝑎base (𝑡𝑖)
𝑎free (𝑡𝑖)

, (10)

where 𝑘0 is a constant and 𝑎free (𝑡) is the acceleration of the free end. Index 𝑖 indicates that the
equation is correct at any particular time. Therefore, 𝑘0 can also be expressed as

𝑘0 =
𝑎base𝑚
𝑎free𝑚

, (11)

where the index 𝑚 indicates the amplitude of the value.
The monitor is an integrated electronics piezoelectric (IEPE)-type sensor whose output is in

voltage already converted from charge by its inner circuit. Therefore, 𝑎free𝑚 can be expressed as

𝑎free𝑚 =
𝑢free𝑚
𝑆free

, (12)

where 𝑢free𝑚 and 𝑆free represent the amplitude of the output voltage and sensitivity of the monitor,
respectively. Moreover, 𝑎base𝑚 can be measured by a laser vibrometer.

In conclusion, the error output caused by the base strain can be expressed as

𝑎𝜀 (𝑡) = 𝑎total (𝑡) − 𝑎base (𝑡) =
𝑢total (𝑡)
𝑆base

− 𝑎base𝑚
𝑢free𝑚

· 𝑢free (𝑡), (13)

where 𝑢total and 𝑆base are the output in voltage and the sensitivity of the SUT, respectively.
The output voltages of each sensor are sampled as point series by the controller, and the RMS

of each series can be analyzed by calibration software. The final expression of measured base
strain sensitivity is

𝑆𝜀 =
𝑎𝜀 (𝑡)rms
𝜀(𝑡)rms

= 𝐸 · 𝐾 ·

[
𝑢total (𝑡)
𝑆base

− 𝑎base𝑚
𝑢free𝑚

· 𝑢free (𝑡)
]

rms
Δ𝑢BD (𝑡)rms

, (14)

where the index rms represents the value in RMS.

3. Experimental results

3.1. The waveform results

The strain generated by the generator should be of low distortion, which can be observed by
the output of the Wheatstone bridge. A typical output waveform with 250 μ𝜀 amplitude at 4.5 Hz
with low distortion is shown in Fig. 7.
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Fig. 7. Output waveform of the base strain.

3.2. Base strain sensitivity results

There are two SUTs to be calibrated, which can be marked as Sensor 1 and Sensor 2. Sensor
1 is the product of Brüel & Kjær, Denmark, and the type is 4384, which is used for general
purpose vibration measurements, with the nominal sensitivity 1.0 pC/m·s−2, and nominal base
strain sensitivity 0.002 g/μ𝜀. Sensor 2 is the product of Jiangsu Lianneng Co., Ltd, China, and the
type is CA-YD-109A, which is mainly used to measure low-frequency vibration, with a nominal
sensitivity of 1138.4 pC/m·s−2, and nominal base strain sensitivity of 0.5 g/μ𝜀. The base strain
sensitivity of both Sensor 1 and Sensor 2 are calibrated with the traditional method. The amplitude
linearity characteristics under 4.5 Hz and frequency response characteristics under 250 με of both
SUTs are shown in Fig. 8.

a) b)

Fig. 8. Characteristics of base strain sensitivity from the SUT. Amplitude linearity (a) frequency response (b).

For the amplitude linearity characteristics of the two SUTs, the curve of Sensor 1 levels off
in all experiments at approximately 0.009 m·s−2/μ𝜀. The curve of Sensor 2 shows a dramatic
decrease when the base strain is smaller than 300 μ𝜀, followed by a leveling off at approximately
0.0068 m·s−2/μ𝜀 with a larger base strain applied. This difference between the two SUTs is
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possible because of the different inner structures. Nevertheless, the maximum values are both
smaller than the nominal values.

For the frequency response characteristics, when the excitation frequency is lower than 3 Hz,
the base strain sensitivity of Sensor 1 declines, followed by a significant increase in the frequency
band from 3 Hz to 6 Hz, although the waveform of the output oddly reverses at 3 Hz. The pattern
of Sensor 2 always shows an increase over the whole frequency range. Moreover, similar to the
results in amplitude linearity, the maximum values do not exceed the nominal values.

3.3. Uncertainty analysis

Considering that the components of the base strain sensitivity expressed in equation (14)
are independent, according to the propagation law of uncertainty [20], the combined standard
uncertainty of the base strain sensitivity can be derived as

𝑢rel (𝑆𝜀) =
√︃
𝑢2

rel (𝑎𝜀 rms) + 𝑢2
rel (𝜀rms) , (15)

where 𝑢rel (𝑎𝜀rms) is the relative uncertainty in the RMS error output caused by the base strain
and 𝑢rel (𝜀𝑟𝑚𝑠) is the relative uncertainty in the RMS base strain. The components of the B-class
uncertainty are analyzed in detail as follows:

1. Uncertainty introduced by the measurement of 𝑎𝜀rms. According to equation (13) and the
definition of relative standard uncertainty, 𝑢rel (𝑎𝜀rms) can be expressed as

𝑢rel (𝑎𝜀 rms) =
𝑢 (𝑎𝜀 rms)
𝑎𝜀 rms

=

√︃
𝑢2 (

𝑎total, rms
)
+ 𝑢2 (

𝑎base, rms
)

(𝑎total − 𝑎base)rms
, (16)

where the uncertainties without an index are the standard uncertainties in the relative values.
According to the definition of the RMS, the denominator in equation (16) satisfies the rela-

tionship as

(𝑎total − 𝑎base)2
rms =

1
𝑇

𝑇∫
0

(𝑎total − 𝑎base)2 d 𝑡 = 𝑎2
total, rms + 𝑎

2
base, rms −

2
𝑇

𝑇∫
0

𝑎total · 𝑎base d 𝑡. (17)

In equation (17), 𝑇 is the sampling time. Then, the last item in (17) can be marked as 𝜁 (𝑡),

𝜁 (𝑡) = − 2
𝑇

𝑇∫
0

𝑎total · 𝑎base d 𝑡. (18)

Thus, according to equations (16) and (18), it can be obtained that

𝑢2
rel (𝑎𝜀 rms) =

𝑢2 (
𝑎total, rms

)
+ 𝑢2 (

𝑎base, rms
)

𝑎2
total, rms + 𝑎

2
base, rms + 𝜁 (𝑡)

=

𝑢2
rel

(
𝑎total,rms

)
+ 𝑢2

rel
(
𝑎base,rms

)
·
(
𝑎base,rms

𝑎all,rms

)2

1 +
(
𝑎base,rms

𝑎all,rms

)2
+ 𝜁 (𝑡)
𝑎2

all,rms

. (19)
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For
𝜁 (𝑡)
𝑎2

all, rms
, according to the Cauchy–Schwartz inequality, the following relationship

(
𝜁 (𝑡)

𝑎2
total, rms

)2

=

4
𝑇2

©­«
𝑇∫

0

𝑎total · 𝑎base d 𝑡ª®¬
2

1
𝑇2

©­«
𝑇∫

0

𝑎2
total d 𝑡

ª®¬
2 ≤

4
𝑇∫

0

𝑎2
total d 𝑡 ·

𝑇∫
0

𝑎2
base d 𝑡

©­«
𝑇∫

0

𝑎2
total d 𝑡

ª®¬
2 =

4
𝑇∫

0

𝑎2
base d 𝑡

𝑇∫
0

𝑎2
total d 𝑡

(20)

or ����� 𝜁 (𝑡)
𝑎2

total, rms

����� ≤ 2 ·
𝑎base, rms

𝑎total, rms
(21)

would be satisfied.
Based on the collected data, the ratio on the right of inequality (21) is in the range of 0.01 to

0.1, which can be ignored. Then, equation (19) can be rewritten as

𝑢2
rel (𝑎𝜀 rms) =

𝑢2
rel

(
𝑎total, rms

)
+ 𝑢2

rel
(
𝑎base, rms

)
·
(
𝑎base,rms

𝑎total, rms

)2

1 +
(
𝑎base, rms

𝑎total, rms

)2 . (22)

The RMS of the total response is always larger than that of the response caused by vibration, so

0 <
𝑎base, rms

𝑎total, rms
< 1. (23)

According to equation (13),

𝑢2
rel

(
𝑎total, rms

)
= 𝑢2

rel (𝑢total) + 𝑢2
rel (𝑆base) . (24)

The maximum error of the 𝑢total sampled by the controller is 0.1% and evenly distributed, so

𝑢rel (𝑢total) =
0.1%
√

3
= 0.058% . (25)

For 𝑆base, the relative expanded uncertainty is given as 1% (𝑘 = 2). Thus,

𝑢rel (𝑆base) = 0.5% . (26)

Therefore,
𝑢2

rel
(
𝑎total, rms

)
= 2.533 × 10−5. (27)

The maximum error of the 𝑎base𝑚 measured by the laser vibrometer is 0.5% and evenly
distributed, so

𝑢2
rel

(
𝑎base, rms

)
=

(
0.5%
√

3

)2
= 8.352 × 10−6. (28)

In summary,
𝑢rel (𝑎𝜀 rms) = 0.503% . (29)
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2. Uncertainty introduced by the measurement of base strain 𝜀rms. According to equation (8),
in which the components of 𝜀 are independent, the relative standard uncertainty of the
value can be expressed as

𝑢rel (𝜀rms) =
√︃
𝑢2

rel (𝑢BD) + 𝑢2
rel (𝐸) + 𝑢

2
rel (𝐾) . (30)

The maximum error of 𝑢BD sampled by the controller is 1%, and the maximum error of 𝐸 in
the bridge circuit is 0.05%, meeting the requirement of the stabilization of voltage, which should
be limited within 0.1%. In addition, the maximum error of 𝐾 of the strain gauges is given as 0.5%
and evenly distributed, so

𝑢rel (𝜀rms) =

√︄(
0.1%
√

3

)2
+

(
0.05%
√

3

)2
+

(
0.5%
√

3

)2
= 0.297%. (31)

In summary, the relative standard uncertainty of the calibrated base strain sensitivity can be
expressed as

𝑢rel (𝑆𝜀) =
√︃
𝑢2

rel (𝑎𝜀 rms) + 𝑢2
rel (𝜀rms) = 0.584%. (32)

The coverage factor is two, and the uncertainty (𝑘 = 2) of the base strain sensitivity is less
than 2%.

4. Conclusions

By driving a cantilever beam with an electromagnetic excitor, the base strain can be generated
harmonically between 1 Hz and 6 Hz, from 50 μ𝜀 up to 500 μ𝜀, and both of the frequency and
the strain can be adjusted continuously. The generated strain with low distortion can be measured
with a Wheatstone bridge circuit. The adverse vibration introduced to the SUT can be dismissed
by a particular compensating method. The uncertainty in the calibration results is less than 2%
(𝑘 = 2). With this novel method, a more accurate and efficient calibration can be achieved which
suffers the least from manual interference.

In the future researches, there are two aspects to be improved and explored. Firstly, to prevent
the vibration being introduced to the base of the sensor, a new mechanical structure can be
designed in which the mounting point of the sensor is always static and only the strain will
be applied on the base; secondly, the mechanism of base strain sensitivity can be deduced and
simulated, which makes it possible to reveal the reason why the piezoelectric material causes
spurious signals when bending strain is applied.
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