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Abstract
Nondestructive and contactless online approaches for detecting defects in polymer films are
of significant interest in manufacturing. This paper develops vision-based quality metrics for
detecting the defects of width consistency, film edge straightness, and specks in a polymeric
film production process. The three metrics are calculated from an online low-cost grayscale
camera positioned over the moving film before the final collection roller and can be imple-
mented in real-time to monitor the film manufacturing for process and quality control. The
objective metrics are calibrated to correlate with an expert ranking of test samples, and re-
sults show that they can be used to detect defects and measure the quality of polymer films
with satisfactory accuracy.
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Introduction

The market need for polymeric films is enormous
and is continually growing in a wide variety of ap-
plications in food and merchandise packaging, carrier
bags, as well as sensor technology in several biolog-
ical and chemical fields (Film Blowing, 2023, John-
son, 2009). Various technologies are utilized to fab-
ricate polymeric films with melt extrusion processes
being the most dominant in industrial applications
(Siemann, 2005; Callister & Rethwisch, 2011; Yu et
al., 2004; National Research Council, 1994). Extrud-
ers, rotating screws, heated barrels, and dies are the
main components that constitute such processes. High
and low density polyethylene (HDPE and LDPE) and
polypropylene are the most commonly used polymers
in the production of polymer films (Alcan & Allaf,
2017; Gosselin et al., 2009) films made from polymer
blends are also used. In film blow molding, a poly-
meric tube is extruded through a die. Compressed air
is then blown into the tube, causing it to inflate into
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a bubble-like shape. The bubble is then pulled axially
into a nozzle, creating a thin cylindrical film (Belloli
et al., 2012).

Production systems necessitate increasing product
performance as well as increased quality control dur-
ing production (Ren et al., 2022; Wang et al., 2018).
The quality of a polymer film can be determined by
inspecting continuous variables such as mechanical
properties (such as tensile and tear strengths), op-
tical properties (such as haze and luminous transmit-
tance) (ASTM, 1995; ASTM D1922-15, 2020), and
crystalline structure (Ajji et al., 2006). Since these
assessments can be time-consuming and destructive,
they are usually performed offline on a very small sam-
ple cut from the produced film (Gosselin et al., 2009;
Łukasik & Stachowiak, 2020). Alternatively, since de-
fects can have a significant impact on the quality of
polymeric products, attribute-based defect detection
is used to evaluate the quality of polymers (Altarazi,
2018; Shen et al., 2022). Practically, defect detection
is a proven method for reducing the negative impact
of product defects (Ravimal et al., 2020). In conse-
quence, several machine-vision online techniques for
inspecting polymeric film quality control and defect
detection were presented.

Pratt et al. presented a machine vision inspection
system for detecting defects in transparent lenses,
glass and plastic sheets (Pratt & Warner, 2000). This
system detects microdefects (streaks, inclusions, air
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bubbles, grooves, cracks, etc.), and uses multiple-line
scan charge-coupled device (CCD) cameras and LED
light sources. For multi-layer polymer films which nor-
mally experience interfacial instabilities during their
production, Michaeli et al. (2009) presented a struc-
tured backlight illumination approach with an image
processing algorithm to detect these special types of
defects. The system mainly consisted of a light source,
a CCD line scan camera, and a 1D filter; was tested
online and achieved 90% defects’ detectability.

Dominey and Goeckel (2003) described a real-
time-imaging film-analyzer system utilizing a cam-
era and a high-frequency fluorescent light source. Im-
ages with defects were recorded and processed using
image processing software, henceforth; defects were
classified based on their size and intensity. Johnson
(2009) developed a roll-feed imaging system to de-
tect defects in polymer electrolyte membranes used
for fuel cells. Detected defects include holes, thin-
ning, bubbles, and gels. Additionally, the system clas-
sifies detected defects via neural networks and sug-
gests adjustments to the manufacturing process pa-
rameters. To detect small-localized defects, Gosselin
et al. (2009) proposed a visible-near-infrared (VIS-
NIR) hyperspectral-imaging sensor for online moni-
toring of the LDPE/polystyrene film blend produced
by extrusion blowing. By implementing multiresolu-
tion multivariate image analysis, the VIS-NIR sensor
was able to clarify two factors affecting the film’s me-
chanical properties: film ingredients composition and
the stretching effect caused by pull rollers.

Miliūnas et al. (2017) expanded the nondestructive
defects’ identification of single and multilayered poly-
meric films, using the method of projection moiré.
Tolba and Raafat (2015) adopted single scale and
multiscale structural similarity index, as image visual
quality measures, to allocate and inspect defects of
flat surfaces including polymer films. The approach
proposed a novel algorithm that measures the similar-
ity of images of successive windows of a scanned film.
The experimental results of the approach resulted in
outstanding defect detection with an accuracy higher
than 99%. Van Drongelen et al. (2014) integrated in
situ X-ray with the extrusion process to study the
structure development of LDPE. Accordingly, the de-
velopment of film crystallinity and crystal structure
in the bubble was determined.

Arguably, nondestructive online approaches for de-
tecting defects in polymer films are of significant inter-
est (Luo et al., 2014; Dong et al., 2015). By avoiding
the subjectivity and delay of a human-based inspec-
tion procedure or offline examination, it lowers inspec-
tion costs and improves film quality (Johnson, 2009;
Tolba & Raafat, 2015). On the other side, whether

compared to spectral, infrared, or X-ray imaging, an
optical camera solution with real-time image process-
ing has become a practical low-cost option.

As a result, the presented vision-based defect de-
tection quality control approach aims to advance the
nondestructive online detection of defects in poly-
mer films, by employing an industrial inspection
grade camera with integrated real-time simple and
fast grayscale image processing steps (Rawashdeh et
al., 2018). Extrusion-blown HDPE films are used to
demonstrate the proposed approach. The presented
image processing steps can be expanded for online
control of film production parameters. For example,
detecting the change in extruder temperature, de-
tecting specks on the manufactured film, sensing the
change in the process roller speeds, and detecting the
inconsistencies in film width. In general, online quality
control could instantly identify defects; hence reduce
materials and energy waste.

Extrusion-blow molding

The extrusion-blow molding process for polymer
film is illustrated in (Fig. 1). The process begins with
the preparation of a mixture of the resin and the nec-
essary additives such as copolymers, fillers, lubricants,
etc., which are required to control the properties of
the film. The mixture is fed into the extruder barrel
where it is melted, mixed and conveyed under contin-
uous pressure to a thin, round die slot. The extrudate
exits into the atmosphere as a thin-walled, continu-
ous blown tube. Next, and through nip pull rollers,
the tube is rapidly drawn up. At the same time, the
air ring blows cool air upward, which solidifies the
tube and expands it laterally into a sausage-shaped

Fig. 1. Extrusion blow molding with inspection camera
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bubble. The air pressure and the axial tension of the
rollers cause the film extrudate to expand axially. Nor-
mally, a cage is used to control the diameter of the
bubble. As the bubble enters the nip rollers it is con-
tracted into a flat tube and then continues to cool as it
moves out of the contraction tower and is rolled onto
a take-up roll. More details about the extrusion blow
molding process can be found in literature and online
(Film Blowing, 2023; Belloli et al., 2012; Altarazi et
al., 2019).

The inspection camera, described in more detail
in the Experiments section, is installed towards the
end of the process, before the film collection roller. A
backlight is used to illuminate the film moving under-
neath the camera. The quality of the film is directly
impacted by components of the mixture, their pellet
sizes and percentages, preprocessing temperature, and
many other material-based factors (Khan et al., 2014).
The most common defects of polymer films observed
in industry are listed in (Table 1) with their causes.
This paper describes image processing algorithms to
quantify the first three defects from a grayscale im-
age frame of the film, i.e. Width Consistency, Edge
Straightness, and Specks.

Table 1
Common defects in extruded blown polymer film and pos-
sible causes (Westlake Chemical, 2023; Alcan et al., 2017)

Film Defect Potential Causes

Uneven film
width

Faulty roller, too high or variable
drawn up stress, bubble pumping
or breathing, air leakage from the

bubble.

Irregular film
edge

Uneven roller cross-sections,
variable drawn up stress.

Unwanted specks Dirty die, non-homogenic resin.

Low gloss; High
haze

Poor resin quality, improper
melting temperature, improper
mixing in extruder, improper

cooling.

Port lines Dirty die, low temperature for
melting, die too cold or too hot.

Scratches Dirty die or cooling cage.

To control the produced film, several parameters
based on geometric characteristics of the film can be
tuned. These parameters can be adjusted based on
calculated metrics of defect severity or conversely, film
quality. Operational parameters can also significantly
affect the properties. Frequently, the following dimen-
sionless parameters are considered (Wellstead et al.,
1998): (1) the draw ratio, defines as the ratio of the

nip roller pulling speed to initial film velocity; (2) the
blow up ratio, which is the ratio of the diameter of
the bubble to the diameter of the circular die; (3) the
frost line height defined as the height above the circu-
lar die where the molten polymer solidifies; and (4) the
thickness ratio defined as the ratio of die slit to bub-
ble thickness. The pulling speed and cooling rate of
the bubble affect the thermomechanical transforma-
tions of the polymer in the bubble which, in conse-
quence, affects its physical properties (Belloli et al.,
2012; Wellstead et al., 1998). Additionally, the chemi-
cal properties can be manipulated through regulating
the thermal exchange in the bubble, which also affects
the width and thickness of the bubble in association
with the rollers and cage constraints.

Experiments

Theis section summarizes the experimental details
of the adopted extrusion blow film (HDPE film) and
the image film-monitoring camera and lighting sys-
tem. In the current extrusion blow molding study, four
main material types commonly used in HDPE film
production were considered. They are virgin HDPE
resin, recycled HDPE, powder coated calcium car-
bonate (CaCO3) filler with two different particle sizes
(6 and 12 microns) and a copolymer. These solid in-
gredients were properly dosed and dry mixed using
a mechanical mixer to produce homogeneous blends.
The mixture was then extruded in a single-screw ex-
truder. Finally, the film blowing device coupled with
the extruder was used to produce the tubular film.
Detailed information about the applied process has
been published previously (Altarazi et al., 2019). The
statistical method of mixture design was used to de-
sign the experiments for the production of the HDPE
film (Altarazi & Allaf, 2017). The parameters of the
blend ingredients and processing variables were in-
cluded. The ranges of values for the parameters were
chosen to cover a wide range of variations in the prop-
erties of the HDPE film produced. The composite con-
stituents were recognized as the percentage of virgin
HDPE, recycled HDPE, CaCO3, and the copolymer.
The processing variables identified were the CaCO3

mean particle size, the temperatures of the extruder
heaters, extruder mixing speed, and bubble drawn up
speed. The complete mixture design resulted in 86 ex-
perimental combination designs. Approximately 20-30
m of film was produced for each combination wherein
image samples were implemented.

The visual inspection system consists of a five
megapixel grayscale camera and a diffused white light
source placed behind the moving HDPE film. The
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camera and back-light are mounted towards the end
of the production process before the film collection
roller, as shown in (Fig. 1). This creates a back-light
film view with visible edges and density as shown in
(Fig. 2a). The camera is located 50 cm above the film,
and the light source about 30 cm below it. This corre-
sponds to a special resolution in the images, of around
11 pixels/mm. In order to inspect the moving HDPE
film, the rate of pictures does not have to be high,
since the process parameters do not change abruptly.
An image frame capture and its processing for metric
calculation can be performed at one-minute intervals.

(a)

(b)

Fig. 2. Preprocessing of film image frame: (a) ROI;
(b) subtracted non-uniform backlight intensity

Defect detection: quality metrics
approach

To quantify overall, multi-dimensional quality of
blown film production, it is necessary to numeri-
cally measure the severity of various defects, including
these in (Table 1), and then develop an algorithm to
combine these multiple scores, i. e. dimensions. Such
an approach would be computationally and physically
expensive, and may not be required by a production
process that simply monitors single-dimensional qual-

ity combination algorithm. This work aims to define
simple image processing-based metrics that can be
used for single variate quality monitoring, primarily
as an accept-reject type metric.

The underlying processing steps of the algorithms
are introduced for three quality metrics that are asso-
ciated with the defects of Width Consistency (WC),
Edge Straightness (ES), and Specks. Initially, the im-
age frame is prepared and enhanced. The captured
image frame is processed into a grayscale region of
interest (ROI) as shown in (Fig. 2a). In this image,
the top and bottom edges of the film have enhanced
contrast to enhance detection of film edge points. The
points are used to calculate the first two metrics. In
addition, the non-uniform backlight illumination, as
shown in (Fig. 2b) is subtracted.

Part 1: Width Consistency metric

An important defect that degrades blown polymer
film quality is uneven film width. As the blown film
moves through the process several mechanical varia-
tions can cause this defect, including variable tension
on the film, faulty rollers that are not perfectly cylin-
drical, or irregular bubble air pressure. To calculate
the quality degradation due to this defect, we develop
the Width Consistency metric. This metric has a dy-
namic range from 0 to 100, where 100 indicates zero
width variation.

The percentage of the Width Consistency is calcu-
lated using the absolute difference between slopes of
two lines which are fit to upper and lower edges, as
shown in (1).

WC = 100× (1− |US− LS|) (1)

where US and LS are the slopes of fitted lines to the
upper and lower edges, respectively. Note that if the
absolute difference between the two slopes is greater
than 1, the width consistency metric will be negative;
however, this case would mean that the edges have
45 degrees of divergence, which is far below the ac-
ceptable, and a physically improbable, outcome. To
illustrate the image processing steps, the upper and
lower edge lines fitting are shown in (Fig. 3), and are
based on about 1500 edge pixels each. These are based
on the Sample 1 image shown in (Fig. 1a). There it is
evident that the upper film edge has a slight positive
slope US, and the lower edge has a more prominent
negative slope LS. If the two slopes were similar, the
absolute difference would be small, and hence the WC
metric in (1) would result in a value close to 100.

The upper and lower slopes US and LS are cal-
culated using image processing on the captured
grayscale image frame, such as the one in (Fig. 2a).
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(a)

(b)

Fig. 3. Linear fit to film edge points: (a) upper edge;
(b) lower edge

To find the US, horizontal edge detection is performed
in the upper half of the frame. This operation yields
a set of edge point x and y coordinates, or image col-
umn and row indices. Next, a line is fit to this set of
points, yielding the slope value, US. The LS is found
similarly, by fitting a line to the horizontal edge pixels
in the lower half of the frame image.

Part 2: Edge Straightness metric

While the film may have good Width Consistency,
it could suffer from non-straight, i.e., irregular edges.
This can be caused by uneven roller cross-sections in-
ducing process speed and tension variability, or un-
even film thickness caused by non-homogeneous mix-
ing of extruded ingredients. Based on the same lin-
ear fits to upper and lower film edge pixels shown
in (Fig. 3), we develop a quality metric to measure

quality of Edge Straightness utilizing the fitting er-
ror. When the film has perfectly straight edges, the
ES metric returns a value of 100, as (2) shows:

ES = 100× RSU× RSL (2)

where RSU and RSL are the R-squared goodness of
line-fit measured for the upper and lower sample film
edges, respectively. This value equals unity if the edge
is perfectly straight and the line fit error is zero. If
there is an error, the R-squared goodness value will
be positive and less than unity.

Part 3: Specks metric

Specks are grains of hard material that appear in
the blown film. They can result from a nonhomoge-
neous resin mixture entering the extrusion process,
or a dirty ring die. Quantifying the number of specks
on a sample image is more processing intensive than
the WC and ES metrics, because blob detection is
required on the two-dimensional image region. The
following is an explanation of the image processing
steps required to count the number of quality degrad-
ing specks visible on the film.

Starting with the sample image, such as shown in
(Fig. 4a), the first step is to choose a new rectangu-
lar ROI inside the upper and lower edges to enable
blob detection. This region of interest is shown in
(Fig. 4a) after: subtraction of background lighting as
in (Fig. 2b); image noise removal through morpholog-
ical opening; noise image smoothing though blurring;
binarization to a black and white image in (Fig. 4b).
The Specks’ visibility is now enhanced and shown
as white pixels on a black background. The subfig-
ure shows a relatively long area of detected folding of
the film, which must be subtracted. Through manual
tuning, it is possible to isolate the Specks from other
objects in the binary image by performing blob de-
tection and counting the number of blobs, i. e. Specks
that have a boundary length between 10 and 40 pixels.
This tuning depends on the camera resolution and
distance from the inspected film. (Fig. 4c) shows the
isolated Specks in the sample image from (Fig. 4a).
The Specks Metric (SM) is calculated using (3):

SM = round

[
100×

(
K

K +No. of Specks

)]
(3)

where Specks are blobs with boundary lengths be-
tween 40 and 10 pixels, and the constant K = 200.
The value of K is chosen such that SM = 50 when
200 Specks are detected.
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(a)

(b)

(c)

Fig. 4. Speck detection in a sample image frame: (a) origi-
nal ROI before lighting correction; (b) binary image high-
lighting objects after dilation noise removal; (c) detected

Speck boundaries of desired size

Metric correlation

The 86 experiments described in the Experiments
section were carried out, and ten film sample images
with defects were used for metric development and
manual inspection. The large number of production
parameter combinations is necessary to cover all pos-
sible defect scenarios. The samples, shown in (Fig. 5),
are labeled as S1, through S10, and show varying de-
grees of defects, i.e. the three defects of interest, WC,
ES, and SM. For example, S4 has a severe width in-
consistency, S5 shows a large amount of specks, and
S1 has poor edge straightness.

In order to develop the quantitative (objective)
metrics in tune with the subjective (qualitative) ob-
served quality, the first step is to rank sample qual-
ity subjectively by experts for each defect type. This
is achieved by taking one sample, then focusing on
the first defect type while comparing this sample to
the other samples sequentially. This creates a subjec-
tive ranking of defect severity mimicking a customer’s
opinion regarding each of the three developed quality
metrics.

The three proposed quantitative metrics should
rank the samples under study the same way an ex-
pert observer or customer would, i. e. the apparent
defect severity. This calibration is discussed in detail
later in this section. In this work, four experts collec-
tively agreed on ranking the same physical samples
three times, once for each defect under study. It is
somewhat challenging to ignore the multi-dimensional
aspect of film quality. (Table 2) shows this subjective
expert ranking of ten samples for each defect. The
reader may verify the ranking by visually comparing
the samples. Compared to the other samples for exam-
ple, S7 has the best width consistency, but the worst
edge straightness, as well as an unacceptable large
amount of specks.

The asterisks in (Table 2) label the threshold after
which the defect is too severe to be acceptable in the
end product film. These three thresholds can be seen
again in (Table 3), but here the objective calculated
metric scores are shown for each of the three defects.
For example, a WC or ES score below 98 means the
sample is of poor quality and must be rejected, or the
control process has to adapt to reduce the defect. Sim-
ilarly, a Specks score less than 68 means the sample
is of poor quality in regards to the amount of specks
present.

The asterisks in (Table 2) label the threshold after
which the defect is too severe to be acceptable in the
end product film. These three thresholds can be seen
again in Table 3, but here the objective calculated
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S1 S6

S2 S7

S3 S8

S4 S9

S5 S10

Fig. 5. Images of 10 test samples analyzed for defects

metric scores are shown for each of the three defects.
For example, a WC or ES score below 98 means the
sample is of poor quality and must be rejected, or the
control process has to adapt to reduce the defect. Sim-

Table 2
Subjective (expert) ranking of the 10 test samples by
severity of defect; sample numbers shown. An acceptabil-

ity threshold is marked with an asterisk

Subjective
Quality

WC ES SM

Highest 7 10 9

. 2 5 2

. 10 4* 1

. 9 1 10

. 8 8 8*

. 3* 6 6

. 5 3 4

. 6 2 3

. 1 9 7

Lowest 4 7 5

Table 3
Objective quality metrics for 10 test samples per proposed
algorithms; quality scores shown. An acceptability thresh-

old is marked with an asterisk

Sample # WC ES SM

1 92 95 92

2 99 79 91

3 98* 81 60

4 89 98* 67

5 95 96 39

6 95 82 69

7 98 67 55

8 99 87 68*

9 98 70 96

10 99 97 71

ilarly, a Specks score less than 68 means the sample
is of poor quality in regards to the amount of specks
present. To show the correlation between the subjec-
tive expert rankings and the objective quality metric
scores, the data in Table 2 and Table 3 is presented
on two dimensional plots in Fig. 6. On the vertical
axes, the metric scores are indicated from low to high.
On the horizontal axes, the samples are ranked from
high quality to low. A color bar indicates three levels
of quality, good (green), medium (yellow), and poor
(red).

The graphs show a nearly monotonically decreas-
ing trend, proving that the objective score correlated
to the subjective rankings. To increase the utility of
the developed metrics, a color code is introduced on
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Fig. 6. Correlation between objective quality metric score
(on the y-axis) and subjective expert ranking from high to
low quality (on the x-axis) of polymer film samples. Point
labels are Sample Numbers. The color bar indicates film

quality: good (green); medium (yellow); poor (red)

the metric value, i. e. the vertical axis. Green is the
range of acceptable scores which ranges from the max-
imum 100 down to the “worst” acceptable sample.
Conversely, Red is the reject range which reaches from
the score of the first rejected sample score down to
zero. A medium-quality range is defined between the
scores of the last accepted and the first rejected sam-
ples. The developed objective metric scores in (Ta-
ble 3) are graphically represented again in (Fig. 7) as
bar plots. The plot shows how the defects are appar-
ently independent from each other. For example, S5
has a poor SM score, but relatively high scores for
EC and ES. This indicates that the defect causes are
also independent as discussed earlier. The bar plot
colors indicate the metrics’ quality decision, i. e. ac-
cept (green) or reject (red). The only sample with all
three accepted measures is sample S10.
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Fig. 7. Bar plot of objective metrics from (Table 3) of three
defect types for samples. Color indicates the metric based

quality decision: green (accept) and red (reject)

Given the independence and defects in terms of
process control variables, the developed metrics in
this work are one-dimensional defect detectors, rather
than an overall judgment of quality, which is a func-
tion of many other defects, not examined here, and
would need a more expensive system. These metrics
serve as an accept-reject signal and can be logically
AND-ed together to stop the process if one is a logic
zero, i. e. falls below the acceptance threshold.
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Metric range and variability

The three developed metrics are shown to correlate
with expert rankings of test samples, which are pre-
sumably related to customer preference, as well. It is
important to define the range of the metric outputs
and their variability. Based on the defined ranges of
quality for each metric in (Fig. 6), we can define the
range and variability of each metric, given the test
set. Table 4 summarized these.

Table 4
Key descriptive statistics of metric values in each quality

level: good (green); medium (yellow); poor (red)

Statistic WC ES SM

Green Range (100, 98) (100, 95) (100, 68)

Green Mean 99 97.5 84

Green Std. Dev. 0.55 1.92 13.11

Green CV 0.56% 1.97% 15.61%

Yellow Range (98, 95) (95, 87) (68, 60)

Red Range (95, 0) (87, 0) (60, 0)

Red Mean 47.5 43.5 30

Red Std. Dev. 2.87 7.63 10.97

Red CV 6.04% 17.54% 36.57%

The accept (green) and reject (red) categories have
a low Coefficient of Variation, i. e. the ratio of stan-
dard deviation over the mean, of around 15%. In com-
parison to published methods discussed in the intro-
duction, which use labeled defects (by experts) as
ground truth to assess algorithm performance, the
work presented here scores the severity of three types
of film defects based on expert ranking, i. e. calibra-

tion. A comparison of presented methods is provided
in Table 5.

Conclusions

This paper presents three vision-based objective
quality metrics for detecting polymer film defects.
Namely, width consistency, edge straightness, and
specks. The metrics are correlated to an expert rank-
ing of defect severity for each defect. The results show
that the objective metrics are correlated to expert
ranking, and thus can be used to measure the quality
of polymer films. The camera-based image process-
ing algorithm is computationally simple and lends it-
self to real-time product quality monitoring and as
an input to a control system that can alleviate the
quality degradation of the film production process in
real-time, assuming there are appropriate actuation
mechanisms to change the production parameters of
the running process.
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