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Preprocessing Large Datasets Using Gaussian Mixture Modelling  
to Improve Prediction Accuracy of Truck Productivity at Mine Sites

The historical datasets at operating mine sites are usually large. Directly applying large datasets to 
build prediction models may lead to inaccurate results. To overcome the real-world challenges, this study 
aimed to handle these large datasets using Gaussian mixture modelling (GMM) for developing a novel and 
accurate prediction model of truck productivity. A large dataset of truck haulage collected at operating mine 
sites was clustered by GMM into three latent classes before the prediction model was built. The labels of 
these latent classes generated a latent variable. Two multiple linear regression (MLR) models were then 
constructed, including the ordinary-MLR (O-MLR) and the hybrid GMM-MLR models. The GMM-MLR 
model incorporated the observed input variables and a latent variable in the form of interaction terms. 
The O-MLR model was the baseline model and did not involve the latent variable. The GMM-MLR 
model performed considerably better than the O-MLR model in predicting truck productivity. The inte-
raction terms quantitatively measured the differences in how the observed input variables affected truck 
productivity in three classes (high, medium, and low truck productivity). The haul distance was the most 
crucial input variable in the GMM-MLR model. This study provides new insights into handling massive 
amounts of data in truck haulage datasets and a more accurate prediction model for truck productivity.

Keywords:	 Oil sands mining; Mine truck productivity; Gaussian mixture model; Latent variable; Pre-
diction accuracy; Relative importance

1.	I ntroduction

Oil sand mining plays a vital role in Canada’s economy [1]. In 2017 alone, it contributed 
CAD$13 billion to the national revenues and created more than 228,000 direct and indirect 
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jobs [2]. In oil sands mining, truck haulage is a dominant means of transporting ores and wastes 
[3,4]. The productivity of truck haulage (or referred to as truck productivity), defined as truck 
payload per unit time in each truck cycle, is directly related to a mine’s overall productivity [5]. 
Therefore, it is of great significance to predict truck productivity, which affects a mine’s produc-
tion, planning, income, and expenditure [5,6].

To predict truck productivity, researchers attempt to establish data-driven prediction models 
based on historical datasets [7]. The datasets may originate from various sources, such as sensor 
networks [8], remote sensing [9], wireless communication [10], a Vital Information Management 
System (VIMS) [11], and Michelin Earthmover Management System (MEMS) [12]. Regardless 
of the source, datasets at mine sites are usually large. For example, Baek and Choi [13] obtained 
two large datasets from limestone quarries, including 16,217 and 16,005 data points, respectively. 
The datasets were used to build prediction models for morning and afternoon ore production over 
two months. Likewise, a dataset collected from oil sand mines in this study was even larger, with 
more than 300,000 data points covering truck haulage information for an entire year.

Large datasets are usually preprocessed by clustering techniques [14,15]. Clustering is 
a data mining technique that assigns each data point into a specific class [16]. In each class, the 
assigned data points share more similarities than those in the other classes [17]. Commonly used 
clustering techniques include k-means [16], hierarchical clustering [18], density-based spatial 
clustering [19], and Gaussian mixture modelling (GMM) [20]. Of these, GMM is the superior 
technique for preprocessing large datasets, showing potential for handling massive amounts of 
data from mine sites. GMM is a probability distribution-based clustering technique that identifies 
latent classes from a large dataset [21]. In GMM, each class is assumed to follow a Gaussian 
distribution. Together, these classes form a mixture of Gaussian distributions, which are also 
known as multi-peak Gaussian distributions [22]. According to the central limit theorem [23], 
large datasets observed in engineering often present multi-peak Gaussian distributions. This ap-
plies to truck haulage data obtained from oil sand mines [24]. For instance, in Fig. 1, the haul 
distance, ranging from 0 to 10 km, is plotted in a column chart. Each range of haul distance falls 
under a density ranging from 0 to 0.4. The density refers to the fraction of a range divided by 
the total size of data. As shown in Fig. 1, the column can either be described by superimposed 
density curves of a single Gaussian distribution (Fig. 1(a)) or a multi-peak Gaussian distribution 
(Fig. 1(b)). The multi-peak Gaussian distribution presents two peaks of haul distance, which 
includes additional information. Relying on these peaks, GMM has the ability to identify latent 
classes [25], thereby increasing model predictability. For example, Lu et al. [26] used GMM to 
identify four classes from multi-peak heating load data and then built prediction models sepa-
rately based on the datasets included in each class. The research showed that the accuracy of 
prediction models was enhanced by at least 20% based on the identification results. Similar to 
the research by Lu et al. [26], Ni et al. [27] obtained large streamflow datasets with multi-peak 
Gaussian distributions and used GMM to divide them into several classes. Each class was then 
fitted with a single model, and the final prediction was a weighted sum of these models. The 
results showed that the proposed model’s accuracy for streamflow was improved by about 11% 
compared with the prediction models built based on the original large datasets. In addition, GMM 
can generate latent variables; the latent variable is defined as the labels of classes, which can be 
involved in modelling to improve prediction accuracy [28,29]. From the above studies, GMM has 
advantages for in-depth data mining with multi-peak Gaussian distributions [30]. Thus, GMM 
may be a more suitable option to improve prediction models because large datasets of truck 
haulage are usually under multi-peak Gaussian distributions. However, according to the current 
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literature, no research has reported the application of GMM to preprocess large datasets obtained 
from mine sites; it is still unknown if GMM can be used to improve the model predictability of 
truck productivity at mine sites. 

To this end, this study was designed to handle large datasets of truck haulage using GMM 
for developing a novel and accurate prediction model of truck productivity. The large dataset had 
303,712 groups of data, which were collected from active oil sands mines in Northern Alberta, 
Canada. GMM was first used to cluster the large dataset. After that, a latent variable was extracted 
to build the prediction model in conjunction with other input variables [31]. This is because the 
multiple linear regression (MLR) method is a computationally efficient tool and can provide 
explicit formulae for engineers [32]. It was adopted to build the prediction models. The main 
contribution of this study was the first application of GMM to preprocess massive amounts of 
data to improve model predictability of truck productivity.

Fig. 1. Data distributions from oil sands mines (using the haul distance as an example). (a) Haul distance is de-
scribed by a single Gaussian distribution; (b) Haul distance is described by a multi-peak Gaussian distribution

2.	 Methodology

Fig. 2 illustrates the flowchart of the overall methodology. A large dataset from the mine data 
management system was split into a training dataset and a testing dataset for model training and 
evaluation. Before the modelling, the training dataset was clustered by GMM into three latent 
classes, and a latent variable was generated by the labels of these classes. Two MLR models were 
then built on the training dataset, including the ordinary-MLR (O-MLR) model and the GMM-
MLR model. The GMM-MLR model was the proposed model for predicting truck productivity, 
incorporating the latent variable. The O-MLR model was the baseline model without involving 
the latent variable. The testing dataset was used to evaluate the performance of two MLR models. 
The performance of each model was quantified by four commonly used parameters in statistics 
[33]: the adjusted R2, the root mean square error (RMSE), the mean absolute error (MAE), and 
the mean absolute percentage error (MAPE). Finally, the Lindeman, Merenda, and Gold (LMG) 
method was selected to determine the relative importance of input variables to the GMM-MLR 
model since LMG is a simple and efficient method when an MLR model contains few input vari-
ables [34]. The abovementioned training process was implemented in RStudio software using 
the R (version 4.1.3) language environment.

https://docs.google.com/document/d/1DUFcTkaLzkX_ZqcNOY9yn0YvCYtT5zLY/edit#heading=h.36os34g
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Fig. 2. Flowchart showing the execution process of methodology

2.1.	 Multiple linear regression (MLR)

MLR is a common statistical technique for building prediction models [32]. It has been 
widely applied in the fields of agriculture [35], environment [36], and energy [37] because of 
its simple structure and efficient calculation [32]. In addition, mining companies often utilise 
MLR to build prediction models because it can provide explicit expressions for engineers to use 
easily [7,24]. MLR obtains the best-fitting line by minimising the square sum of vertical devia-
tions from data points to a fitted line [37]. This line describes the linear relationship between an 
output variable and a set of input variables. Suppose that x = {x1, x2, ..., xM} is the input vector, 
where M is the number of input variables, and y is the output variable. The linear relationship 
can be expressed as follows:

	 0 1 1  m m M My x x x         	 (1)

where β0 is the constant term that denotes the intercept, βm is the regression coefficients linked 
to the mth input variable, and    is the random error term. Equation (1) represents a prediction 
model based on the MLR method. 
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2.2.	G aussian mixture modelling (GMM)

GMM is an unsupervised clustering technique that identifies several latent classes from a data 
population [22]. A set of data points in each class adheres to a specific Gaussian distribution. 
Statistically, GMM generates a mixture model, which is defined as the weighted combination 
of k Gaussians, representing the probability density function of the data population. The descrip-
tion of the mixture model is written as follows [38]:
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where fk (y | x,θk) denotes the probability density function of the kth class; θk is the parameter 
vector, which is defined as (μk, Σk); μk and Σk are the mean vector and the covariance matrix, re-
spectively; the parameter πk is the weight of the kth class, also known as the mixture coefficient, 
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To determine the mixture model, GMM first estimates the parameter set {πk, θk} from all data 
points. This estimation can be conducted using the expectation-maximisation (EM) algorithm to 
maximise log-likelihood (log L) [39]:
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where N is the number of data points. The EM algorithm determines the parameter set {πk, θk} 
through an iterative process, mainly including the E-step and the M-step. In the E-step, data 
points are assigned to a class with the maximum posterior probability [38]. Based on the 
Bayes’ theorem [40], the posterior probability that a data point (xi, yi) belongs to each class  
is given by
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The data point is assigned to the kth class when

	  1, 2, ,
arg max  i ik

k K
 


  	 (5)

where λi represents a set of data points that has the maximum posterior probability, γik. Later, in 
the M-step, with the γik , the parameter set {πk, θk} can be further estimated by the likelihood set-
ting in Equation (3). These two steps are repeated until the maximum log-likelihood is reached. 
As a result, the parameter set can be acquired from the EM process. 

After the parameters set is estimated, GMM starts to determine the optimal number of latent 
classes. In this study, the Bayesian information criterion (BIC) was selected as a metric to opti-
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mise the number because it has been commonly used in engineering and proved to be superior 
to other methods in a rigorous study [41]. The BIC formula is shown below: 

	 2log logBIC L C N    	 (6)

where C means the mixture model complexity. The criterion for the optimal number is to minimise 
the BIC value to achieve a more proper mixture model of the data population [42].

2.3.	 Dataset preparation and preprocessing

The large dataset contained 303,712 groups of data covering a full year of truck haulage 
cycles. Before the prediction models were built, the dataset was randomly and proportionally 
split into training (75%) and testing datasets (25%). Both the training and testing datasets had 
five input variables observed from the mine sites. These five input variables were chosen because 
they have been noted by practising engineers at mine sites and are all associated with truck cycle 
time. They were related to haulage operations, haul routes, and meteorological factors, which 
were also selected with reference to the research by Chanda and Gardiner [7]. The observed in-
put variables included haul distance (x1, km), empty speed (x2, km/h), destination (x3), ambient 
temperature (x4, ℃), and precipitation (x5, mm/h). The first three variables were monitored and 
identified by the installed sensors on trucks. The remaining two variables were obtained from the 
local meteorological observatory [43]. Table 1 shows these five input variables, of which the haul 
distance, empty speed, and ambient temperature were continuous variables. The destination and 
precipitation were categorical variables, which means that they had several distinct categories. 
For example, there were three destinations at the mine sites, denoted as D1, D2, and D3. Fig. 3 
shows the statistical information about these observed input variables (xm) and the output vari-
able (y). In Fig. 3, the superimposed density curves represent the distribution of these variables. 
The continuous variables, including the haul distance, empty speed, and ambient temperature, 
were represented by the skewed Gaussian and multi-peak Gaussian distributions. Remarkably, the 
multi-peak Gaussian distributions shown by the haul distance and ambient temperature indicated 
that the original dataset had a mixture of Gaussians, which provided the rationale for selecting 
GMM to preprocess the dataset [44].

Table 1

The input variables (xm), characteristics and their descriptions

Input variable Unit Type Description

Haul distance (x1) km Continuous Listing haul distance for each cycle from a loading 
area to a dumping area

Empty speed (x2) km/h Continuous Listing running speed of empty truck for each cycle

Destination (x3) — Categorical Listing three destinations of truck haulage:  
D1, D2, and D3

Ambient temperature (x4) ℃ Continuous Listing ambient temperature per hour at the local 
mining area

Precipitation (x5) mm/h Categorical
Listing precipitation per hour at mine sites with three 

categories: no precipitation (P1), 0-1 mm/h (P2),  
and larger than 1 mm/h (P3)
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By preprocessing the training dataset using GMM, several latent classes were identified from 
all data points, and a latent variable was generated by the labels of classes. This latent variable 
was also a categorical variable with several distinct categories; it was in conjunction with other 
observed input variables to establish the GMM-MLR model. As for the testing dataset, the data 
points were grouped into several classes based on the mixture model obtained in GMM. The 
results of the GMM analysis and the number of latent classes will be explained and discussed 
in detail in Section 3.1.

2.4.	 Performance criteria for prediction models

To investigate the effect of GMM on prediction performance, two MLR models were built for 
comparison. One was the GMM-MLR model, which was considered a latent variable generated 
from the GMM analysis. The other was the O-MLR model, serving as the baseline model without 
involving the latent variable. To assess the performance of these two models, four performance 

Fig. 3. The output variable and observed input variables in the training dataset. (a) The output variable (y): 
truck productivity (unit: tph, tonne per hour); (b)-(d) show the histograms of the continuous variables:  

haul distance (x1), empty speed (x2), and ambient temperature (x4); (e)-(f) show the boxplots  
of two categorical variables with three categories: destination (x3) and precipitation (x5)
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parameters were adopted in this study [33]. These parameters were RMSE, MAE, MAPE, and 
the adjusted R2. They are calculated as follows:
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where An is the actual values, indicating the measured truck productivity in the testing dataset; 
Pn is the predicted truck productivity. RMSE shows the standard deviation of the residuals be-
tween actual and predicted values; MAE is used to characterise the absolute error between actual 
and predicted values, while MAPE denotes the relative error [33]. The adjusted R2 is calculated 
based on R2. Both are shown, respectively, as Equation (10)-(11):
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where En is the mean of actual values and M is the number of input variables. Both R2 and the 
adjusted R2 represent the degree to which data points fit a curve, ranging from 0 to 1. The ad-
justed R2 is generally smaller than R2 because input variables unrelated to the output variable 
are screened when calculating the adjusted R2; therefore, the adjusted R2 indicates the goodness 
of fit more accurately than R2 [45]. The prediction model with a higher adjusted R2 and a lower 
RMSE, MAE, and MAPE have better prediction accuracy.

2.5.	T he Lindeman, Merenda, and Gold (LMG) method

To evaluate the contributions of input variables to the proposed GMM-MLR model, a quan-
titative method was introduced to calculate the relative importance of each input variable. This 
method is called the LMG method [46]. It is straightforward and efficient when an MLR model 
contains few input variables [34]. The LMG method can consider all sequences of an input 
variable entering an MLR model. The relative importance of this input variable is calculated by 
averaging the R2 of all possible orderings, which can be determined according to Equation (12):
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1 { ( | )}
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M
   	 (12)

where M ! is the factorial of M; p represents the permutation of input variables before entering xm, 
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and seq{R2(xm| p)} refers to the R2 of the prediction model after entering xm in the permutation p. 
The relative importance of xm is the average value of R2 under all permutations. 

3.	R esults and discussion

3.1.	G MM analysis

In this study, GMM was applied to cluster the training dataset under the principle of minimis-
ing BIC. As a result, the training dataset was clustered into three latent classes, as shown in Fig. 4. 
In Fig. 4(a), taking truck productivity as an example, the number of data points was different in 
each class. The boxplot showed that Class 1 (C1) had the lowest number of data points (6,684), 
while Classes 2 and 3 (C2 and C3) had 119,145 and 101,955 data points, respectively. Q1 and Q3 
were the 25th and 75th percentiles in each class, depicting the distribution interval of data points 
[47]. Fig. 4(b) shows the frequency histogram of truck productivity in each latent class. According 
to the definition of GMM [22], the data points in each latent class are described by a Gaussian 
distribution. The mean values of each Gaussian were around 1,166 tph, 865 tph, and 670 tph. As 
shown in Fig. 4, the training dataset was well partitioned into three latent classes. Amid these 
classes, the value of truck productivity varied significantly, in the order of C1 > C2 > C3. This can 
be known as the high, medium, and low truck productivity at mine sites. This is similar to Ni et 
al. [27]; in their research, the streamflow data were also clustered into three latent classes using 
GMM. A prediction model was then developed for monthly low flow forecasting based on the 
GMM analysis; the R2 of this model was increased from 0.59 to 0.66 compared to the baseline 
model without the GMM analysis. This suggests that implementing GMM may improve the 
model accuracy of truck productivity in this study. 

Fig. 4. Extraction of three latent classes from the training dataset. (a) Boxplots of three classes; (b) Histogram: 
truck productivity corresponds to three latent classes, which are described by Gaussian distributions
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3.2.	E stablishment, interpretation, and comparison  
of prediction models

3.2.1.	O-MLR model

The O-MLR model was a baseline model established on the training dataset without the 
implementation of GMM. The explicit equation of this model can be written as

	

5

0
1

 m m
m

y x 


    	 (13)

where y was the output variable. β0 was the intercept of the equation, and βm was the regression 
coefficients linked to the mth observed input variable (xm). The regression parameters of Equation 
(13) can be seen in Table 2 presents the observed input variables (xm), regression coefficients (βm), 
significance test results (p-values), and intercept (β0). The observed input variables included the 
haul distance (x1), empty speed (x2), destination (x3), ambient temperature (x4), and precipita-
tion (x5). The regression coefficients describe the mathematical relationship between each input 
variable and the output variable [48]. For example, the haul distance's regression coefficient (β1) 
was a negative value (–62.70), indicating that the truck productivity was reduced by 62.70 tph 
when the haul distance increased by 1 km. The same result was found by Schexnayder et al. 
[49]; their data proved that the truck productivity dropped by 374 tph when the haul distance 
rose by 1.3 km. Hence, the truck productivity had a negative relationship with the haul distance. 
The p-values for regression coefficients represent whether these relationships are statistically 
significant [50]. In statistics, if a p-value is smaller than a significance level (usually 0.05), the 
relationship between the input and output variables is significant [51]. As shown in Table 2, 
the relationships between three continuous variables (haul distance, empty speed, and ambient 
temperature) and truck productivity were statistically significant because their p-values were 
less than 0.05. Also, two categorical variables (destination and precipitation) were significantly 
related to truck productivity, except for the second category (D2) of destination, as its p-value 

Table 2

The regression parameters and significance test results for the O-MLR model

Input variable Regression coefficient p-value Significance test
x1 Haul distance β1 –62.70 <2×10–16 Reject
x2 Empty speed β2 4.91 <2×10–16 Reject
x4 Ambient temperature β4 –1.44 <2×10–16 Reject

x3
Destination (D2) β3

–0.57 0.546 Accept
Destination (D3) –11.71 <2×10–16 Reject

x5
Precipitation (P2) β5

–34.31 <2×10–16 Reject
Precipitation (P3) –75.51 <2×10–16 Reject

Intercept β0 900.20 <2×10–16 Reject
Note: If the p-value is less than 0.05, the null hypothesis that x and y are not significantly related will be rejec-
ted; otherwise, it will be accepted. For example, the p-value (0.546) for the second category (D2) of x3 is larger  
than 0.05; as a result, the null hypothesis is accepted.
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(0.546) was larger than 0.05. In short, almost all the input variables had a significant relation-
ship with truck productivity, suggesting the trained O-MLR model can be used to predict truck  
productivity.

3.2.2.	GMM-MLR model (incorporation of a latent variable  
and its interaction terms)

After the implementation of GMM, the training dataset was employed to build the GMM-
MLR model. The explicit expression of this model can be given by 

	

5 5

0 6 6 6 6
1 1

( )m m m m
m m

y x x x x    
 

       	 (14)

where β6 was the regression coefficients of the latent variable (x6), and βm+6 was the regression 
coefficients of interaction terms (xm×x6) between the five observed input variables (xm) and the 
latent variable (x6). Compared with Equation (13), two more terms were incorporated in Equa-
tion (14), including an independent term and a set of interaction terms. The independent term 
was constituted by a latent variable (x6) and its regression coefficient (β6). The latent variable 
was a categorical variable with three categories (C1, C2, and C3), and the GMM analysis showed 
that it was related to the five observed input variables. Hence, a set of interaction terms was 
considered in the GMM-MLR model between the five observed input variables and the latent 
variable. The interaction term refers to the product of two or more input variables in a regression 
equation [52]. For instance, in Equation (14), the haul distance (x1) had an interaction term (x1× x6) 
with the latent variable (x6). 

Table 3 lists the detailed regression parameters of Equation (14), including the input vari-
ables, interaction terms, regression coefficients, p-values, and intercept. As shown in Table 3, 
the GMM-MLR model incorporated the five observed input variables, a latent variable and 
five sets of interaction terms. The regression coefficients in Table 3 will be explained in detail 
in Section 3.2.3. As for the p-values, almost all the input variables and interaction terms had 
a significant relationship with the truck productivity since their p-values were smaller than 0.05. 
Thus, the established GMM-MLR model can also be applied for predicting truck productivity.

Table 3

The regression parameters and significance test results for the GMM-MLR model

Input variable and 
interaction term

Regression
coefficient p-value Significance 

test
x1 Haul distance β1 –105.92 <2×10–16 Reject
x2 Empty speed β2 0.52 4.29×10–5 Reject
x4 Ambient temperature β4 –4.23 <2×10–16 Reject

x3
Destination (D2) β3

–42.20 <2×10–16 Reject
Destination (D3) –40.58 <2×10–16 Reject

x5
Precipitation (P2) β5

–44.28 6.26×10–15 Reject
Precipitation (P3) –71.90 6.58×10–10 Reject
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x6
Latent variable (C2) β6

–643.08 <2×10–16 Reject
Latent variable (C3) –973.95 <2×10–16 Reject

x1×x6
Haul distance × latent variable (C2) β7

8.48 2.28×10–16 Reject
Haul distance × latent variable (C3) 75.91 <2×10–16 Reject

x2× x6
Empty speed × latent variable (C2) β8

9.68 <2×10–16 Reject
Empty speed × latent variable (C3) 4.99 <2×10–16 Reject

x4×x6
Ambient temperature × latent variable (C2) β10

2.22 <2×10–16 Reject
Ambient temperature × latent variable (C3) 3.23 <2×10–16 Reject

x3×x6

Destination (D2) × latent variable (C2)

β9

51.92 <2×10–16 Reject
Destination (D2) × latent variable (C3) 32.95 <2×10–16 Reject
Destination (D3) × latent variable (C2) 41.95 <2×10–16 Reject
Destination (D3) × latent variable (C3) 20.83 6.78×10–13 Reject

x5×x6

Precipitation (P2) × latent variable (C2)

β11

11.65 0.046 Reject
Precipitation (P2) × latent variable (C3) 14.41 0.015 Reject
Precipitation (P3) × latent variable (C2) –4.74 0.690 Accept
Precipitation (P3) × latent variable (C3) 25.21 0.037 Reject

Intercept β0 1,616.21 <2×10–16 Reject
Note: If the p-value is less than 0.05, the null hypothesis that x and y are independent will be rejected; otherwise, 
it will be accepted. For example, the p-value (4.29×10–5) for x1 is less than 0.05; as a result, the null hypothesis 
is rejected.

3.2.3.	Interpretation of interaction terms

The interaction term implies that the effect of an input variable on an outcome depends 
not only on that particular input variable but on other input variables [53]. For instance, in the 
GMM-MLR model, the effect of haul distance on truck productivity depended on both the haul 
distance and the latent variable. Furthermore, the GMM analysis demonstrated that the latent 
variable could represent three classes of truck productivity: C1 (high values), C2 (medium values), 
and C3 (low values). This means that the interaction terms can further characterise the effects of 
the five observed input variables on each class of truck productivity. Also, these effects can be 
quantitatively measured through the regression coefficients of the established GMM-MLR model.

In Table 3, there are 11 sets of regression coefficients. Among them, the regression coef-
ficients (β1 to β5) for each observed input variable (xm) indicated the effect of the input variable 
on the truck productivity belonging to C1. The regression coefficients (β7 to β11) of each interac-
tion term (xm×x6) suggested the effect of the input variable on the truck productivity belonging 
to C2 and C3. As shown in Fig. 5, the haul distance and precipitation were used as examples to 
interpret the regression coefficients. In Fig. 5(a), there were three negative values: –105.92 tph, 
–97.44 tph, and –30.01 tph. Of these values, –105.92 was the β1, indicating that the high truck 
productivity (C1) was reduced by 105.92 tph when the haul distance increased by 1 km. The values 
of –97.44 tph and –30.01 tph were calculated from the sum of the β1 (–105.92) and β7 (8.48 and 
75.91), meaning that the medium (C2) and low (C3) truck productivity decreased by 97.44 tph 
and 30.01 tph when the haul distance rose by 1 km. Likewise, the effects of the precipitation 
(P2 and P3) on three classes of truck productivity are illustrated in Fig. 5(b)-(c). In Fig. 5(b), the 

Table 3. Continued
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high, medium, and low truck productivity were reduced by 44.28 tph, 32.63 tph, and 29.87 tph 
when the precipitation (P2) increased by 1 mm/h. In Fig. 5(c), the effect of the precipitation 
(P3) on the medium truck productivity (C2) was ignored as the p-value of this term was larger 
than 0.05. The high and low truck productivity dropped by 71.90 tph and 46.69 tph, respectively, 
when the precipitation (P3) rose by 1 mm/h. Thus, the interaction terms revealed that the effect of 
each observed input variable on truck productivity was significantly different between the three 
classes. The finding was similar to that in studies by Kyburz et al. [54] and Lunt [55], who were 
interested in the effect of treated time on a radiographic damage score for subjects in an early or 
late treated group. To evaluate the difference between the groups, Kyburz et al. [54] and Lunt 
[55] constituted an interaction term in a regression model. The results proved that the interaction 
term could also measure the different effects between groups.

Fig. 5. The effects of the observed input variables on each class of truck productivity (C1, C2, and C3  
represented the high, medium, and low truck productivity, respectively). (a) The effects of the haul distance.  

(b) The effects of the precipitation (P2). (c) The effects of the precipitation (P3)

3.2.4.	Comparison between O-MLR and GMM-MLR models

Fig. 6 shows the scatterplots of the actual (on the vertical axis) and predicted (on the horizontal 
axis) truck productivity. The y = x is a 45-degree diagonal line. The closer the scatters along the 
y = x line, the better the prediction [56]. As shown in Fig. 6, the scatters generated by the GMM-
MLR model were closer along the line, which means that the GMM-MLR model performed better 
than the O-MLR model. To quantitatively evaluate the performance of the established models, 
four parameters were calculated for each model from the testing dataset. The results are listed in 
Table 4, which shows that the GMM-MLR model was more accurate than the O-MLR model. The 
GMM-MLR model had a lower RMSE, MAE, and MAPE, and a higher adjusted R2, with values 
of 91.87, 72.58, 0.10, and 0.75. Accordingly, these four performance parameters of the O-MLR 
model were 160.27, 124.31, 0.17, and 0.23. In terms of the adjusted R2 alone, the accuracy of 
the GMM-MLR model (the adjusted R2 = 0.75) was three times higher than the O-MLR model 
(the adjusted R2 = 0.23). In other words, the GMM-MLR model performed well in predicting 
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truck productivity. After using GMM to preprocess the large dataset, the model predictability 
was considerably enhanced by incorporating the latent variable and its interaction terms. This 
provides new insights and inspiration for engineers to handle massive amounts of engineering 
data in their future work. Similar findings were also noted in the research by Ho Park et al. [57], 
who incorporated seven input variables and constituted 11 sets of interaction terms in a linear 
regression model for post-event flood waste estimation. The results showed that the adjusted R2 
of the prediction model was increased from 0.36 to 0.59 when the model was added with these 
input variables and interaction terms.

Fig. 6. Scatterplots of the actual truck productivity in the testing dataset and the predicted truck productivity 
generated by the O-MLR and GMM-MLR models. (a) The O-MLR model; (b) The GMM-MLR model

Table 4

Performance evaluation by four parameters for the trained models

Prediction model RMSE MAE MAPE Adjusted R2

GMM-MLR 91.82 72.58 0.10 0.75
O-MLR 160.27 124.31 0.17 0.23

3.3.	R elative importance analysis of observed input variables

In this study, the LMG method was adopted to determine the relative importance of each ob-
served input variable. Fig. 7 shows the relative importance of these observed input variables in the 
GMM-MLR model. The vertical axis represented the five observed input variables; the horizontal 
axis was the relative importance proportion (in percentage) of each one. The relative importance 
for the input variables was ranked as haul distance (54.65%) > empty speed (23.14%) > ambient 
temperature (13.82%) > destination (6.22%) > precipitation (2.18%). Among these variables, the 
haul distance had the highest relative importance, indicating its effect on truck productivity was 
greater than that of other input variables. Cervantes et al. [24] reported that mining companies 
often plotted a fitted line between haul distance and truck productivity because the increase in 
haul distance directly affects the increase in cycle time, thereby reducing truck productivity. 
Similar to the study by Cervantes et al. [24], the results from the relative importance analysis 
also proved that the haul distance was a critical input variable in predicting truck productivity. 
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After the haul distance, the analysis showed that the empty speed had the second-highest rela-
tive importance, with a value of 23.14%. According to Schexnayder et al. [49], the empty speed 
determined the travel time from dumping sites to loading sites, affecting truck productivity. The 
relative importance of the destination was 6.22%, indicating its effect on truck productivity was 
not significant. This is reasonable since the destination cannot directly affect the payload weight 
and cycle time length [58]. The sum of the relative importance of the ambient temperature and 
precipitation was 16.01%, showing that the meteorological factors had a certain contribution to 
the GMM-MLR model. Similar to the research by Sun et al. [59], the prediction accuracy was 
enhanced by 5.13% when considering the effect of meteorological factors. To summarise, the 
observed input variables contributed differently to the GMM-MLR model, with haul distance 
being the most crucial input variable. The relative importance analysis can help mine engineers 
to gain a comprehensive understanding of the real-world influences affecting truck productivity, 
thus providing appropriate suggestions and methods to improve truck productivity.

Fig. 7. The relative importance of the observed input variables in the GMM-MLR model

3.4.	A dvantage, limitation, and future improvement  
of the proposed model

In this study, the GMM-MLR model was the proposed model for predicting truck productiv-
ity. Unlike previous studies [7,13,59], this proposed model not only considered input variables 
observed at mine sites but involved unobserved variables (i.e., latent variables) obtained from 
the GMM analysis. Due to the involvement of latent variables, the model accuracy of truck pro-
ductivity was considerably enhanced (e.g., the R2 was increased from 0.23 to 0.75). Despite its 
better performance, the proposed GMM-MLR model had limitations in this study. Much research 
will be required to further the prediction model. For instance, although GMM has advantages in 
dealing with large datasets with multi-peak Gaussian distributions, it is not the only clustering 

https://docs.google.com/document/d/1DUFcTkaLzkX_ZqcNOY9yn0YvCYtT5zLY/edit#heading=h.3vkm5x4
https://docs.google.com/document/d/1DUFcTkaLzkX_ZqcNOY9yn0YvCYtT5zLY/edit#heading=h.2o52c3y
https://docs.google.com/document/d/1DUFcTkaLzkX_ZqcNOY9yn0YvCYtT5zLY/edit#heading=h.4g2tm30
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technique [60]. Previous studies have shown that clustering techniques such as k-means and fuzzy 
c-means improved model accuracy [56,61]. A comparative study of clustering techniques may be 
helpful to improve prediction models. In addition, more input variables, such as tire temperature, 
wind speed, and elevation, can be considered in the future to build prediction models. Accord-
ing to Ma et al. [62], high tire temperature may cause rubber failure, affecting truck speed and 
cycle time. Likewise, wind speed and elevation over the haul route may impact truck speed and 
the driver’s vision [7,59]. However, these parameters are not included in the currently proposed 
model. Furthermore, the modelling approach used in this study was the MLR method, whilst 
more robust algorithms, such as support vector machine [63], random forest [64], and artificial 
neural network [65], can also provide accurate prediction models. In the future, these algorithms 
will be used to increase model predictability.

4.	C onclusions

This study aimed to handle large datasets of truck haulage at mine sites using Gaussian 
mixture modelling (GMM) for developing a novel and accurate prediction model of truck pro-
ductivity based on multiple linear regression (MLR). The main conclusions are listed below:

(1)	G MM significantly improved the predictability of the truck productivity prediction 
model by preprocessing large truck haulage datasets. For example, the adjusted R2 of 
the ordinary-MLR (O-MLR) model was only 0.23, whereas the GMM-MLR improved 
the predictability more than three times, with an adjusted R2 of 0.75. This information 
can provide new insights and inspiration for engineers to deal with massive amounts 
of engineering data in their future work.

(2)	I nteraction terms quantitatively measured the significant differences in the effect of an 
observed input variable on truck productivity between classes. For instance, when the 
haul distance increased by 1 km, the high (Class 1), medium (Class 2), and low (Class 3) 
truck productivity dropped by 105.92 tph, 97.44 tph, and 30.01 tph, respectively. Hence, 
the effect of the haul distance on high truck productivity was more significant than that 
on medium and low truck productivity, showing the significant differences between the 
classes revealed by the interaction terms.

(3)	 Among the observed input variables, the haul distance was the most crucial input variable 
of the GMM-MLR model. The relative importance of the haul distance was 54.65%, 
which was higher than that of the empty speed (23.14%), destination (6.22%), ambient 
temperature (13.82%), and precipitation (2.18%). The relative importance analysis helps 
mine engineers to gain a comprehensive understanding of the real-world influences 
affecting truck productivity, thus providing appropriate suggestions and methods to 
improve truck productivity.

(4)	 The GMM-MLR model with higher accuracy is expressed as an explicit and straight-
forward equation, which can help mine engineers predict truck productivity at mine 
sites.
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