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SURFACE OF LIMIT STATE IN NONLINEAR MATERIAL AND ITS 
RELATION WITH PLASTICITY CONDITION 

In this work, the author implements concepts and methods of analysis of nonlinear 
elasticity theory in a simplified description of elastic-plastic properties of materials. 
Taking the principle of conservation of energy as the theoretical basis, the author 
formulates a criterion that makes it possible to examine the stability of internal 
equilibrium in deformed material whose nonlinear properties are defined by strain 
energy density function. The formulae allowing for assessment of complex states of 
strain in the aspect of material strength were derived on the assumption of small 
deformation. These formulae can replace mathematical relationships traditionally 
known as strength hypotheses. The example included in the paper presents the 
method of determining, in the space of strain state components, the areas where 
permanent deformation or destruction of material is possible because of strain state 
stability. Characteristic parameters used in the example are obtained in a static 
tensile test on specimen 01· constructional carbon steel of ordinary grade. The results 
of the analysis, based on the formulated strength hypothesis on stability of strain 
state, are compared with those resulting from the Huber's hypothesis on energy of 
non-dilatational strain. 

1. Introduction 

The most widely known and commonly accepted strength hypothesis is the 
Huber's hypothesis on energy of non-dilatational strain. Formulated by 
Maksymilian Tytus Huber in the work "Strain work per unit as a measure of 
effort of material" first published in Lvov in 1904, the hypothesis remains 
superior to any other one till nowadays. According to the hypothesis, the 
amount of non-dilatational strain energy decides on material effort, and 
consequently on its permanent deformation or destruction. The hypothesis has 
been confirmed by experiments, and it proved to be the one that describes actual 
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properties of many materials in a most accurate way. It has been used by design 
engineers in strength analysis of structures since Huber's days [I] till nowadays 
[2, and other sources], although it has never been theoretically proven. The 
creator of the hypothesis, M. T. Huber himself, 27 years after the hypothesis had 
been formulated, wrote in a quarterly report [I] of the Institute of Aviation 
Research (Warsaw, 1930): "Although we can not say that our hypothesis has 
firm theoretical bases, it nevertheless provides, and will provide, important 
benefits in deriving theoretical strength formulae. ( ... ) The superiority of the 
hypothesis over those previously used consists not only in a better consistence 
with experimental results, but also in the simplicity of derivation of the 
formulae in almost all the cases that practically matter". The author confirmed 
then that he was not able to find theoretical validation for his hypothesis, in 
spite of its undeniable advantages. In the cited work, M. T. Huber also quotes 
extreme opinions of some scientists who asserted that theoretical validation of 
strength hypothesis was not possible at all. He wrote [I], among other things, 
that: "W. Voight was then right in uttering the presumption that strength-related 
effects can not be incorporated into a strict theoretical scheme by means of 
parameters characteristic for the material, as it is the case in elasticity theory". 

As it turned out, these pessimistic views fortunately did not prove right. The 
author formulated in his book [6] theoretical bases for a new strength hypothesis 
applicable to arbitrary nonlinear materials. The hypothesis was developed on the 
grounds of a fundamental physical law, the principle of conservation of energy. 
The consequence of it is the criterion of stability of the material subjected to 
strain. It assumes that the loss of stability of internal equilibrium in deformed 
material is the direct cause of damage or destruction of the material. If one 
considers in the analysis also this part of energy that is involved in the 
irreversible process of plastic deformations within the material, then the method 
proposed in [6] can be used for evaluation of surface of limit state of elastic­ 
plastic material. The work also analyses some of more complex aspects of the 
internal equilibrium stability hypothesis connected with the problem's 
mathematical formalism, in phenomenological formulation, in the case of 
material subjected to high strains. Among the conclusions of the work, one can 
find the following statements: 

• The know ledge of material's physical model that g1 ves a relevant 
characterisation of material properties, together with the knowledge of 
material constants, is a sufficient condition for theoretical description of the 
areas where the components of strain state in the body pertain to a critical 
state of deformation in which coherence of the material may be lost. 

• The role of strength hypothesis is played by the assertion that the material is 
in the state that threatens to evoke damage or destruction of material, 
because internal equilibrium in the material is in a critical state meaning the 
loss of stability. 
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• Verification of a detailed strength criterion, in application to a particular 
kind of material, consists in examining the conditions of stability of 
equilibrium state in the material, and applying the obtained results for 
assessment of the criterion. 

On the basis of linear theory of elasticity one can not theoretically prove, 
without introducing additional assumptions, the validity of any strength 
hypothesis. 

The last statement could perhaps justify pessimistic opinions once expressed 
by the author of one of the best strength hypotheses ever created - undeniably 
the one most frequently used in practice by mechanical engineers [2] and 
implemented in numerous contemporary computer programs of strength 
analysis. Nonlinear theory of elasticity, along with the methods of testing of the 
so-called material stability, was created only in the mid-forties, soon before the 
death of the great Polish scientist - Professor Maksymilian Tytus Huber. 

In this work, we introduce the formulae that would enable us to examine 
stability of an arbitrary state of strain in a material of nonlinear characteristics. 
Physical properties of the material will be defined by the function of strain 
energy, under the assumption of small deformation in material, and the 
properties will be predicted based on material's strength. We will also formulate 
mathematical criteria that will facilitate determining the states of strain 
conforming to the necessary conditions that decide whether, for energy reasons, 
plasticization of the material or a rupture would take place. The criteria can be 
applied to such materials like steel or alloys of non-ferrous metals. The formulae 
useful in examining stability of great deformations in materials such as for 
example rubber, and the resulting strength criteria were derived in a previous 
work by the author [6]. The results, obtained on the basis of the formulated 
strength hypothesis concerning the stab i I ity of strain state, wili be i I lustrated by 
a numerical example for the steel St3S, and compared with those obtained on 
the grounds of the Huber's hypothesis of non-dilatational strain energy. 

The aim of this work is to direct reader's attention on the need of searching 
for theoretical validation of strength criteria, including those resulting from 
Huber's hypothesis - the one commonly known, accepted, verified 
experimentally and confirmed in vast areas of application. Intention of the 
author also consists in creating the possibilities of improving strength criteria in 
the case of many materials for which the existing strength criteria give only an 
approximate description of material's properties. Another goal of this study is to 
facilitate the formulation of strength criteria for newly developed composites 
and constructional materials. 

Theoretical substantiation of strength criteria means proving their validity on 
the grounds of fundamental physical laws, such as the principle of conservation 
of energy. The consequence of this principle is the criterion of stability of 
deformed material, described in detai I in Section 2, and used in further part of 

• 



208 TADEUSZ M. WEGNER 

the work. The author emphasises the fact that the structure of correctly 
developed nonlinear models of materials should meet the demands resulting 
from energy conservation conditions. In particular, the areas of stable 
deformation determined on the basis of the model should be consistent with 
similar areas found experimentally in strength tests. In the model applied in this 
work, one takes an additional assumption. It says that, according to the 
hypothesis of internal equilibrium stability [6], the limit state, connected with 
the effect of the loss of stab i I ity, can be identified with the state dangerous for 
the material for the reason of possible destruction. The limit state may be 
determined based on the assumed properties of nonlinear model of material. The 
assumption taken in the quoted numerical example of modelling physical 
properties of St3S steel is that in limit state there exists the possibility of plastic 
flow appearing as a result of slip in layers of material, or the possibility of a 
rupture. In this way, one obtained a physically correct, nonlinear model of 
elastic-plastic properties of the material, theoretically validating the strength 
criteria that have been created on its basis. 

2. Examining stability of internal equilibrium in material 

In examining stability of the state of internal equilibrium in deformed 
material one should determine whether the increase of internal energy in an 
isolated segment of the body, caused by a small, permissible disturbance of its 
state, is equal to the work of the forces acting on the segment in the state of 
equilibrium on displacements caused by this disturbance. If the increase of work 
of forces acting on the isolated segment of the body, on displacements resulting 
from the change in configuration of the segment, is lower than the required 
increase of body's internal energy, then it would mean that it is not possible to 
change configuration of the body without delivering an additional amount of 
energy into it, so that the equilibrium state is stable. This way of thinking is 
adopted in nonlinear elasticity theory [7], in searching for bounds on material 
functions. The postulate of absolute minimum of total energy in an isolated 
segment of deformed body is used in theoretical validation of Coleman-Noll and 
strong ellipticity conditions. These have to ensure correct form of the function 
of strain energy density that defines physical properties of material. The 
conditions were used, among other things, in works [4], [5] in order to 
substantiate generalisation of Mooney's strain energy function for nearly 
incompressible materials. Until recently, nobody has noticed, however, that this 
problem has some wider aspect, and an analogous method can be applied in 
strength analysis of material. For the first time it was done in the work by the 
author [6], who developed an appropriate mathematical formalism and 
formulated the strength hypothesis. The same hypothesis will be used hereunder 
in the analysis of the material strength problem considered in this paper. 

The analysis of stability of internal equilibrium in a material can be reduced 
to examining the sign of second-order variation of strain energy density 
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function. The grounds for this assertion one can find in work [6]. However, for 
the sake of continuity of reasoning, the considerations will be briefly repeated 
here. 

Let internal energy of the body be defined by energy density function W of n
mutually independent quantities e;, where n is equal to the number of degrees of 
freedom of the system. The quantities concerned are for example components of 
strain state. The increment of internal energy due to an arbitrary small change of 
these quantities, óe;, can be found from the formula 

11 aw 8W=I,~e;.
i=J de; 

(2.1) 

In order to keep the body in equilibrium, the increment of work of generalised 
external forces_{;, related to generalised displacements e; on increments of these 
displacements óe;

li 

8L= L,J;8e;
i=l 

(2.2) 

must be equal to the increment of internal energy. Then, the equilibrium 
condition takes the form 

8W =8L (2.3) 
or 

f=ć)W
' de

I 

(2.4) 

Equilibrium is stable when, for any series of increment values of generalised 
displacements (8e

1
,8ec,···,8e11) of which at least one is not zero, the following 

inequality holds: 

(2.5) 

If we expand the left side of inequality (2.5) into a series, and truncate the series 
to second-order terms, the condition takes the form 

8W +_!_8"W > 8L
2 

or, taking into account equilibrium condition (2.3) 

8"W >0 

(2.6) 

(2.7) 

Internal equilibrium is then stable, when second-order variation of strain energy 
density function is positive definite. 

According to the hypothesis of internal equilibrium stability [6], a state of 
deformation does not threaten damage or destruction of the material when 
internal equilibrium in the deformed material is stable. A dangerous state exists 
then in such a point of the body, where internal equilibrium reaches the critical 
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state, what means the loss of stability of equilibrium. For such a state of 
deformation, second-order variation of strain energy density function is not 
positive definite. 

3. Nonlinear model of physical properties of material 

Experimental examination of many materials of great practical usability, 
such as for example steel, iron, nonferrous metals and their alloys, etc., 
confirmed linear elasticity of volumetric strain in a very wide range of stress. 
Non-dilatational strain does not have this property, at least not in such a wide 
range. Then, in the model we intend to develop, we must take into account 
experimentally determined properties of actual materials, measured by strength 
tests. One of the methods of defining physical properties of a material is 
determining the strain energy density as function of invariants of strain or 
components of the state of strain [4, 5 and other references]. 
Let us assume that physical properties of the material are defined by the strain 
energy function in the form of the following sum 

(3. l) 

where energy of volumetric strain is given by the formula 

(F) K o W (E,,E,,EJ= 
2 
(E,+E1+EJ- 

while energy of non-dilatational strain is 

(3.2) 

(3.3) 

where 

() G o , o 3 , , , 
W' (E,,E,,E,, Y,,, Y,7, Y,,) =3[(E, -E,)- + (E1 -E,)- + (E, -E,)- +2(y~, +y;, +y;,)] 

(3.4) 
Material constants ex and f3 are numbers, and W0 is an arbitrarily chosen 
reference value. Besides, ex is a positive number not equal to one, and W0 is a 
physical quantity expressed in the same units of measure as the energy density 
function. In further part of the work we will take W0= 1 MN/m2

. The other 
constants are known from linear theory of elasticity: K - Helmholtz modulus, 
also known as the modulus of volume elasticity, and G - Kirchhoff's modulus, 
also called the modulus of elasticity in shear, or the Larnes constantµ. These 
constants can be related to Young's modulus E and Poisson ratio v by the 
following formulae 

E K=---- 
3(1 -2v) 

E G=--- 
2(1 + v) 

(3.5) 



SURFACE OF LIMIT STATE IN NONLINEAR MATERIAL 211 

In this way we have defined the new model of material of nonlinear properties. 
Strain energy in the material can be expressed in a short form as 

(3.6) 
where 

1J = /3 w;) I-a 
The above function depends on four parameters: 

(3.7) 
a,/3,v,E. When /3 

approaches zero the function converts into the strain energy function of linearly 
elastic material. 

Because internal energy of the body is defined by the energy density function 
W depending on six mutually independent quantities ei - the components of 
strain state, where the index i denotes the number of component of the vector 

e = ( E, , E, , E, , Y.n , y ,., , y ,., ) (3.8) 

then the components of stress state J;, where the index i denotes the number of 
component of the vector 

f = (CY,, CY,, CY,. , 'T_,,-, r_,., , T ,., ) 

can be found from formula (2.4). In this way we obtain 

2G 
CY, = KJI + (I - K)-13-,, . 3 . 

2C 
CY, = KJI + (I -K)-13,, . 3 . 

?C 
CY_= KJI + (I -K)::__13_, . 3 . 

where the invariant of strain state is 

r,, = (I - K)Cyn, 

r,, = (l -1<)Cr,.,, 

(3.9) 

(3.1 O) 

r~, = (1 -1<)Cr.,.,, 

(3. I 1) 

while 
(3. I 2) 

and 
)a-I K=1JO:W1
" • (3. I 3) 

The above formulae will be used in the next section for identification of 
material constants. 

The simple model of nonlinear properties of material can be applied to 
elastic materials and, if we assume that the function of strain energy W given by 
formula (3.6) is a sum of energy of elastic strain and plastic strain, the model 
can also be used to describe elastic-plastic properties of materials under 
monotonic load. For the case of the release of load, one should create a similar 
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model, taking into account the fact that the characteristic of the process is 
determined only by that part of strain energy, which has not been accumulated 
in plastic deformation in the material. Because it was found in experiments that 
the process of the release of load in the material runs according to the linear­ 
elastic model, and in work [6] the author shows that in such a case the loss of 
stability of the material does not take place, then it does not seem necessary to 
develop any analytical formula for the model of the release of load process. 
Therefore, the created nonlinear model can be used as an approximate 
representation of elastic-plastic properties of the material. 

Let us determine now the second-order variation of strain energy density 
function 

, (, (, a1w 
8-w= I,I,--8e;8ej 

;=I j=l Cl e;CI ej 
It is a quadratic form of six variables - components of the vector 

8e = c&,, &,, &0, 8r,,, 8y,,, 8y,.r) 

(3.14) 

(3.15) 

The variation can be expressed in matrix notation, with respect to formula (3.1 ), 
as 

(3.16) 

where elements x;; of the symmetric matrix X of quadratic form, determined 
from the relation 

1 a1w 
\' =---- ·;; Ji.JeJe 

I / 

(3 .17) 

are given by formulae 

2 2 s: 4 -.a 0 
X = I +-X +-x(I -K)(3u -1)--KuV , 

I} 3 3 I} 9 I / 

2 
X;1 =-3'KtJ,e1, 

x = X(I - K)8 - Kee., 
1.f I) I ) 

i,jE {1,2,3}, 

jE {4,5,6}, 

i E {1,2,3}, 

i,jE {4,5,6}. 

(3.18) 

(3.19) 

(3.20) 

One should assume 

r) - r) :; - :: (3.21) 

and take the Lame' s constant and the remaining quantities given by formulae 

vE 1=----­ 
(1+v)(]-2v) 

G 1-2v x=-=-- 1 2v ' 
_ K(CX - ])}cX1 

K = __;_---'-'-- 
W(,) 

(3.22) 

where D;; is the Kronecker delta. 
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Internal equilibrium at a certain point of deformed material is unstable if 
there exist such a non-zero vector óe , given by formula (3.15), for which 

(3.23) 

Evaluation of the state of strain in the material can then be reduced to 
examining the sign of expression (3.16), that is a quadratic form of six variables, 
of symmetrical matrix X. 

According to Sylvester's theorem, the necessary and sufficient condition for 
quadratic form of matrix X to be positive definite is that all principle minors of 
the matrix are positive. It can be symbolically written as 

'i/ det X<') >0 
k ' 

(3.24) 

where symbol k in parentheses indicates that the choice of elements of the 
matrix was made to create a principal minor of rank k of the matrix X. 

Internal equilibrium at a point within the deformed material is then unstable 
when 

:l det X1') ::; o' 
k 

(3.25) 

and the above inequalities determine areas of instability in the space of 
co-ordinates of the components of strain state. 

Let us assume that the directions of co-ordinate axes coincide with principal 
directions of strain field. Then, the vector (3.8) of components of strain state is 

e = (t:1, t:2, t:.,, o, o, O), 
and the matrix of quadratic form can be reduced to the following one 

(3.26) 

X11 X12 X13 o o o 
X12 X22 X2_; o o o 
Xu X2~ X:n o o o 

[x; ;] = o o o X4.j o o 
o o o o x.j.j o 
o o o o o X44 

where 

.\44=X(1-K), 

(3.27) 

(3.28) 

and the remaining non-zero elements of the matrix can be derived from formula 
(3.18). In this case, the conditions (3.25) can be reduced to the following 
inequalities 

r
.\'.11 

det x12 

X1.1 

(3.29) 
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The sufficient condition of instability of internal equilibrium in deformed 
material is that at least one of the above inequalities is satisfied. Using these 
inequalities, one can determine the states of strain for which destruction of the 
material becomes possible. 

Let us ask under what conditions it becomes possible, in terms of energy 
relations, to initiate the effect of plastic flow in the material. Among 
assumptions of plasticity theory, one of the fundamental ones is that in plastic 
deformations only the form of the body can change [3]. Let us assume then that 
the characteristic feature of plastic flow, which is an effect of slip in layers of 
material, is deformation that keeps volume of the material constant. We assume 
then that in the initial phase of the process it runs with constant volume of the 
deformed material. On that assumption we have 

(3.30) 

The postulate (3.30) is not equivalent to the assumption that the material is 
incompressible. We only examine the possibility of taking, by a material of 
arbitrary properties, a disturbed configuration whose characteristic feature is the 
same volume as that in the original configuration. This condition imposes 
bounds on the variables &, , &, , DL of the quadratic form, and decreases by one 

the number of the system degrees of freedom. Then, we can eliminate variable 
DL that depends on the remaining two variables. Let us assume that the 
directions of the system co-ordinates are consistent with principal directions of 
strain. Basing on the trimmed quadratic form (3.16), out of which one of the 
variables was eliminated, we find that the necessary condition of plastic flow is 
satisfied when at least one of the following inequalities holds 

Y11 :::O, det [Y11 
Y12 

Y12 l::; Q 
Yn 

(3.31) 

where 

Y11 = X11 - X13 - X1.1 + X,.1, 
Y11 = X12 - 2x2.1 + X.1.1 · 

(3.32) 

From inequalities (3.31) one can determine the states of strain at which 
plasticization of the material is possible. 

There is some analogy between the presented method of examining stability 
of internal equilibrium in deformed material, and well known Lagrange­ 
Dirichlet theorem concerning stability of the equilibrium state in potential 
systems. In its classical formulation, the theorem applies to the systems whose 
potential energy is a quadratic form of generalised co-ordinates. In the 
considered problem this condition is not satisfied. However, second order 
variation of strain energy density function is a quadratic form, and that fact 
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enables us to formulate stability conditions similar to those resulting from 
Lagrange-Dirichlet theorem. 

The strength criteria introduced in this work, formulated as inequalities 
(3.31) or (3.29), define the states of strain allowing for plasticization or 
destruction of the material, and replace strength hypotheses formulated in a 
traditional way. The latter consisted in defining some function of the state of 
strain or stress components, accepted as a measure of material effort, and 
comparing the function value with a permissible value determined in uniaxial 
tensile tests. There is a difference, however, between the new and the traditional 
formulation. Once we know a physical model of the body, expressed by the 
strain energy function, we no longer need to perform any experiments in order 
to get some supplementary information about the value of measure of material 
effort at which the loss of material coherence could take place. 

4. Numerical example 

The strength conditions, derived in the previous section on the basis of 
hypothesis of internal equilibrium stability, will now be used to determine the 
dangerous areas in the space of strain state components. Danger is meant as a 
threat to material strength, when plastic deformation or permanent destruction 
of material becomes possible. The subject of analysis will be constructional 
carbon steel of ordinary grade, denoted with symbol St3S. The relation between 
the loading force and elongation in the direction of tension axis, determined in 
static tensile test in uniaxial state of stress, was used for identification of 
material constants a, /3, v, and £. The author used for this purpose nonlinear 
relations between the components of stress state and the components of strain 
state in three-axial state of stress. These can be taken from the first column of 
formula (3.1 O) on the assumption CJ1 = CJ0 =O. The values of material constants 

a, /3, v, and £ are chosen in such a way that the values of limit stresses from 
calculations are equal to experimental values, shown in Table 2, and the shape 
of the curve approximating the function of load vs. elongation was such that the 
two curves, theoretical and experimental one, are possibly close. The material 
constants of steel St3S, obtained in this way, are shown in Table I. 

Table I 

Segment ot· tension Material constants for steel St3S 

characteristics C( /3 V E [ MN/m'] 

A 2.3 0.827 0.3 2.05 · 105 

B 1.028 0.827 0.3 6.5 · 105 

The graph of tension for the steel St3S, obtained by approximating physical 
properties of the material with strain energy function (3.1) for the above 
material constants, is presented in Fig. I. 
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Fig. I. Approximation of tension characteristics for steel St3S 

The dotted line in the graph indicates the segment of the characteristics that was 
not approximated, as it pertains to plastic flow of the material. The graph also 
shows the tension trajectory in the space of strain state components, obtained by 
the numerical method. The co-ordinates of characteristic points of the graph are 
included in Table 2. 

Table 2 

E[I 0-'] R [MN/n/] 

Yield point I.SS 237 

Strength limit 11,3 445 

The graph of tension shown in Fig. I clearly shows that for steel St3S there 
exist a distinct onset of yielding (dotted line in graph I) that indicates the 
presence of the effect of slide in layers of material. The course of the process in 
this area is out of scope of this work. Because material properties change above 
the yield point, two different models, called model A and B, must be used for 
the approximation. However, for the materials that do not exhibit any distinct 
onset of yielding, the curve of tension can be approximated with one analytical 
expression, as it was shown in work [6]. 

Finally, let us present the areas of stable strain in the space of strain state 
components. In Fig. 2, elliptically-shaped curves limit the values of material 
strain components for which internal equilibrium in deformed material is stable. 
These were determined based on physical characteristics of the material, 
approximated by model A. The respective set of approximation parameters in 
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Table I is denoted with letter A. Fig. 3 also shows two curves that circumscribe 
the areas where, according to Huber's hypothesis, no risk of plastic flow would 
exist (areas H, and H2). The latter were calculated on the assumption that the 
value of strain energy dangerous for the material is given by formula (3.4) for 
strain components 111 principal directions. The following relations were 
accommodated: 

Fig. 2. Areas of stable internal equilibrium in deformed material 

>-----+------ae----+-- 3 -t------,---;---,-.....-- 

tv1Dclel .A. 2 = [I 
1 

3 

1------,---t----+----+----+2. [10-3]-t----; 
I I 

I 

Fig. 3. Comparison of areas not endangered by plastic flow determined by means of different 
strength hypothesis 
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(4.1) 
Then we have 

(4.2) 

Taking the values v, E from Table I for the model A and E,, = 1,55 -103
, we 

obtain W}'1 = 0.213 MN/m2 
. This value was used to calculate the ellipse H2 in 

Fig. 3. However, if we use the relation 

w<,)= I +v CJ 2 
,. 3E I' 

(4.3) 

analogous to formula (4.2) that follows directly on the expression of non­ 
dilatational strain energy in the function of stress state components, quoted by 
most of the source books on strength of materials, then taking 
CJ,, =f\, =237MN'm2 we obtain W}'l =O.I 19MN/m2

• The latter was used to 
calculate the ellipse H, in Fig. 3. The elliptically-shaped curve denoted by W in 
the same graph was determined on the basis of the hypothesis of internal 
equilibrium stability in deformed material. To calculate this curve, one only 
needs to know the values of material constants defining physical properties of 
the material. Information of any of the physical quantities characterising the 
state of strain or stress in the material, such as, for example, energy of non­ 
dilatational strain, is not necessary in this case. The curve pertains to 
W}') = 0.230 MN/m2 

. One should bear in mind that this is not the whole energy 
of non-dilatational strain, but, in this case, only one of its components in 
formula (3.3). The energy of non-dilatational strain that refers to yield point in 
uniaxial tension equals W}') = 0.202 MN/m2

, due to the assumed approximation 
of physical characteristics of material given by formula (3.1 ). 

Similarly as it was presented in Fig. 3, one can make a comparison between 
the hypothesis of non-dilatational strain energy and the hypothesis of internal 
equilibrium stability for an arbitrary cut in the space of strain state components. 
The relation between the areas determined by both hypotheses would be similar. 

The material strengthens in the process of plastic flow, so that its physical 
characteristics change. In the further part we will approximate these altered 
characteristics with the model B, referring to the set of approximation 
parameters denoted with letter B in Table 1. Fig. 4 presents a juxtaposition of 
the areas of stable strain in the space of strain state components obtained for 
different models of material properties. The components of strain state that lie 
on the edge of the area circumscribed by the elliptically-shaped curve denoted 
with letter B refer to strength limit of steel St3S. The strain component values 
pertaining to the points outside of this area signify the threat of destruction of 
the material. 
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Fig. 4. Comparison of areas of stable strain for models A and B of physical properties of steel St3S 

The lines shown in Figs 5 and 6 limit the areas in the space of strain state 
components where, according to Model B, the danger of material destruction 
does not exist. Additionally, Fig. 6 shows the area that is not endangered by 
plastic flow of the material (due to Model A). 
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Fig. 5. Areas of stable strain of steel St3S where material is not endangered by damage 
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Fig. 6. Areas or stable strain before (Model A), and after exceeding yield point for steel St3S 

The areas of stable strain for steel St3S in a selected cut of the space of strain 
components, before and after exceeding the yield point, are presented in Fig. 7. 
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Fig. 7. Areas of stable deformation of steel St3S 
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S. Concluding remarks 

In this work, the author presented a strength hypothesis of internal 
equilibrium stability in deformed material. The hypothesis is based on the 
premise that the fundamental reason for the existence of conditions involving 
the threat of damage or destruction of material is unstable state of internal 
equilibrium in the material. Evaluation of material strength done by this method 
follows on a theoretical analysis, based on the principle of conservation of 
energy, whose consequence is the criterion of stability of deformed material, 
described in Section 2 and consequently used in further part of the work. 

The considerations were limited to homogenous, continuous, and isotropic 
materials. The nonlinear model of material, used in the analysis, assumes 
linearity of volumetric elasticity. Therefore, mathematical strength criteria 
formulated on this basis refer only to the assumed theoretical model of material. 

The analysis presented in this work is an illustration of the thesis formulated 
earlier by the author [6]. It states that the knowledge of physical model of 
material and material constants adequately representing material's properties is 
a sufficient condition for theoretical determination of the areas where 
components of strain of the body represent the state of strain in which damage 
or destruction of the material could take place. 

In the light of the results of this work, we can assert that the hypothesis of 
internal equilibrium stability confirms rightness, and gives a theoretical 
justification for the Huber's hypothesis, at least for the materials whose 
volumetric elasticity function is linear. At the same time, the comparative 
analysis presented in this work provides experimental confirmation for the 
hypothesis of internal equilibrium stability in the case of material of linear 
volumetric elasticity function. One should also bear in mind that Huber's 
hypothesis has been experimentally proven for various materials, among them 
for steels exhibiting a distinct onset of yielding, like it is in the examined steel 
type St3S. 

The hypothesis of internal equilibrium stability, presented in this work, can 
be applied to materials of arbitrary nonlinear physical properties, including the 
materials whose volumetric elasticity function is not linear. 

The method of simplified analysis based on nonlinear approximation of 
elastic-plastic properties of material, proposed in this work, can be useful in 
practical applications in mechanical engineering. It is especially convenient to 
apply the proposed method of numerical analysis to materials, for which strict, 
experimentally verified strength criteria have not yet been formulated. It refers 
to many new materials, such as polymers. The same method has previously been 
applied to some materials exhibiting big deformations, such as rubber and 
rubber-like materials, as it is described in work [6]. The method can be very 
helpful for design engineers who, because of scarcity of other simple methods, 
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are often bound to use Huber's hypothesis even in the case when they have no
guarantee that properties of material comply with this hypothesis.

It must not be forgotten that the commonly used Huber's hypothesis
incorrectly describes strength characteristics of all constructional composites
under high load in the state close to equal omnidirectional tension. The
phenomenological method of description of materials, proposed in this work,
makes it possible to formulate strength criteria free of the drawback of Huber's
hypothesis. However, this goal could only be reached when nonlinear models of
materials become even more perfect and allow for relevant description of
properties of actual materials.

Manuscript received by Editorial Board, April 06, 1999;
lina! version, June 30, 2000.
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Powierzchnia stanów granicznych materiału o nieliniowych właściwościach
i jej związek z warunkiem plastyczności

Streszczenie

W pracy wykorzystano pojęcia i metody analizy nieliniowej teorii sprężystości do
uproszczonego opisu właściwości sprężysto-plastycznych materiału. Przyjmując jako teoretyczną
podstawę prawo zachowania energii. sformułowano kryterium umożliwiające badanie stateczności
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równowagi wewnętrznej w odkształconym materiale o nieliniowych właściwościach fizycznych
zdefiniowanych funkcją gęstości energii odkształcenia. Założywszy male odkształcenia materiału
wyprowadzono wzory pozwalające na ocenę wytrzymałościową złożonych stanów odkształcenia.
Wzory te zastępują formuły matematyczne tradycyjnie nazywane hipotezami wytrzymałościowymi.
W charakterze przykładu - wykorzystując wielkości charakterystyczne uzyskane w statycznej
próbie rozciągania węglowej stali konstrukcyjnej zwykłej jakości - wyznaczono w przestrzeni
składowych stanu odkształcenia obszary. w których ze względu na stateczność stanu odkształcenia
jest możliwe odkształcenie trwale lub zniszczenie materiału. Wyniki tej analizy bazującej na
sformułowanej wytrzymałościowej hipotezie stateczności stanu odkształcenia porównano z
wynikami uzyskanymi na podstawie hipotezy energii odkształcenia postaciowego Hubera.


