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Spherical fuzzy power partitioned Maclaurin
Symmetric Mean Operators and their application
in Multiple Attribute Group Decision Making

Huiyuan ZHANG, Qiang CAI and Guiwu WEI

Spherical fuzzy sets (SFSs) provide more free space for decision makers (DMs) to express
preference information from four aspects: approval, objection, abstention and refusal. The par-
titioned Maclaurin symmetric mean (PMSM) operator is an effective information fusion tool,
which can fully capture the interrelationships among any multiple attributes in the same block
whereas attributes in different block are unrelated. Therefore, in this paper, we first extend PMSM
operator to spherical fuzzy environment and develop spherical fuzzy PMSM (SFPMSM) oper-
ator as well as spherical fuzzy weighted PMSM (SFWPMSM) operator. Meanwhile, we discuss
some properties and special cases of these two operators. To diminish the impact of extreme
evaluation values on decision-making results, then we integrate power average (PA) operator
and PMSM operator to further develop spherical fuzzy power PMSM (SFPPMSM) operator
and spherical fuzzy weighted power PMSM (SFWPPMSM) operator and also investigate their
desirable properties. Subsequently, a new multiple attribute group decision making (MAGDM)
method is established based on SFWPPMSM operator under spherical fuzzy environment. Fi-
nally, two numerical examples are used to illustrate the proposed method, and comparative
analysis with the existing methods to further testy the validity and superiority of the proposed
method.

Key words: spherical fuzzy sets, partitioned Maclaurin symmetric mean operator, power
average operator, multiple attribute group decision making
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1. Introduction

MAGDM is an important part of decision theory, which is to evaluate the alter-
native through a group of DMs on the premise of considering multiple attributes
to get the optimal alternative. However, in the face of increasingly complex
decision-making environment and uncertainty of evaluation information, how to
effectively obtain attribute information is an important challenge for MAGDM.
Thus Zadeh [1] proposed fuzzy sets (FSs) to reflect the fuzziness of things by
defining membership degree (MD) function. Subsequently, Atanassov [2] pro-
posed intuitionistic FSs (IFSs) on the basis of FSs. IFSs could describe things
more accurately by adding non-membership degree (N-MD), which have been
broadly used in many ways [3–10]. Nonetheless, IFSs also had some problems.
For example, they required that the sum of MD and N-MD did not exceed 1,
which limited the expression of DMs. To overcome above problem, Yager [11]
proposed Pythagorean FSs (PyFSs) which satisfied that the sum of squares of
MD and N-MD was no more than 1 and provided a wider range of MD and
N-MD. However, abstinence degree (AD) depended on MD and N-MD in IFSs
and PyFSs, which leaded to many unsatisfactory results. To do so, Cuong [12]
presented picture fuzzy sets (PFSs) which utilized three indices (MD 𝑀 (𝑠), N-
MD 𝑁 (𝑠), AD 𝐼 (𝑠)) with the condition 0 ¬ 𝑀 (𝑠) + 𝑁 (𝑠) + 𝐼 (𝑠) ¬ 1. Obviously,
PFSs were more reasonable than IFSs and PyFSs for dealing with ambiguous
information. So far, the concept of PFSs has been widely used in many multiple
attribute decision-making (MADM) problems [13–19].
Whereas in many cases, DMs tend to encounter situation which is invalid to

use PFSs for example 𝑀 (𝑠) + 𝑁 (𝑠) + 𝐼 (𝑠) > 1. In such situation, a new type of
FSs called SFSs were proposed by Mahmood, Ullah, Khan and Jan [20]. SFSs
could not only express the attitude of DMs towards things from four aspects
(yes, no, abstain, refusal), but also satisfy 0 ¬ 𝑀2(𝑠) + 𝑁2(𝑠) + 𝐼2(𝑠) ¬ 1,
which provided DMs with expansive space of information expression. There-
fore, SFSs were better at capturing the fuzziness of things. Since SFSs were
put forward, they have attracted the attention of many researchers. Ali [21] pro-
posed a new score function based on CRITIC-MARCOS approach under SFSs.
Dogan [22] designed spherical fuzzy AHP and sensitivity analysis for process
mining technology selection. Fernandez-Martinez and Sanchez-Lozano [23] uti-
lized SFSs to evaluate near-earth asteroid deflection techniques. Peng and Li [24]
extended combined compromise solution approach in SFSs for IIoT industry
evaluation. Zhang, Wei and Chen [25] designed spherical fuzzy CPT-MABAC
method for green supplier selection. Seyfi-Shishavan, Gundogdu, Donyatalab,
Farrokhizadeh and Kahraman [26] developed bi-objective linear assignment ap-
proach on basis of SFSs on insurance options selection. Zhang, Wei andWei [27]
presented spherical fuzzy TOPSIS approach based on cumulative prospect theory
(CPT) for solving residential location issue. Wei, Wang, Lu, Wu and Wei [28]
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proposed similarity measures of SFSs by cosine function for MAGDM issues.
Oztaysi, Onar, Gundogdu and Kahraman [29] used spherical fuzzy AHP-VIKOR
approach for choosing ad position. Zhang, Wei and Chen [30] designed GRA
method based on CPT in spherical fuzzy environment for emergency supplies
supplier selection. Aydogdu and Gul [31] designed a novel entropy proposition
of SFSs to MADM.
In decision system, aggregation operators (AOs) occupy a vital position in

information fusion. Recently, numerous AOs have been developed by researchers
to aggregate spherical fuzzy information. For example, Ashraf, Abdullah, Mah-
mood, Ghani andMahmood [32] proposed spherical weighted averaging aggrega-
tion (SFNWAA) operator and spherical weighted geometric aggregation (SFN-
WGA) operator. Gundogdu and Kahraman [33] developed spherical weighted
arithmetic mean (SWAM) and spherical weighted geometric mean (SWGM) op-
erators. Donyatalab, Farokhizadeh, Garmroodi and Shishavan [34] introduced
Harmonic mean AOs in spherical fuzzy environment. Ashraf, Abdullah and
Mahmood [35] presented spherical fuzzy Dombi AOs for MADGD problems.
Sindhu, Rashid and Kashif [36] established Hamy mean AOs of SFSs. Zhang,
Wei and Chen [37] proposed spherical fuzzy Dombi power Heronian mean AOs
for MAGDM issues. Ashraf, Abdullah and Aslam [38] put forward symmet-
ric sum AOs for spherical fuzzy information, Farrokhizadeh, Seyfi Shishavan,
Donyatalab, Kutlu Gündoğdu and Kahraman [39] designed spherical fuzzy Bon-
ferroni mean (SFBM) AOs to MADM. However, most aforementioned operators
are based on algebraic product and algebraic sum. In addition, these operators
fail to model this situation where attributes are divided into some partitions and
multiple attributes exist the interrelationships in each partition. As an extension
of Maclaurin symmetric mean (MSM) [40] operator, PMSM [41] operator can
not only reflect the relationship between attributes, but also capture the inter-
relationships among any multiple attributes in each category. The advantages
of PMSM operator in information fusion have been elaborated in many liter-
atures [42–45]. In view of these, in order to fuse spherical fuzzy information
more effectively, we extend PMSM operator to spherical fuzzy environment and
present SFPMSM as well as SFWPMSM operators. Meanwhile, we investigate
some properties and special cases of these two operators. To minish the influ-
ence of extreme values on results in the evaluation process, then we integrate PA
operator and PMSM operator to further develop SFPPMSM operator as well as
SFWPPMSM operator and discuss some desirable properties of the developed
operators. Whereafter, we establish a novel MAGDM approach by SFWPPMSM
operator for settling spherical fuzzy uncertain problems. Eventually, we testify
the availability and superiority of the established approach with existing ap-
proaches.
The motivation of this paper: SFSs can provide DMs with more free space to

express preference information. At present, most spherical fuzzy AOs can only
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capture the relationship between two attribute values. As an effective informa-
tion aggregation tool, PMSM operator can not only reflect the interrelationships
between multiple attribute values but also capture the interrelationships among
any multiple attribute values in each category. Thus, in order to better carry out
information fusion, we extend PMSM operator to SFSs and present SFPMSM
operator and SFWPMSM operator. Meanwhile, we investigate some properties
and special cases of SFPMSM and SFWPMSM operators. In addition, consider-
ing the impact of extreme data on results in the evaluation process, we embed PA
into PMSM operator to further develop SFPPMSM operator and SFWPPMSM
operator. Then we design a new MAGDM method based on SFWPPMSM oper-
ator for settling spherical fuzzy uncertain problems. Finally, the availability and
superiority for the designed approach are certified via comparative analysis with
existing methods.
The main contributions of this article are: (1) to extend PMSM operator

to SFSs and develop SFPMSM operator and SFWPMSM operator. Meanwhile,
some properties and special cases of SFPMSM and SFWPMSM operators are
researched; (2) to integrate PA operator and PMSM operator and further de-
velop SFPPMSM operator as well as SFWPPMSM operator. Meanwhile, some
desirable properties of these two operators are discussed; (3) to establish a new
MAGDM approach based on SFWPPMSM operator to settle uncertain problems;
(4) to utilize numerical examples to illustrate the established approach and use
comparative analysis by existing approaches to demonstrate the feasibility and
superiority for the established approach.
To do this, the remainders of this article are constructed as following: Part two

briefly reviews some basic knowledge of SFSs and definitions of PMSM and PA
operators. Part three develops SFPMSM and SFWPMSM operators and investi-
gates some properties and special cases of these two operators. Part four integrates
PA and PMSM operator to develop SFPPMSM and SFWPPMSM operators. Part
five establishes a novel spherical fuzzy MAGDM method by SFWPPMSM op-
erator. Part six provides numerical examples to certify the established method
and gives a comparative analysis to illustrate the superiority of the established
method. At last, we briefly summarize this article.

2. Preliminaries

2.1. SFSs

Definition 1 [20]. The SFS ®̄Θ of the universe of discourse ®̄𝐹 is defined as:

®̄Θ =

{〈 ®̄𝑓 , (
®̄𝜇 ®̄Θ(

®̄𝑓 ), ®̄𝜋 ®̄Θ

( ®̄𝑓 ) , ®̄𝜐 ®̄Θ

( ®̄𝑓 )) �� ®̄𝑓 ∈ ®̄𝐹
〉}

, (1)
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where ®̄𝜇 ®̄Θ :
®̄𝐹 → [0, 1], ®̄𝜋 ®̄Θ :

®̄𝐹 → [0, 1], ®̄𝜐 ®̄Θ :
®̄𝐹 → [0, 1] are MD of ®̄𝑓 to

®̄Θ, AD of ®̄𝑓 to ®̄Θ and N-MD of ®̄𝑓 to ®̄Θ respectively. Also ®̄𝜇 ®̄Θ, ®̄𝜋 ®̄Θ, ®̄𝜐 ®̄Θ meet the

conditions: ∀ ®̄𝑓 ∈ ®̄𝐹, 0 ¬ ®̄𝜇2®̄Θ
( ®̄𝑓 ) + ®̄𝜋2®̄Θ

( ®̄𝑓 ) + ®̄𝜐2®̄Θ
( ®̄𝑓 ) ¬ 1. In addition, ®̄𝜏®̄Θ(

®̄𝑓 ) =√︂
1 − ®̄𝜇2®̄Θ

( ®̄𝑓 ) − ®̄𝜋2®̄Θ
( ®̄𝑓 ) − ®̄𝜐2®̄Θ

( ®̄𝑓 ) denotes the refusal degree.

The triple component ®̄Θ =

(
®̄𝜇 ®̄Θ(

®̄𝑓 ), ®̄𝜋 ®̄Θ(
®̄𝑓 ), ®̄𝜐 ®̄Θ(

®̄𝑓 )
)

is said to spherical fuzzy

number (SFN), which is denoted by ®̄Θ = ( ®̄𝜇, ®̄𝜋, ®̄𝜐), satisfying ®̄𝜇, ®̄𝜋, ®̄𝜐 ∈ [0, 1] and
0 ¬ ®̄𝜇2 + ®̄𝜋2 + ®̄𝜐2 ¬ 1.

Definition 2 [46]. Suppose there are three SFNs, ®̄Θ = ( ®̄𝜇, ®̄𝜋, ®̄𝜐), ®̄Θ1 =

( ®̄𝜇1, ®̄𝜋1, ®̄𝜐1) and ®̄Θ2 = ( ®̄𝜇2, ®̄𝜋2, ®̄𝜐2) respectively, then:

i.
( ®̄Θ)𝑐

=

(
®̄𝜐, ®̄𝜋, ®̄𝜇

)
, (2)

ii. ®̄Θ1 ⊕ ®̄Θ2 =
((

®̄𝜇21 + ®̄𝜇22 − ®̄𝜇21 ®̄𝜇
2
2

)1/2
, ®̄𝜋1 ®̄𝜋2, ®̄𝜐1 ®̄𝜐2

)
, (3)

iii. ®̄Θ1 ⊗ ®̄Θ2 =
(
®̄𝜇1 ®̄𝜇2,

(
®̄𝜋21 + ®̄𝜋22 − ®̄𝜋21 ®̄𝜋

2
2

)1/2
,

(
®̄𝜐21 + ®̄𝜐22 − ®̄𝜐21 ®̄𝜐

2
2

)1/2)
, (4)

iv. 𝛿 · ®̄Θ =

((
1 −

(
1 − ®̄𝜇2

)𝛿)1/2
, ®̄𝜋𝛿, ®̄𝜐𝛿

)
, 𝛿 > 0, (5)

v. ®̄Θ𝛿 =

(
®̄𝜇𝛿,

(
1 −

(
1 − ®̄𝜋2

)𝛿)1/2
,

(
1 −

(
1 − ®̄𝜐2

)𝛿)1/2)
, 𝛿 > 0. (6)

Obviously, the above operations have the following rules:

(1) ®̄Θ1 ⊕ ®̄Θ2 = ®̄Θ2 ⊕ ®̄Θ1 ;

(2) ®̄Θ1 ⊗ ®̄Θ2 = ®̄Θ2 ⊗ ®̄Θ1 ;

(3) 𝛿( ®̄Θ1 ⊕ ®̄Θ2) = 𝛿 ®̄Θ1 ⊕ 𝛿 ®̄Θ2, 𝛿 > 0;

(4) (𝛿1 ®̄Θ ⊕ 𝛿2
®̄Θ) = (𝛿1 + 𝛿2) ®̄Θ, 𝛿1, 𝛿2 > 0;

(5) ®̄Θ𝛿1 ⊗ ®̄Θ𝛿2 = ®̄Θ𝛿1+𝛿2 , 𝛿1, 𝛿2 > 0;

(6) ®̄Θ𝛿
1 ⊗

®̄Θ𝛿
2 = ( ®̄Θ1 ⊗ ®̄Θ2)𝛿, 𝛿 > 0.
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Definition 3 [32]. Let ®̄Θ1 = ( ®̄𝜇1, ®̄𝜋1, ®̄𝜐1), ®̄Θ2 = ( ®̄𝜇2, ®̄𝜋2, ®̄𝜐2) are two SFNs, the
score function 𝑆 𝑓 ( ®̄Θ1) and accuracy function 𝐴 𝑓 ( ®̄Θ1) are given as:

𝑆 𝑓 ( ®̄Θ1) =

(
2 + ®̄𝜇1 − ®̄𝜋1 − ®̄𝜐1

)
3

, 𝑆 𝑓 ( ®̄Θ1) ∈ [0, 1], (7)

𝐴 𝑓 ( ®̄Θ1) = ®̄𝜇1 − ®̄𝜐1 , 𝐴 𝑓 ( ®̄Θ1) ∈ [0, 1] . (8)

And, they have the following comparison rules:

1. If 𝑆 𝑓 ( ®̄Θ1) < 𝑆 𝑓 ( ®̄Θ2), then ®̄Θ1 < ®̄Θ2;

2. If 𝑆 𝑓 ( ®̄Θ1) = 𝑆 𝑓 ( ®̄Θ2) and 𝐴 𝑓 ( ®̄Θ1) < 𝐴 𝑓 ( ®̄Θ2), then ®̄Θ1 < ®̄Θ2;

3. If 𝑆 𝑓 ( ®̄Θ1) = 𝑆 𝑓 ( ®̄Θ2) and 𝐴 𝑓 ( ®̄Θ1) = 𝐴 𝑓 ( ®̄Θ2), then ®̄Θ1 = ®̄Θ2.

Definition 4 [46]. Let ®̄Θ1 = ( ®̄𝜇1, ®̄𝜋1, ®̄𝜐1) and ®̄Θ2 = ( ®̄𝜇2, ®̄𝜋2, ®̄𝜐2) are two SFNs
respectively, the normalized Hamming distance between ®̄Θ1 and ®̄Θ2 is given as:

𝐷𝑖𝑠 = ( ®̄Θ1, ®̄Θ2) =
1
3

(��� ®̄𝜇21 − ®̄𝜇22
��� + ��� ®̄𝜋21 − ®̄𝜋22

��� + ��� ®̄𝜐21 − ®̄𝜐22
���) (9)

2.2. PMSM operators

Definition 5 [41]. Let ®̄𝐴 = { ®̄𝛾1, ®̄𝛾2, · · · , ®̄𝛾𝑞} be a set of nonnegative real numbers,
which are divided into 𝑒 different partitions ®̄𝑌1, ®̄𝑌2, . . . , ®̄𝑌𝑒 with ®̄𝑌𝜂 ∩ ®̄𝑌𝑥 = Ø and⋃𝑒

𝑏=1
®̄𝑌𝑏 = ®̄𝐴, then PMSM operator is defined as following:

𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,...,𝑔𝑒)
(
®̄𝛾1, ®̄𝛾2, · · · , ®̄𝛾𝑞

)

=
1
𝑒

©­­­­­­«
𝑒∑︁

𝑏=1

©­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
∑︁

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏∏
𝑥=1

®̄𝛾𝜂𝑥

ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

, (10)

where | ®̄𝑌𝑏 | is the cardinality of ®̄𝑌𝑏 (𝑏 = 1, 2, · · · , 𝑒) and
𝑒∑︁

𝑏=1
| ®̄𝑌𝑏 | = 𝑞, 𝑔𝑏 is the

parameter in the partition ®̄𝑌𝑏 and 𝑔𝑏 = 1, 2, · · · , | ®̄𝑌𝑏 |. (𝜂1, 𝜂2, . . . , 𝜂𝑔𝑏 ) traverses
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all the 𝑔𝑏-tuple combination of (1, 2, . . . , | ®̄𝑌𝑏 |), and 𝐶
𝑔𝑏

| ®̄𝑌𝑏 |
represents the binomial

coefficient satisfying 𝐶
𝑔𝑏

| ®̄𝑌𝑏 |
=

| ®̄𝑌𝑏 |!
𝑔𝑏!( | ®̄𝑌𝑏 | − 𝑔𝑏)!

.

In addition, the PMSM operator has the following properties:
(1) 𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒) (0, 0, · · · , 0) = 0, 𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)

(
®̄𝛾, ®̄𝛾, · · · , ®̄𝛾

)
= ®̄𝛾.

(2) 𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
(
®̄𝛾1, ®̄𝛾2, · · · , ®̄𝛾𝑞

)
¬ 𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒) ®̄𝛾′1, ®̄𝛾

′
2, · · · , ®̄𝛾

′
𝑞,

if ®̄𝛾𝜂 ¬ ®̄𝛾′𝜂 for all 𝜂.
(3) min

𝜂
{ ®̄𝛾𝜂} ¬ 𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,···𝑔𝑒)

(
®̄𝛾1, ®̄𝛾2, · · · , ®̄𝛾𝑞

)
¬ max

𝜂
{ ®̄𝛾𝜂}.

2.3. PA operator

In 2001, PA operator was developed by Yager [47]. As a nonlinear weighted
average aggregation operator, which integrates information by considering the
support degree between input values and effectively reduces the impact of extreme
values on assessment results.

Definition 6 [47]. Let ®̄𝛾𝜂 (𝜂 = 1, 2, . . . , 𝑞) be a set of nonnegative real numbers,
PA operator is defined as following:

𝑃𝐴( ®̄𝛾1, ®̄𝛾2, · · · , ®̄𝛾𝑞) =

𝑞∑︁
𝜂=1

(1 + 𝑇 ( ®̄𝛾𝜂)) ®̄𝛾𝜂

𝑞∑︁
𝜂=1

(1 + 𝑇 ( ®̄𝛾𝜂))
, (11)

where

𝑇 ( ®̄𝛾𝜂) =
𝑞∑︁

𝜀=1,𝜀≠𝜂
𝑆𝑢𝑝

(
®̄𝛾𝜂, ®̄𝛾𝜀

)
(12)

and 𝑆𝑢𝑝( ®̄𝛾𝜂, ®̄𝛾𝜀) is the support for ®̄𝛾𝜂 from ®̄𝛾𝜀, satisfying the following conditions:
(1) 𝑆𝑢𝑝( ®̄𝛾𝜂, ®̄𝛾𝜀) ∈ [0, 1];
(2) 𝑆𝑢𝑝( ®̄𝛾𝜂, ®̄𝛾𝜀) = 𝑆𝑢𝑝( ®̄𝛾𝜀, ®̄𝛾𝜂);
(3) 𝑆𝑢𝑝( ®̄𝛾𝜂, ®̄𝛾𝜀) ­ 𝑆𝑢𝑝( ®̄𝛾𝑖, ®̄𝛾 𝑗 ), if

��� ®̄𝛾𝜂 − ®̄𝛾𝜀
��� ¬ ��� ®̄𝛾𝑖 − ®̄𝛾 𝑗

���.
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3. The SFPMSM AOs

In this part, we shall extend PMSM operator to SFSs and develop some
SFPMSM AOs based on operation laws of SFNs.

3.1. The SFPMSM operator

Definition 7 Let ®̄𝑁 = { ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞} be a set of SFNs, which are divided

into 𝑒 different partitions ®̄𝑌1, ®̄𝑌2, · · · , ®̄𝑌𝑒 with ®̄𝑌𝜂 ∩ ®̄𝑌𝑥 = Ø and
𝑒⋃

𝑏=1

®̄𝑌𝑏 = ®̄𝑁 , then

SFPMSM operator is defined as following:

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=
1
𝑒

©­­­­­­«
𝑒⊕

𝑏=1

©­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

®̄Θ𝜂𝑥

ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

,

(13)

where | ®̄𝑌𝑏 | is the cardinality of ®̄𝑌𝑏 (𝑏 = 1, 2, . . . , 𝑒) and
𝑒∑︁

𝑏=1
| ®̄𝑌𝑏 | = 𝑞, 𝑔𝑏 is the

parameter in the partition ®̄𝑌𝑏 and 𝑔𝑏 = 1, 2, · · · , | ®̄𝑌𝑏 |. (𝜂1, 𝜂2, . . . , 𝜂𝑔𝑏 ) traverses
all the 𝑔𝑏-tuple combination of (1, 2, . . . , | ®̄𝑌𝑏 |), and 𝐶

𝑔𝑏

| ®̄𝑌𝑏 |
represents the binomial

coefficient satisfying 𝐶
𝑔𝑏

| ®̄𝑌𝑏 |
=

| ®̄𝑌𝑏 |!
𝑔𝑏!( | ®̄𝑌𝑏 | − 𝑔𝑏)!

.

Theorem 1 Let ®̄Θ𝜂 =

(
®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂

)
(𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with param-

eter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), then the aggregated value by SFPMSM operator is
still a SFN, and
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𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

©­­­­­­­­­«

√√√√√√√√√√√√√√√√√√1 −
©­­­­­­­«

𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

ª®®®®®®®¬

1/𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1/𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1/𝑒ª®®®®®®®®®¬
. (14)

Proof. According to operational rules of SFNs in Definition 2, we have
𝑔𝑏⊗
𝑥=1

®̄Θ𝜂𝑥 =
©­«

𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥 ,

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

)
,

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

)ª®¬
and

⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

®̄Θ𝜂𝑥 =

©­­­­­«
√√√√√√√√1 − ∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬,
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

)
,

∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

)ª®®®®®¬
.
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Thereafter, we can get

©­« 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­«
⊕

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

®̄Θ𝜂𝑥

ª®¬ª®¬
1
𝑔𝑏

=

©­­­­«
©­­­«
√√√√√√
1 − ©­«1 − ©­«1 − ∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
1 −

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥
)2)ª®¬ª®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |
ª®®®¬
1
𝑔𝑏

,

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏

,√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

and

𝑒⊕
𝑏=1

©­­«
©­« 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­«
⊕

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

®̄Θ𝜂𝑥

ª®¬ª®¬
1
𝑔𝑏 ª®®¬

=

©­­­­­­«

√√√√√√√√√
1 −

𝑒∏
𝑏=1

©­­­«1 −
©­­«1 −

©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥
)2)ª®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®¬

1
𝑔𝑏

,

𝑒∏
𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏

,

𝑒∏
𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

.
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Therefore,

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=
1
𝑒

©­­­­­­«
𝑒⊕

𝑏=1

©­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

®̄Θ𝜂𝑥

ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

=

©­­­­­­­­­­«

√√√√√√√√√√√√√√√√√√1 −
©­­­­­­­«

𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

ª®®®®®®®¬

1
𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1
𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1
𝑒 ª®®®®®®®®®®¬

.

Moreover, SFPMSM operator have the following properties:

Theorem 2 (Idempotence) Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of
SFNs with parameter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), if ®̄Θ𝜂 = ®̄Θ = ( ®̄𝜇, ®̄𝜋, ®̄𝜐) for all 𝜂, then

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,···𝑔𝑒) ( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞) = ®̄Θ. (15)
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Proof. Since ®̄Θ𝑞 =
®̄Θ = ( ®̄𝜇, ®̄𝜋, ®̄𝜐), then

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

©­­­­­­­«

√√√√√√√√√√√√1 − ©­­­­«
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇
)2ª®¬

ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

ª®®®®¬
1
𝑒

,

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

,

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔∏
𝑥=1

(
1 − ®̄𝜐2

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒 ª®®®®®®®¬

=

©­­­­­­­«

√√√√√√√√√√√√1 − ©­­­­«
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 − ®̄𝜇2𝑔𝑏

)ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

ª®®®®¬
1
𝑒

,

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

(
1 − ®̄𝜋2

)𝑔𝑏 )ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

,

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

(
1 − ®̄𝜐2

)𝑔𝑏 )ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒 ª®®®®®®®¬
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=

©­­­­­«

√√√√√√√√
1 −

©­­«
𝑒∏

𝑏=1

©­­«1 −
©­«1 −

((
1 − ®̄𝜇2𝑔𝑏

)𝐶𝑔𝑏

| ®̄𝑌𝑏 |

) 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®¬
1
𝑔𝑏 ª®®¬

ª®®¬
1
𝑒

,

©­­­«
𝑒∏

𝑏=1

√√√√√√
1 − ©­«1 −

((
1 −

(
1 − ®̄𝜋2

)𝑔𝑏 )𝐶𝑔𝑏

| ®̄𝑌𝑏 |

) 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®¬
1
𝑔𝑏 ª®®®¬

1
𝑒

,

©­­­«
𝑒∏

𝑏=1

√√√√√√
1 − ©­«1 −

((
1 −

(
1 − ®̄𝜐2

)𝑔𝑏 )𝐶𝑔𝑏

| ®̄𝑌𝑏 |

) 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®¬
1
𝑔𝑏 ª®®®¬

1
𝑒 ª®®®®®¬

=
©­­«
√√√√
1 −

(
𝑒∏

𝑏=1

(
1 − ®̄𝜇2

)) 1𝑒
,

(
𝑒∏

𝑏=1

√︂
1 −

(
1 − ®̄𝜋2

)) 1𝑒
,

(
𝑒∏

𝑏=1

√︂
1 −

(
1 − ®̄𝜐2

)) 1𝑒
=

(
®̄𝜇, ®̄𝜋, ®̄𝜐

)
= ®̄Θ .

And that completes the proof. 2

Theorem 3 (Monotonicity) Let ®̄Θ𝜂 =

(
®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂

)
and ˆ̄Θ𝜂 =

( ˆ̄𝜇𝜂, ˆ̄𝜋𝜂, ˆ̄𝜐𝜂)
(𝜂 = 1, 2, . . . , 𝑞) be two sets of SFNs with same partitions and parameter vector
(𝑔1, 𝑔2, . . . , 𝑔𝑒), if ®̄𝜇𝜂 ­ ˆ̄𝜇𝜂, ®̄𝜋𝜂 ¬ ˆ̄𝜋𝜂, ®̄𝜐𝜂 ¬ ˆ̄𝜐𝜂 for all 𝜂, then,

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
­ 𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)

(
ˆ̄Θ1, ˆ̄Θ2, · · · , ˆ̄Θ𝑞

)
. (16)

Proof. Let

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
= ®̄Θ =

(
®̄𝜇, ®̄𝜋, ®̄𝜐

)
and

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
(
ˆ̄Θ1, ˆ̄Θ2, · · · , ˆ̄Θ𝑞

)
= ˆ̄Θ =

( ˆ̄𝜇, ˆ̄𝜋, ˆ̄𝜐) .
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Since 𝑔𝑏 ­ 1, ®̄𝜇𝜂 ­ ˆ̄𝜇𝜂 ­ 0, ˆ̄𝜋𝜂 ­ ®̄𝜋𝜂 ­ 0, ˆ̄𝜐𝜂 ­ ®̄𝜐𝜂 ­ 0, then we have
®̄𝜇𝜂𝑥 ­ ˆ̄𝜇𝜂𝑥 ­ 0, ˆ̄𝜋𝜂𝑥 ­ ®̄𝜋𝜂𝑥 ­ 0, ˆ̄𝜐𝜂𝑥 ­ ®̄𝜐𝜂𝑥 ­ 0. Therefore, we can obtain

1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2
¬ 1 −

(
𝑔𝑏∏
𝑥=1

ˆ̄𝜇𝜂𝑥

)2
⇒

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬ ¬
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

ˆ̄𝜇𝜂𝑥

)2ª®¬
⇒ 1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

­ 1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

ˆ̄𝜇𝜂𝑥

)2ª®¬
ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

⇒
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

¬
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

ˆ̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

⇒

√√√√√√√√√√√√1 − ©­­­­«
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

ª®®®®¬
1
𝑒

­

√√√√√√√√√√√√1 − ©­­­­«
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

ˆ̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

ª®®®®¬
1
𝑒

⇒ ®̄𝜇 ­ ˆ̄𝜇 .
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Furthermore,
ˆ̄𝜋𝜂𝑥 ­ ®̄𝜋𝜂𝑥 ⇒ 1 − ˆ̄𝜋2𝜂𝑥 ¬ 1 − ®̄𝜋2𝜂𝑥

⇒

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ˆ̄𝜋2𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

­

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

⇒
©­­­«1 −

©­­«
∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ˆ̄𝜋2𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏

¬
©­­­«1 −

©­­«
∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏

⇒

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ˆ̄𝜋2𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

­

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ˆ̄𝜋2𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

⇒ ˆ̄𝜋 ­ ®̄𝜋 .

Similarly, we have ˆ̄𝜐 ­ ®̄𝜐.
Based on Definition 3, we have

𝑆 𝑓 ( ®̄Θ) − 𝑆 𝑓 ( ˆ̄Θ) = 2+
®̄𝜇−®̄𝜋−®̄𝜐
3

− 2+
ˆ̄𝜇− ˆ̄𝜋− ˆ̄𝜐
3

=

(
®̄𝜇 − ˆ̄𝜇

)
+

(
ˆ̄𝜋 − ®̄𝜋

)
+

(
ˆ̄𝜐 − ®̄𝜐

)
­ 0,

so ®̄Θ ­ ˆ̄Θ that is

SFPMSM(𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
­ SFPMSM(𝑔1,𝑔2,··· ,𝑔𝑒)

(
ˆ̄Θ1, ˆ̄Θ2, · · · , ˆ̄Θ𝑞

)
.
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Theorem 4 (Boundness) Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs

with parameter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), if ®̄Θ+ =

(
max
𝜂

®̄𝜇𝜂,min
𝜂

®̄𝜋𝜂,min
𝜂

®̄𝜐𝜂
)

and

®̄Θ− =

(
min
𝜂

®̄𝜇𝜂,max
𝜂

®̄𝜋𝜂,max
𝜂

®̄𝜐𝜂
)
, then

®̄Θ− ¬ 𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
¬ ®̄Θ+. (17)

Proof. By Theorem 2 and Theorem 4, we have

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
­ ®̄Θ− = 𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)

( ®̄Θ−, ®̄Θ−, · · · , ®̄Θ−
)

and

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒) ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

¬ ®̄Θ+ = 𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ+, ®̄Θ+, · · · , ®̄Θ+

)
.

Therefore, Theorem 4 is proved. 2

Next, we further study the monotonicity of SFPMSM operator in regard to
parameter 𝑔𝑏, for which we first introduce the following lemma:

Lemma 1 [48]. Let ®̄𝛾𝜂 > 0, ®̄𝜒𝜂 > 0 (𝜂 = 1, 2, . . . , 𝑞) and
𝑞∑︁

𝜂=1

®̄𝜒𝜂 = 1, then

𝑞∏
𝜂=1

(
®̄𝛾𝜂

) ®̄𝜒𝜂

¬
𝑞∑︁

𝜂=1

®̄𝜒𝜂 ®̄𝛾𝜂 (18)

with equality if and only if ®̄𝛾1 = ®̄𝛾2 = · · · ®̄𝛾𝑞.

Theorem 5 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with param-
eter vector (𝑔1, 𝑔2, . . . , 𝑔𝑏), then SFPMSM operator is monotonically decreasing
in regard to the parameter 𝑔𝑏 (𝑔𝑏 = 1, 2, . . . , | ®̄𝑌𝑏 |).
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Proof. By Theorem 1, we have

𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,···𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­«

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­­«1 −
©­­«1 −

©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥
)2)ª®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®¬

ª®®®¬
1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

1
𝑒 ª®®®®®®¬

.

Therefore, let

𝑙 (𝑔𝑏) =

©­­­­­­­«

√√√√√√√√√√√√1 − ©­­­­«
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

ª®®®®¬
1
𝑒

,

𝑚(𝑔𝑏) =

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 − ®̄𝜋2𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

,

and

𝑛(𝑔𝑏) =

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔∏
𝑥=1

(
1 − ®̄𝜐2𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

.
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First, we prove 𝑙 (𝑔𝑏) about the parameter 𝑔𝑏 is monotonically decreasing.
According to Lemma 1, we can get

©­­«
∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

¬
∑︁

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

= 1 −

∑︁
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

⇒
©­­­«1 −

©­­«
∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏

­
©­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­«
∑︁

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®®¬
ª®®¬
1
𝑔𝑏

⇒
©­­­­«

𝑒∏
𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

ª®®®®¬
1
𝑒

¬
©­­­«

𝑒∏
𝑏=1

©­­­«1 −
©­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­«
∑︁

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®®¬
ª®®¬
1
𝑔𝑏 ª®®®¬

ª®®®¬
1
𝑒

⇒

√√√√√√√√√√√√1 − ©­­­­«
𝑒∏

𝑏=1

©­­­­«
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

©­«1 −
(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®¬
ª®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®¬

ª®®®®¬
1
𝑒
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­

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­­«1 −
©­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­«
∑︁

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®®¬
ª®®¬
1
𝑔𝑏 ª®®®¬

ª®®®¬
1
𝑒

⇔ 𝑙 (𝑔𝑏) ­

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­­«1 −
©­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­«
∑︁

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
𝑔𝑏∏
𝑥=1

®̄𝜇𝜂𝑥

)2ª®®¬
ª®®¬
1
𝑔𝑏 ª®®®¬

ª®®®¬
1
𝑒

(19)

Then we take the following proof by the contradiction method. We assume
that 𝑙 (𝑔𝑏) is increasing with respect to 𝑔𝑏, then it follows that

𝑙 ( | ®̄𝑌𝑏 |) ­ 𝑙 ( | ®̄𝑌𝑏 | − 1) ­ · · · ­ 𝑙 (1).
By (19), we have

𝑙 (1) ­

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­­«1 −
©­­«
1

𝐶1
| ®̄𝑌𝑏 |

©­­«
∑︁

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
1∏

𝑥=1

®̄𝜇𝜂𝑥

)2ª®®¬
ª®®¬
1
1 ª®®®¬

ª®®®¬
1
𝑒

=

√√√√√√√√√√√√√√√√1 −
©­­­­­­«

𝑒∏
𝑏=1

©­­­­­­«
1 −

| ®̄𝑌𝑏 |∑
𝜂=1

®̄𝜇2𝜂

| ®̄𝑌𝑏 |

ª®®®®®®¬
ª®®®®®®¬

1
𝑒

.

Thereafter, let 𝑔𝑏 = | ®̄𝑌𝑏 |, then

𝑙 ( | ®̄𝑌𝑏 |) =

√√√√√√√√√√√√√√1 − ©­­­­­«
𝑒∏

𝑏=1

©­­­­­«
1 −

©­­­­«
1 −

©­­­«
∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

©­­­«1 −
©­­«
| ®̄𝑌𝑏 |∏
𝑥=1

®̄𝜇𝜂𝑥
ª®®¬
2ª®®®¬

ª®®®¬
1

𝐶
| ®̄𝑌𝑏 |
| ®̄𝑌𝑏 |

ª®®®®¬
1

| ®̄𝑌𝑏 | ª®®®®®¬
ª®®®®®¬

1
𝑒

=

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­­«1 −
©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

®̄𝜇2𝜂
ª®®¬
1

| ®̄𝑌𝑏 | ª®®®¬
ª®®®¬
1
𝑒

.
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Based on the assumption, we have

𝑙 ( | ®̄𝑌𝑏 |) =

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­­«1 −
©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

®̄𝜇2𝜂
ª®®¬
1

| ®̄𝑌𝑏 | ª®®®¬
ª®®®¬
1
𝑒

­ 𝑙 (1) ­

√√√√√√√√√√√√√√√√1 −
©­­­­­­«

𝑒∏
𝑏=1

©­­­­­­«
1 −

| ®̄𝑌𝑏 |∑
𝜂=1

®̄𝜇2𝜂

| ®̄𝑌𝑏 |

ª®®®®®®¬
ª®®®®®®¬

1
𝑒

⇒
©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

®̄𝜇2𝜂
ª®®¬
1

| ®̄𝑌𝑏 |

­

| ®̄𝑌𝑏 |∑
𝜂=1

®̄𝜇2𝜂

| ®̄𝑌𝑏 |
.

However, according to Lemma 1, we have

©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

®̄𝜇2𝜂
ª®®¬
1

| ®̄𝑌𝑏 |

¬

| ®̄𝑌𝑏 |∑︁
𝜂=1

®̄𝜇2𝜂

| ®̄𝑌𝑏 |
.

Obviously, it is not true that 𝑙 (𝑔𝑏) increases monotonically with 𝑔𝑏 increasing, so
𝑙 (𝑔𝑏) is monotonically decreasing about 𝑔𝑏.
Similarly, we can also show that the functions 𝑚(𝑔𝑏) and 𝑛(𝑔𝑏) are monoton-

ically increasing about 𝑔𝑏.
According to Definition 3, we have

𝑆 𝑓 (𝑔𝑏) =
2 + 𝑙 (𝑔𝑏) − 𝑚(𝑔𝑏) − 𝑛(𝑔𝑏)

3
.

Thereafter, for any 𝑔𝑏 = (1, 2, . . . , | ®̄𝑌𝑏 |), we can get

𝑆 𝑓 (𝑔𝑏 + 1) − 𝑆 𝑓 (𝑔𝑏) =
2 + 𝑙 (𝑔𝑏 + 1) − 𝑚(𝑔𝑏 + 1) − 𝑛(𝑔𝑏 + 1)

3

− 2 + 𝑙 (𝑔𝑏) − 𝑚(𝑔𝑏) − 𝑛(𝑔𝑏)
3

= (𝑙 (𝑔𝑏 + 1) − 𝑙 (𝑔𝑏)) + (𝑚(𝑔𝑏) − 𝑚(𝑔𝑏 + 1))
+ (𝑛(𝑔𝑏) − 𝑛(𝑔𝑏 + 1)) < 0

that is, 𝑆 𝑓 (𝑔𝑏 + 1) < 𝑆 𝑓 (𝑔𝑏) for all 𝑔𝑏. For which completes the proof. 2
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Theorem 6 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with param-
eter vector (𝑔1, 𝑔2, · · · , 𝑔𝑒) and 𝑔𝑏 = 1, 2, . . . , | ®̄𝑌𝑏 |, then

max
{
𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)}
= 𝑆𝐹𝑃𝑀𝑆𝑀 (1,1,··· ,1)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

©­­­­­­«

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­­«
©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

(
1 − ®̄𝜇2𝜂

)ª®®¬
1

| ®̄𝑌𝑏 | ª®®®¬
ª®®®¬
1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

®̄𝜋2𝜂
ª®®¬
1

| ®̄𝑌𝑏 | ª®®®®¬
1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

®̄𝜐2𝜂
ª®®¬
1
®̄𝑌𝑏 | ª®®®®¬

1
𝑒 ª®®®®®®¬

min
{
𝑆𝐹𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)}
= 𝑆𝐹𝑃𝑀𝑆𝑀 ( | ®̄𝑌1 |,| ®̄𝑌2 |,··· ,| ®̄𝑌𝑒 |)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
.

Next, we study some special circumstances for SFPMSM operator.
(1) When all inputs belong to the same partition and the types of relationship

among inputs are same, in other words, 𝑒 = 1, | ®̄𝑌1 | = 𝑞 and 𝑔1 = 𝑔 = 1, 2, . . . , 𝑞,
then SFPMSM operator becomes spherical fuzzy MSM(SFMSM)operator as
follows:

𝑆𝐹𝑃𝑀𝑆𝑀𝑔1
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­«
1

𝐶
𝑔1

| ®̄𝑌1 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔1¬|

®̄𝑌1 |

𝑔1⊗
𝑥=1

®̄Θ𝜂𝑥

ª®®®®®¬
ª®®®®®¬

1
𝑔1

=

©­­­«
1
𝐶
𝑔
𝑞

©­­­«
⊕
1¬𝜂1<···
<𝜂𝑔¬𝑛

𝑔⊗
𝑥=1

®̄Θ𝜂𝑥

ª®®®¬
ª®®®¬
1
𝑔

= 𝑆𝐹𝑀𝑆𝑀𝑔
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
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(2) When 𝑒 = 1 and 𝑔 = 1, SFPMSM operator becomes the spherical fuzzy
arithmetic averaging operator as follows:

𝑆𝐹𝑃𝑀𝑆𝑀1
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­­­«

©­«
⊕

1¬𝜂1¬| ®̄𝑌1 |

1⊗
𝑥=1

®̄Θ𝜂𝑥

ª®¬
𝐶1
| ®̄𝑌1 |

ª®®®®®®®¬

1
1

=
1

| ®̄𝑌1 |

| ®̄𝑌1 |⊕
𝜂1=1

®̄Θ𝜂𝑥 =
1
𝑞

𝑞⊕
𝜂=1

®̄Θ𝜂 .

(3) When 𝑒 = 1 and 𝑔 = 2, SFPMSM operator becomes the special SFBM
operator as follows:

𝑆𝐹𝑃𝑀𝑆𝑀2
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­­­«

©­«
⊕

1¬𝜂1<𝜂2¬| ®̄𝑌1 |

2⊗
𝑥=1

®̄Θ𝜂𝑥

ª®¬
𝐶2
| ®̄𝑌1 |

ª®®®®®®®¬

1
2

=
©­« 1
𝑞(𝑞 − 1)

𝑞⊕
𝜂,𝑥=1,𝜂≠𝑥

( ®̄Θ𝜂 ⊗ ®̄Θ𝑥

)ª®¬
1
2

= 𝑆𝐹𝐵𝑀1,1( ®̄Θ1, ®̄Θ2 · · · , ®̄Θ𝑞)

(4) When 𝑒 = 1 and 𝑔 = 𝑞, SFPMSM operator becomes the spherical fuzzy
geometric averaging operator as follows:

𝑆𝐹𝑃𝑀𝑆𝑀𝑞 ( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞) =

©­­­­­­­­­«

©­«
⊕

1¬𝜂1<···<𝜂𝑔𝑞¬| ®̄𝑌1 |

𝑞⊗
𝑥=1

®̄Θ𝜂𝑥

ª®®¬
𝐶

𝑞

| ®̄𝑌1 |

ª®®®®®®®®®¬

1
𝑞

=
©­«

𝑞⊗
𝜂=1

®̄Θ𝜂
ª®¬
1
𝑞

.
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3.2. The SFWPMSM operator

Definition 8 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs, which are
divided into 𝑒 different partitions ®̄𝑌1, ®̄𝑌2, · · · , ®̄𝑌𝑒 with ®̄𝑌𝜂∩ ®̄𝑌𝑥 = Ø and

⋃𝑒
𝑏=1

®̄𝑌𝑏 = ®̄𝑁 .
The𝜗 = (𝜗1, 𝜗2, · · · , 𝜗𝑞)𝑇 is the weight vector of ®̄Θ𝜂 (𝜂 = 1, 2, . . . , 𝑞), with𝜗𝜂 ­ 0

and
𝑞∑︁

𝜂=1
𝜗𝜂 = 1, then SFWPMSM operator is given as follows:

𝑆𝐹𝑃𝑊𝑀𝑆𝑀 (𝑔1,𝑔2,···𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=
1
𝑒

©­­­­­­«
𝑒⊕

𝑏=1

©­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

(
𝜗𝜂𝑥

®̄Θ𝜂𝑥

)ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

, (20)

where | ®̄𝑌𝑏 | is the cardinality of ®̄𝑌𝑏 (𝑏 = 1, 2, · · · , 𝑒) and
𝑒∑︁

𝑏=1
| ®̄𝑌𝑏 | = 𝑞, 𝑔𝑏 is the

parameter in the partition ®̄𝑌𝑏 and 𝑔𝑏 = 1, 2, · · · , | ®̄𝑌𝑏 |. (𝜂1, 𝜂2, . . . , 𝜂𝑔𝑏 ) traverses
all the 𝑔𝑏-tuple combination of (1, 2, . . . , | ®̄𝑌𝑏 |), and 𝐶

𝑔𝑏

| ®̄𝑌𝑏 |
represents the binomial

coefficient satisfying

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |
=

| ®̄𝑌𝑏 |!
𝑔𝑏!( | ®̄𝑌𝑏 | − 𝑔𝑏)!

.

Theorem 7 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with pa-
rameter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), and 𝜗 = (𝜗1, 𝜗2, · · · , 𝜗𝑞)𝑇 is the weight vector

of ®̄Θ𝜂 (𝜂 = 1, 2, . . . , 𝑞), with 𝜗𝜂 ­ 0,
𝑞∑︁

𝜂=1
𝜗𝜂 = 1, then the aggregated value by

SFWPMSM operator is still a SFN, and
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𝑆𝐹𝑊𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

©­­­­­­­­«

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
𝑒∏

𝑏=1

©­­­­­­«
1 −

©­­­­­«
1 −

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝜗𝜂𝑥

))ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

ª®®®®®®¬

1
𝑒

,

©­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√1 − ©­­­­­«
1 −

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝜗𝜂𝑥

))ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝜗𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

1
𝑒 ª®®®®®®¬

.

(21)
The proof of Theorem 7 is similar to Theorem 1. Furthermore, it is easy to obtain
that SFWPMSM operator satisfies idempotence, monotonicity and boundness.

Theorem 8 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with pa-
rameter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒) (𝑔𝑏 = 1, 2, . . . , | ®̄𝑌𝑏 |), then SFWPMSM operator is
monotonically decreasing in regard to the parameter 𝑔𝑏.

Theorem 9 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with param-
eter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒) (𝑔𝑏 = 1, 2, · · · , | ®̄𝑌𝑏 |), and 𝜗 = (𝜗1, 𝜗2, . . . , 𝜗𝑞)𝑇 is the

weight vector of ®̄Θ𝜂 (𝜂 = 1, 2, . . . , 𝑞), with 𝜗𝜂 ­ 0,
𝑞∑︁

𝜂=1
𝜗𝜂 = 1. Then

min
{
𝑆𝐹𝑊𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)}
= 𝑆𝐹𝑊𝑃𝑀𝑆𝑀 ( | ®̄𝑌1 |,| ®̄𝑌2 |,··· ,| ®̄𝑌𝑒 |)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
.
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max
{
𝑆𝐹𝑊𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)}
= 𝑆𝐹𝑊𝑃𝑀𝑆𝑀 (1,1,··· ,1)

( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

©­­­­­­«

√√√√√√√√√√
1 −

©­­­«
𝑒∏

𝑏=1

©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

(
1 − ®̄𝜇2𝜂𝑥

)𝜗𝜂𝑥 ª®®¬
1

| ®̄𝑌𝑏 | ª®®®¬
1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

(
®̄𝜋𝜂𝑥

)2𝜗𝜂𝑥 ª®®¬
1

| ®̄𝑌𝑏 | ª®®®®¬
1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√©­­«
| ®̄𝑌𝑏 |∏
𝜂=1

(
®̄𝜐𝜂𝑥

)2𝜗𝜂𝑥 ª®®¬
1

| ®̄𝑌𝑏 | ª®®®®¬
1
𝑒 ª®®®®®®¬

.

Next, we study some special circumstances about SFWPMSM operator.
(1) When 𝑒 = 1, | ®̄𝑌1 | = 𝑞 and 𝑔1 = 𝑔 = 1, 2, · · · , 𝑞, then SFWPMSM operator

becomes spherical fuzzy weighted MSM (SFWMSM) operator as follows:

𝑆𝐹𝑊𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­«
1

𝐶
𝑔1

| ®̄𝑌1 |

©­­«
⊕

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌1 |

𝑔1⊗
𝑥=1

(
𝜗𝜂𝑥

®̄Θ𝜂𝑥

)ª®®¬
ª®®¬
1
𝑔1

=
©­« 1𝐶𝑔

𝑞

©­«
⊕

1¬𝜂1<···<𝜂𝑔¬𝑞

𝑔⊗
𝑥=1

(
𝜗𝜂𝑥

®̄Θ𝜂𝑥

)ª®¬ª®¬
1
𝑔

= 𝑆𝐹𝑊𝑀𝑆𝑀𝑔 ( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞).

(2) When 𝑒 = 1, 𝑔 = 1, SFWPMSM operator becomes the spherical fuzzy
weighted average operator as follows:

𝑆𝐹𝑊𝑃𝑀𝑆𝑀1
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­«
1

𝐶1
| ®̄𝑌1 |

©­­«
⊕

1¬𝜂1¬| ®̄𝑌1 |

1⊗
𝑥=1

(
𝜗𝜂𝑥

®̄Θ𝜂𝑥

)ª®®¬
ª®®¬ =
1
𝑞

𝑞⊕
𝜂=1

(
𝜗𝜂

®̄Θ𝜂

)
.
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(3)When 𝑒 = 1 and 𝑔 = 2, SFWPMSMoperator becomes the special spherical
fuzzy weighted BM (SFWBM) operator as follows:

𝑆𝐹𝑊𝑃𝑀𝑆𝑀2
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­«
1

𝐶2
| ®̄𝑌1 |

©­­­­«
⊕
1¬𝜂1<𝜂2
¬| ®̄𝑌1 |

2⊗
𝑥=1

(
𝜗𝜂𝑥

®̄Θ𝜂𝑥

)ª®®®®¬
ª®®®®¬
1
2

=

©­­­«
1

𝑞(𝑞 − 1)

𝑞⊕
𝜂=𝑥=1
𝜂≠𝑥

(
𝜗𝜂

®̄Θ𝜂 ⊗ 𝜗𝑥
®̄Θ𝑥

)ª®®®¬
1
2

= 𝑆𝐹𝑊𝐵𝑀1,1( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞)/

(4) When 𝑒 = 1 and 𝑔 = 𝑞, SFWPMSM operator becomes the spherical fuzzy
weighted geometric operator as follows:

𝑆𝐹𝑊𝑃𝑀𝑆𝑀𝑞
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­«
1

𝐶
𝑞

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑞¬| ®̄𝑌𝑏 |

𝑞⊗
𝑥=1

(
𝜗𝜂𝑥

®̄Θ𝜂𝑥

)ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏

=
©­«

𝑞⊗
𝜂=1

(
𝜗𝜂

®̄Θ𝜂

)ª®¬
1
𝑞

.

4. The SFPPMSM AOs

This part we shall present some new AOs based on PMSM operator and PA
operator under SFSs.

4.1. The SFPPMSM operator

Definition 9 Let ®̄𝑁 = { ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞} be a set of SFNs, which are divided

into 𝑒 different partitions ®̄𝑌1, ®̄𝑌2, . . . , ®̄𝑌𝑒 with ®̄𝑌𝜂 ∩ ®̄𝑌𝑥 = Ø and
𝑒⋃

𝑏=1

®̄𝑌𝑏 = ®̄𝑁 , then
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SFPPMSM operator is defined as following:

𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=
1
𝑒

©­­­­­­«
𝑒⊕

𝑏=1

©­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

©­­­«
𝑞

(
1 + 𝑇 ( ®̄Θ𝜂𝑥 )

)
𝑞∑

𝑜=1

(
1 + 𝑇 ( ®̄Θ𝑜)

) ®̄Θ𝜂𝑥

ª®®®¬
ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

, (22)

where | ®̄𝑌𝑏 | is the cardinality of ®̄𝑌𝑏 (𝑏 = 1, 2, . . . , 𝑒) and
𝑒∑︁

𝑏=1
| ®̄𝑌𝑏 | = 𝑞, 𝑔𝑏 is the pa-

rameter in the partition ®̄𝑌𝑏 and 𝑔𝑏 = 1, 2, · · · , | ®̄𝑌𝑏 |. (𝜂1, 𝜂2, . . . , 𝜂𝑔𝑏 ) traverses all
the 𝑔𝑏-tuple combination of (1, 2, . . . , | ®̄𝑌𝑏 |), and𝐶𝑔𝑏

| ®̄𝑌𝑏 |
represents the binomial co-

efficient satisfying𝐶𝑔𝑏

| ®̄𝑌𝑏 |
=

| ®̄𝑌𝑏 |!
𝑔𝑏!( | ®̄𝑌𝑏 |−𝑔𝑏)!

. Meanwhile,𝑇 ( ®̄Θ𝜂) =
𝑞∑︁

𝑜=1,𝜂≠𝑜
𝑆𝑢𝑝( ®̄Θ𝜂,

®̄Θ𝑜),

𝑆𝑢𝑝( ®̄Θ𝜂,
®̄Θ𝑜) = 1−𝐷𝑖𝑠( ®̄Θ𝜂,

®̄Θ𝑜) and 𝑆𝑢𝑝( ®̄Θ𝜂,
®̄Θ𝑜) is the support for ®̄Θ𝜂 from ®̄Θ𝑜,

satisfying the following conditions: (1) 𝑆𝑢𝑝( ®̄Θ𝜂,
®̄Θ𝑜) ∈ [0, 1]; (2) 𝑆𝑢𝑝( ®̄Θ𝜂,

®̄Θ𝑜) =
𝑆𝑢𝑝( ®̄Θ𝑜,

®̄Θ𝜂); (3) 𝑆𝑢𝑝( ®̄Θ𝜂,
®̄Θ𝑜) ­ 𝑆𝑢𝑝( ®̄Θ𝑖,

®̄Θ 𝑗 ), if 𝐷𝑖𝑠( ®̄Θ𝜂,
®̄Θ𝑜) ¬ 𝐷𝑖𝑠( ®̄Θ𝑖,

®̄Θ 𝑗 ),
here 𝐷𝑖𝑠( ®̄Θ𝜂,

®̄Θ𝑜) represents distance between ®̄Θ𝜂 and ®̄Θ𝑜 defined in Definition 4.

To simplify (22), let

®̄𝜔𝜂 =

(
1 + 𝑇

( ®̄Θ𝜂

))
𝑞∑︁

𝑜=1

(
1 + 𝑇 ( ®̄Θ𝑜)

) , (23)

where ®̄𝜔𝜂 is called the power weight, and ®̄𝜔𝜂 ∈ [0, 1] with
𝑞∑︁

𝜂=1

®̄𝜔𝜂 = 1. Then (22)

can be further expressed as:

𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,···𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=
1
𝑒

©­­­«
𝑒⊕

𝑏=1

©­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­«
⊕

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

(
𝑞 ®̄𝜔𝜂𝑥

®̄Θ𝜂𝑥

)ª®®¬
ª®®¬
1
𝑔𝑏 ª®®®¬ . (24)
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Theorem 10 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with param-
eter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), then the aggregated value by SFPPMSM operator is
still a SFN, and

𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

©­­­­­­­­­­«

√√√√√√√√√√√√√√√√√√1 −
©­­­­­­­«

𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

ª®®®®®®®¬

1
𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1
𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1
𝑒 ª®®®®®®®®®®¬

(25)

Proof. In accordance with operational rules of Definition 2, then

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥 =

©­«
√︄
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

,

(
®̄𝜋𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

,

(
®̄𝜐𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥 ª®¬ ,
𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥 =

©­«
𝑔𝑏∏
𝑥=1

√︄
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

,√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)
,

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®¬
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and⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥

=

©­­­­­«
√√√√√√√1 − ∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))
,

∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)
,

∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®®¬
.

Thereafter, we can get

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥

ª®®®®®¬
=

©­­­­­­­«

√√√√√√√√√√√√√√1 − ©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

,

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

,

©­­«
∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬



208 H. ZHANG, Q. CAI, G. WEI

and

𝑒⊕
𝑏=1

©­­«
©­« 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­«
⊕

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥

ª®¬ª®¬
1
𝑔𝑏 ª®®¬

=

©­­­­­­­«

√√√√√√√√√√√√√√√1 − 𝑒∏
𝑏=1

©­­­­­­«
1 −

©­­­­­«
1 −

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

,

𝑒∏
𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏

,

𝑒∏
𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

.

Therefore,

𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,···𝑔𝑒) ( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞)

=

©­­­­­­­­«

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
𝑒∏

𝑏=1

©­­­­­­«
1 −

©­­­­­«
1 −

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

ª®®®®®®¬

1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

1
𝑒

,

©­­­­«
𝑒∏

𝑏=1

√√√√√√√√
1 −

©­­«1 −
©­« ∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®¬
1
𝑔𝑏 ª®®®®¬

1
𝑒 ª®®®®®®¬

.
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Theorem 11 (Idempotence) Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of
SFN with parameter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), if ®̄Θ𝜂 = ®̄Θ =

(
®̄𝜇, ®̄𝜋, ®̄𝜐

)
for all 𝜂, then

𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
= ®̄Θ. (26)

Proof. Since ®̄Θ𝜂 = ®̄Θ =

(
®̄𝜇, ®̄𝜋, ®̄𝜐

)
, we have 𝑆𝑢𝑝

( ®̄Θ𝜂,
®̄Θ𝑜

)
= 1 for all 𝜂, 𝑜 =

1, 2, · · · , 𝑞. Thereby ®̄𝜔𝜂 =
1
𝑞
, 𝜂 = 1, 2, . . . , 𝑞, and

𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­«

√√√√√√√√
1 −

©­­«
𝑒∏

𝑏=1

©­­«1 −
©­«1 −

((
1 − ®̄𝜇2𝑔𝑏

)𝐶𝑔𝑏

| ®̄𝑌𝑏 |

) 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®¬
1
𝑔𝑏 ª®®¬

ª®®¬
1
𝑒

,

©­­­«
𝑒∏

𝑏=1

√√√√√√
1 − ©­«1 −

((
1 −

(
1 − ®̄𝜋2

)𝑔𝑏 )𝐶𝑔𝑏

| ®̄𝑌𝑏 |

) 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®¬
1
𝑔𝑏 ª®®®¬

1
𝑒

©­­­«
𝑒∏

𝑏=1

√√√√√√
1 − ©­«1 −

((
1 −

(
1 − ®̄𝜐2

)𝑔𝑏 )𝐶𝑔𝑏

| ®̄𝑌𝑏 |

) 1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®¬
1
𝑔𝑏 ª®®®¬

1
𝑒 ª®®®®®¬

=

©­­­«
√√√√
1 −

(
𝑒∏

𝑏=1

(
1 −

(
®̄𝜇2𝑔𝑏

) 1
𝑔𝑏

)) 1𝑒
,
©­«

𝑒∏
𝑏=1

√︄
1 −

((
1 − ®̄𝜋2

)𝑔𝑏 ) 1
𝑔𝑏 ª®¬

1
𝑒

,

©­«
𝑒∏

𝑏=1

√︄
1 −

((
1 − ®̄𝜐2

)𝑔𝑏 ) 1
𝑔𝑏 ª®¬

1
𝑒 ª®®®¬ ,

=
( ˆ̄𝜇𝜂, ˆ̄𝜋𝜂, ˆ̄𝜐𝜂) = ˆ̄Θ𝜂

which completes the proof. 2
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Theorem 12 (Boundness) Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of
SFNs with parameter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), if ®̄Θ− = min

𝜂
{ ®̄Θ𝜂} =

(
®̄𝜇−, ®̄𝜋−, ®̄𝜐−

)
and ®̄Θ+ = max

𝜂
{ ®̄Θ𝜂} = ( ®̄𝜇+, ®̄𝜋+, ®̄𝜐+), then

®̄𝑋 ¬ 𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
¬ ®̄𝑌, (27)

where

®̄𝑋 =

©­­­­­­­­­­«

√√√√√√√√√√√√√√√√√√1 −
©­­­­­­­«

𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ( ®̄𝜇−)2

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

ª®®®®®®®¬

1
𝑒

,

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋−

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

,

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐−

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒 ª®®®®®®®¬

and

®̄𝑌 =

©­­­­­­­­­­«

√√√√√√√√√√√√√√√√√√1 −
©­­­­­­­«

𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ( ®̄𝜇+)2

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

ª®®®®®®®¬

1
𝑒

,
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©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋+

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒

,

©­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√
1 −

©­­­«1 −
©­­«

∏
1¬𝜂1<···<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐+

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®¬
1
𝑔𝑏 ª®®®®®®¬

1
𝑒 ª®®®®®®®¬

.

Proof. Since

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥 =

©­«
√︄
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

,

(
®̄𝜋𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

,

(
®̄𝜐𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥 ª®¬
­

(√︃
1 −

(
1 − (𝜇−)2

)𝑞 ®̄𝜔𝜂𝑥 ,

(
®̄𝜋−

)𝑞 ®̄𝜔𝜂𝑥

,

(
®̄𝜐−

)𝑞 ®̄𝜔𝜂𝑥

)
.

So,

𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥 =

©­«
𝑔𝑏∏
𝑥=1

√︄
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

,

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)
,

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®¬
­

©­«
𝑔𝑏∏
𝑥=1

√︄
1 −

(
1 − ( ®̄𝜇−)2

)𝑞 ®̄𝜔𝜂𝑥

,

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋−

)2𝑞 ®̄𝜔𝜂𝑥

)
,

√√
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐−

)2𝑞 ®̄𝜔𝜂𝑥

)ª®¬
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then

⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥 =

©­­­­«
√√√√√1 − ∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))
,

∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)
,

∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®¬
­

©­­­­«
√√√√√1 − ∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ( ®̄𝜇−)2

)𝑞 ®̄𝜔𝜂𝑥

))
,

∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋−

)2𝑞 ®̄𝜔𝜂𝑥

)
,

∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐−

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®¬
.

Further, we can get

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­«
⊕

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥

ª®®®®¬
=

©­­­­­­«

√√√√√√√√√√√1− ©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

,

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

,

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®¬
­

©­­­«
√√√√√√
1 − ©­« ∏

1¬𝜂1<···<𝜂𝑔𝑏¬|
®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ( ®̄𝜇−)2

)𝑞 ®̄𝜔𝜂𝑥

))ª®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |
,

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋−

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

,

©­­­­«
∏

1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

√︄
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐−

)2𝑞 ®̄𝜔𝜂𝑥

)ª®®®®¬
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®¬
.
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Therefore,

𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

𝑒⊕
𝑏=1

©­­­­­­«
©­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

𝑞 ®̄𝜔𝜂𝑥
®̄Θ𝜂𝑥

ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

=

©­­­­­­­­«

√√√√√√√√√√√√√√√√√1 − 𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

,

𝑒∏
𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏

,

𝑒∏
𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

­

©­­­­­­­­«

√√√√√√√√√√√√√√√√√1 − 𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ( ®̄𝜇−)2

)𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

,
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𝑒∏
𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋−

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏

,

𝑒∏
𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐−

)2𝑞 ®̄𝜔𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

= ®̄𝑋.

Similarly, it is easy to prove that 𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
¬ ®̄𝑌 .

Hence, we can get ®̄𝑋 ¬ 𝑆𝐹𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
¬ ®̄𝑌 .

In the following we investigate some special circumstances for SFPPMSM
operator.

(1) When all attributes belong to the same partition and the types of re-
lationship among attributes are same, in other words, 𝑒 = 1, | ®̄𝑌1 | = 𝑞 and
𝑔1 = 𝑔 = 1, 2, . . . , 𝑞, then SFPPMSM operator becomes spherical fuzzy power
MSM (SFPMSM) operator as follows:

𝑆𝐹𝑃𝑃𝑀𝑆𝑀𝑔1
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­«
1

𝐶
𝑔1

| ®̄𝑌1 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔1¬|

®̄𝑌1 |

𝑔1⊗
𝑥=1

(
𝑞 ®̄𝜔𝜂𝑥

®̄Θ𝜂𝑥

)ª®®®®®¬
ª®®®®®¬

1
𝑔1

=

©­­­«
1
𝐶
𝑔
𝑞

©­­­«
⊕
1¬𝜂1<···
<𝜂𝑔¬𝑞

𝑔⊗
𝑥=1

(
𝑞 ®̄𝜔𝜂𝑥

®̄Θ𝜂𝑥

)ª®®®¬
ª®®®¬
1
𝑔

= 𝑆𝐹𝑃𝑀𝑆𝑀𝑔
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
.
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(2) When 𝑒 = 1 and 𝑔 = 1, SFPPMSM operator becomes the spherical fuzzy
power averaging operator as follows [49]:

𝑆𝐹𝑃𝑃𝑀𝑆𝑀1
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­­­«
1

𝐶1
| ®̄𝑌1 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔1¬|

®̄𝑌1 |

1⊗
𝑥=1

(
𝑞 ®̄𝜔𝜂𝑥

®̄Θ𝜂𝑥

)ª®®®®®¬
ª®®®®®¬

=

𝑞⊕
𝜂=1

®̄𝜔𝜂
®̄Θ𝜂 =

©­«
√√√
1 −

𝑞∏
𝜂=1

(
1 − ®̄𝜇2𝜂

) ®̄𝜔𝜂

,

𝑞∏
𝜂=1

®̄𝜋
®̄𝜔𝜂

𝜂 ,

𝑞∏
𝜂=1

®̄𝜐
®̄𝜔𝜂

𝜂
ª®¬ .

(3) When 𝑒 = 1 and 𝑔 = 2, SFPPMSM operator becomes the special spherical
fuzzy power BM (SFPBM) operator as follows:

𝑆𝐹𝑃𝑃𝑀𝑆𝑀2
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
=

©­­­«
1

𝑞(𝑞 − 1)

𝑞⊕
𝜂,𝑥=1
𝜂≠𝑥

(
𝑞 ®̄𝜔𝜂

®̄Θ𝜂 ⊗ 𝑞 ®̄𝜔𝑥
®̄Θ𝑥

)ª®®®¬
1
2

= 𝑆𝐹𝑃𝐵𝑀1,1
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)
.

4.2. The SFWPPMSM operator

Definition 10 Let ®̄𝑁 = { ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞} be a set of SFNs, which are divided
into 𝑒 different partitions ®̄𝑌1, ®̄𝑌2, · · · , ®̄𝑌𝑒 with ®̄𝑌𝜂 ∩ ®̄𝑌𝑥 = Ø and

⋃𝑒
𝑏=1

®̄𝑌𝑏 = ®̄𝑁 .
The 𝜗 = (𝜗1, 𝜗2, · · · , 𝜗𝑞)𝑇 is the weight vector of ®̄Θ𝜂 (𝜂 = 1, 2, . . . , 𝑞), with

𝜗𝜂 ∈ [0, 1] and
𝑞∑

𝜂=1
𝜗𝜂 = 1, then SFWPPMSM operator is defined as following:

𝑆𝐹𝑊𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=
1
𝑒

©­­­­­­­«
𝑒⊕

𝑏=1

©­­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

©­­­­­­«
𝑞𝜗𝜂𝑥

(
1 + 𝑇 ( ®̄Θ𝜂𝑥 )

)
𝑞∑︁

𝑜=1
𝜗𝑜

(
1 + 𝑇 ( ®̄Θ𝑜)

) ®̄Θ𝜂𝑥

ª®®®®®®¬
ª®®®®®®¬
ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

, (28)
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where | ®̄𝑌𝑏 | is the cardinality of ®̄𝑌𝑏 (𝑏 = 1, 2, · · · , 𝑒) and
𝑒∑︁

𝑏=1
| ®̄𝑌𝑏 | = 𝑞, 𝑔𝑏 is

the parameter in the partition ®̄𝑌𝑏 and 𝑔𝑏 = 1, 2, · · · , | ®̄𝑌𝑏 |. (𝜂1, 𝜂2, . . . , 𝜂𝑔𝑏 ) tra-
verses all the 𝑔𝑏-tuple combination of (1, 2, . . . , | ®̄𝑌𝑏 |), and 𝐶

𝑔𝑏

| ®̄𝑌𝑏 |
represents the

binomial coefficient satisfying 𝐶
𝑔𝑏

| ®̄𝑌𝑏 |
=

| ®̄𝑌𝑏 |!
𝑔𝑏!( | ®̄𝑌𝑏 | − 𝑔𝑏)!

. Meanwhile, 𝑇 ( ®̄Θ𝜂) =

𝑞∑︁
𝑜=1,𝜂≠𝑜

𝑆𝑢𝑝

( ®̄Θ𝜂,
®̄Θ𝑜

)
, 𝑆𝑢𝑝

( ®̄Θ𝜂,
®̄Θ𝑜

)
= 1−𝐷𝑖𝑠

( ®̄Θ𝜂,
®̄Θ𝑜

)
and 𝑆𝑢𝑝

( ®̄Θ𝜂,
®̄Θ𝑜

)
is the

support for ®̄Θ𝜂 from ®̄Θ𝑜, satisfying the following conditions: (1) 𝑆𝑢𝑝( ®̄Θ𝜂,
®̄Θ𝑜) ∈

[0, 1]; (2) 𝑆𝑢𝑝( ®̄Θ𝜂,
®̄Θ𝑜) = 𝑆𝑢𝑝( ®̄Θ𝑜,

®̄Θ𝜂); (3) 𝑆𝑢𝑝( ®̄Θ𝜂,
®̄Θ𝑜) ­ 𝑆𝑢𝑝( ®̄Θ𝑖,

®̄Θ 𝑗 ), if
𝐷𝑖𝑠( ®̄Θ𝜂,

®̄Θ𝑜) ¬ 𝐷𝑖𝑠( ®̄Θ𝑖,
®̄Θ 𝑗 ), here 𝐷𝑖𝑠( ®̄Θ𝜂,

®̄Θ𝑜) represents distance between ®̄Θ𝜂

and ®̄Θ𝑜 defined in Definition 4.

To simplify (28), let

®̄𝜛𝜂 =

𝜗𝜂

(
1 + 𝑇 ( ®̄Θ𝜂)

)
𝑞∑︁

𝑜=1
𝜗𝑜

(
1 + 𝑇 ( ®̄Θ𝑜)

) . (29)

Then (28) can be further expressed as

𝑆𝐹𝑊𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,...,𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=
1
𝑒

©­­­­­­«
𝑒⊕

𝑏=1

©­­­­­«
1

𝐶
𝑔𝑏

| ®̄𝑌𝑏 |

©­­­­­«
⊕
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

𝑔𝑏⊗
𝑥=1

(
𝑞 ®̄𝜛𝜂𝑥

®̄Θ𝜂𝑥

)ª®®®®®¬
ª®®®®®¬

1
𝑔𝑏 ª®®®®®®¬

(30)

Theorem 13 Let ®̄Θ𝜂 = ( ®̄𝜇𝜂, ®̄𝜋𝜂, ®̄𝜐𝜂) (𝜂 = 1, 2, . . . , 𝑞) be a set of SFNs with
parameter vector (𝑔1, 𝑔2, . . . , 𝑔𝑒), and 𝜗 = (𝜗1, 𝜗2, · · · , 𝜗𝑞)𝑇 is the weight vector

of ®̄Θ𝜂 (𝜂 = 1, 2, . . . , 𝑞), with 𝜗𝜂 ­ 0,
𝑞∑︁

𝜂=1
𝜗𝜂 = 1, then the aggregated value by
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SFWPPMSM operator is still a SFN, and

𝑆𝐹𝑊𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,...𝑔𝑒)
( ®̄Θ1, ®̄Θ2, · · · , ®̄Θ𝑞

)

=

√√√√√√√√√√√√√√√√√√1 −
©­­­­­­­«

𝑒∏
𝑏=1

©­­­­­­­«
1 −

©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
1 − ®̄𝜇2𝜂𝑥

)𝑞 ®̄𝜛𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®¬

ª®®®®®®®¬

1
𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜋𝜂𝑥

)2𝑞 ®̄𝜛𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1
𝑒

,

©­­­­­­­­«
𝑒∏

𝑏=1

√√√√√√√√√√√√√√√√1 − ©­­­­­­«
1 −

©­­­­­«
∏
1¬𝜂1<···
<𝜂𝑔𝑏¬|

®̄𝑌𝑏 |

(
1 −

𝑔𝑏∏
𝑥=1

(
1 −

(
®̄𝜐𝜂𝑥

)2𝑞 ®̄𝜛𝜂𝑥

))ª®®®®®¬

1
𝐶
𝑔𝑏

| ®̄𝑌𝑏 | ª®®®®®®¬

1
𝑔𝑏 ª®®®®®®®®¬

1
𝑒 ª®®®®®®®®®®¬
. (31)

The proof is similar to Theorem 10.

5. A novel method for MAGDM based on SFWPPMSM operator

For this section, we shall establish a novel approach for MAGDM with SFNs
by SFWPPMSM operator.
Let ®̄℘ = { ®̄℘1, ®̄℘2, · · · , ®̄℘𝑝} be the set of 𝑝 alternatives and ®̄ℵ =

{ ®̄ℵ1, ®̄ℵ2, · · · , ®̄ℵ𝑞} is the corresponding 𝑞 attributes with attribute weights 𝜗 =

(𝜗1, 𝜗2, · · · , 𝜗𝑞)𝑇 , 𝜗𝑘 ­ 0,
𝑞∑︁

𝑘=1
𝜗𝑘 = 1, and ®̄< = { ®̄<1, ®̄<2, · · · , ®̄<𝑧} stands for 𝑧

DMs, where ®̄𝛿 = ( ®̄𝛿1, ®̄𝛿2, · · · , ®̄𝛿𝑧)𝑇 stands for the weight vector of 𝑧 experts with
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®̄𝛿ℎ ­ 0 and
𝑧∑︁

ℎ=1

®̄𝛿ℎ = 1. Assume that attributes are divided into 𝑒 distinct partitions

®̄𝑌1, ®̄𝑌2, · · · , ®̄𝑌𝑒, and any 𝑔𝑏 attributes have an interrelationship in partition ®̄𝑌𝑏 but
attributes in distinct partitions are irrelevant.
Moreover, considering the uncertainty of evaluation environment inMAGDM

problems, SFNs are employed to express the preference information of DMs.
Let ®̄Ξℎ =

(
®̄Ξℎ
𝑓 𝑘

)
𝑝×𝑞
represents a spherical fuzzy decision matrix, where ®̄Ξℎ

𝑓 𝑘
=

( ®̄𝜇ℎ
𝑓 𝑘
, ®̄𝜋ℎ

𝑓 𝑘
, ®̄𝜐ℎ

𝑓 𝑘
) (ℎ = 1, 2, · · · , 𝑧) denotes SFN of the ℎ-th DM about the 𝑓 -th

alternative under the 𝑘-th attribute.
Next, we shall give the general steps of the established approach to MAGDM

issues.
Step 1. Acquire spherical fuzzy decision matrices by DMs.
Step 2. Normalize decision matrix ®̄Ξℎ (ℎ = 1, 2, . . . , 𝑧) depending on (32):

ˆ̄𝑊 ℎ =

(
ˆ̄𝑤ℎ
𝑓 𝑘

)
𝑝×𝑞

, 𝑓 = 1, 2, · · · , 𝑝; 𝑘 = 1, 2, · · · , 𝑞; ℎ = 1, 2, · · · , 𝑧,

ˆ̄𝑤ℎ
𝑓 𝑘 =

(
ˆ̄𝜇ℎ
𝑓 𝑘 ,
ˆ̄𝜋ℎ
𝑓 𝑘 ,
ˆ̄𝜐ℎ𝑓 𝑘

)
=


®̄Ξℎ
𝑓 𝑘

= ®̄𝜇ℎ
𝑓 𝑘
, ®̄𝜋ℎ

𝑓 𝑘
, ®̄𝜐ℎ

𝑓 𝑘
, for benefit attribute

( ®̄Ξℎ
𝑓 𝑘
)𝑐 =

(
®̄𝜐ℎ
𝑓 𝑘
, ®̄𝜋ℎ

𝑓 𝑘
, ®̄𝜇ℎ

𝑓 𝑘

)
, for cos 𝑡 attribute.

(32)

Step 3. Determine support by (33):

𝑆𝑢𝑝

(
ˆ̄𝑤ℎ
𝑓 𝑘 ,
ˆ̄𝑤𝑖
𝑓 𝑘

)
= 1 − 𝐷𝑖𝑠

(
ˆ̄𝑤ℎ
𝑓 𝑘 ,
ˆ̄𝑤𝑖
𝑓 𝑘

)
,

𝑓 = 1, 2, . . . , 𝑝; 𝑘 = 1, 2, . . . , 𝑞; ℎ, 𝑖 = 1, 2, . . . , 𝑧, ℎ ≠ 𝑖.
(33)

Here, 𝑆𝑢𝑝
(
ˆ̄𝑤ℎ
𝑓 𝑘
, ˆ̄𝑤𝑖

𝑓 𝑘

)
meets the support conditions, and 𝐷𝑖𝑠

(
ˆ̄𝑤ℎ
𝑓 𝑘
, ˆ̄𝑤𝑖

𝑓 𝑘

)
indi-

cates the distance measure computed by (9).
Step 4. Calculate the support degree 𝑇 ( ˆ̄𝑤ℎ

𝑓 𝑘
) of the SFN ˆ̄𝑤ℎ

𝑓 𝑘
to the other

SFNs ˆ̄𝑤𝑖
𝑓 𝑘
(ℎ, 𝑖 = 1, 2, · · · , 𝑧, ℎ ≠ 𝑖) with (34):

𝑇

(
ˆ̄𝑤ℎ
𝑓 𝑘

)
=

𝑧∑︁
𝑖=1,𝑖≠ℎ

𝑆𝑢𝑝

(
ˆ̄𝑤ℎ
𝑓 𝑘 ,
ˆ̄𝑤𝑖
𝑓 𝑘

)
. (34)
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Step 5. Compute power weights ®̄𝜛ℎ
𝑓 𝑘
by weight ®̄𝛿ℎ (ℎ = 1, 2, · · · , 𝑧) for DM

associated with the SFN ˆ̄𝑤ℎ
𝑓 𝑘
given as follow:

®̄𝜛ℎ
𝑓 𝑘 =

®̄𝛿ℎ
(
1 + 𝑇

(
ˆ̄𝑤ℎ
𝑓 𝑘

))
𝑧∑︁

ℎ=1

®̄𝛿ℎ
(
1 + 𝑇

(
ˆ̄𝑤ℎ
𝑓 𝑘

)) (ℎ = 1, 2, . . . , 𝑧) (35)

and ®̄𝜛ℎ
𝑓 𝑘
­ 0,

𝑧∑︁
ℎ=1

®̄𝜛ℎ
𝑓 𝑘 = 1.

Step 6. Get the comprehensive decision matrix ˜̄𝑊 =

(˜̄𝑤 𝑓 𝑘

)
𝑝×𝑞
.

Since there are no partition among DMs, all the individual decision matrices
ˆ̄𝑊 ℎ = ( ˆ̄𝑤ℎ

𝑓 𝑘
)𝑝×𝑞 are aggregated into comprehensive matrix ˜̄𝑊 =

(˜̄𝑤 𝑓 𝑘

)
𝑝×𝑞
by

using SFWPPMSM operator with 𝑒 = 1, and˜̄𝑤 𝑓 𝑘 = 𝑆𝐹𝑊𝑃𝑃𝑀𝑆𝑀 (𝑔1,𝑔2,··· ,𝑔𝑒)
(
ˆ̄𝑤1𝑓 𝑘 , ˆ̄𝑤

2
𝑓 𝑘 , · · · , ˆ̄𝑤

𝑧
𝑓 𝑘

)
= 𝑆𝐹𝑊𝑃𝑀𝑆𝑀𝑔

(
ˆ̄𝑤1𝑓 𝑘 , ˆ̄𝑤

2
𝑓 𝑘 , · · · , ˆ̄𝑤

𝑧
𝑓 𝑘

)
. (36)

Step 7. Calculate the support 𝑆𝑢𝑝(˜̄𝑤 𝑓 𝑘 , ˜̄𝑤 𝑓 𝑟) by (37):

𝑆𝑢𝑝

(˜̄𝑤 𝑓 𝑘 , ˜̄𝑤 𝑓 𝑟

)
= 1 − 𝐷𝑖𝑠

(˜̄𝑤 𝑓 𝑘 , ˜̄𝑤 𝑓 𝑟

)
,

( 𝑓 = 1, 2, . . . , 𝑝; 𝑘, 𝑟 = 1, 2, . . . , 𝑞, 𝑘 ≠ 𝑟),
(37)

where, 𝐷𝑖𝑠(˜̄𝑤 𝑓 𝑘 , ˜̄𝑤 𝑓 𝑟) is computed by Definition 4.
Step 8. Determine the support degree 𝑇 (˜̄𝑤 𝑓 𝑘 ) of the SFN ˜̄𝑤 𝑓 𝑘 to the other SFNs˜̄𝑤 𝑓 𝑟 (𝑟 = 1, 2, . . . , 𝑞, 𝑟 ≠ 𝑘) with (38):

𝑇

(˜̄𝑤 𝑓 𝑘

)
=

𝑞∑︁
𝑟=1,𝑟≠𝑘

𝑆𝑢𝑝

(˜̄𝑤 𝑓 𝑘 , ˜̄𝑤 𝑓 𝑟

)
. (38)

Step 9.Obtain the powerweights ℓ 𝑓 𝑘 ( 𝑓 = 1, 2, · · · , 𝑝, 𝑘 = 1, 2, · · · , 𝑞) associated
with the SFN ˜̄𝑤 𝑓 𝑘 by attribute weight 𝜗𝑘 , and

ℓ 𝑓 𝑘 =

𝜗𝑘

(
1 + 𝑇

(˜̄𝑤 𝑓 𝑘

))
𝑞∑︁

𝑘=1
𝜗𝑘

(
1 + 𝑇

(˜̄𝑤 𝑓 𝑘

)) . (39)
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Step 10. Aggregate all SFNs ˜̄𝑤 𝑓 𝑘 to obtain the total assessment value ˜̄𝑤 𝑓 of each
alternative by using the SFWPPMSM operator,˜̄𝑤 𝑓 = 𝑆𝐹𝑊𝑃𝑃𝑀𝑆𝑀 (˜̄𝑤 𝑓 1, ˜̄𝑤 𝑓 2, . . . , ˜̄𝑤 𝑓 𝑞), ( 𝑓 = 1, 2, . . . , 𝑝). (40)

Step 11. Determine the score 𝑆 𝑓
(˜̄𝑤 𝑓

)
( 𝑓 = 1, 2, . . . , 𝑝) by Definition 3.

Step 12. Sort all alternatives based on 𝑆 𝑓
(˜̄𝑤 𝑓

)
( 𝑓 = 1, 2, . . . , 𝑝). The largest

score value is the best alternative. If 𝑆 𝑓
(˜̄𝑤 𝑓

)
= 𝑆 𝑓

(˜̄𝑤𝑡

)
( 𝑓 , 𝑡 = 1, 2, . . . , 𝑝,

𝑡 ≠ 𝑓 ), then sort alternatives ®̄< 𝑓 and ®̄<𝑡 according to the accuracy degrees
𝐴 𝑓

(˜̄𝑤 𝑓

)
and 𝐴 𝑓

(˜̄𝑤𝑡

)
, the more the accuracy degree is , the alternative will be.

6. Numerical example and discussion

6.1. Numerical example

In this part, we certify the practicability and feasibility of the established
method with an example of hydroelectric power plant construction projects.

Example 1 Suppose a company invites three experienced experts ( ®̄<1, ®̄<2, ®̄<3)
to evaluate the following five projects ( ®̄℘1, ®̄℘2, ®̄℘3, ®̄℘4, ®̄℘5) according to five
attributes: (1) workforce quantity ®̄ℵ1, (2) power generation capacity ®̄ℵ2, (3) con-
struction cost ®̄ℵ3, (4) environmental damage impact ®̄ℵ4, (5) security level ®̄ℵ5
to build a hydroelectric power plant, where ®̄ℵ1, ®̄ℵ3 and ®̄ℵ4 are cost attributes.
(0.35, 0.4, 0.25)𝑇 is the weight vector of three experts ®̄<1, ®̄<2, ®̄<3, and the
weights of attributes ®̄ℵ1, ®̄ℵ2, ®̄ℵ3, ®̄ℵ4, ®̄ℵ5 are 0.16, 0.25, 0.21, 0.20 and 0.18 sepa-
rately. Assume that five attributes are divided into two parts: ®̄𝑌1 = { ®̄ℵ1, ®̄ℵ3} and
®̄𝑌2 = { ®̄ℵ2, ®̄ℵ4, ®̄ℵ5}, that is, workforce quantity and construction cost are classified
as part ®̄𝑌1 and power generation capacity, environmental damage impact and secu-
rity level are classified as part ®̄𝑌2. The evaluation information obtained by experts
using SFNs is presented in Tables 1–3. Next, we use the established approach to
deal with this problem.

Step 1. Evaluation matrices of DMs are given in Tables 1–3, so Step 1 has
been completed.

Step 2. Normalize the attributes by (32) (see Tables 4–6).
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Table 1: The evaluation information from ®̄<1

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.3,0.4,0.5) (0.3,0.6,0.4) (0.6,0.3,0.3) (0.5,0.5,0.5) (0.2,0.3,0.5)
®̄℘2 (0.6,0.4,0.5) (0.3,0.2,0.1) (0.3,0.3,0.7) (0.3,0.2,0.3) (0.3,0.6,0.4)
®̄℘3 (0.1,0.2,0.5) (0.7,0.2,0.3) (0.1,0.2,0.8) (0.2,0.6,0.5) (0.8,0.1,0.4)
®̄℘4 (0.2,0.5,0.6) (0.9,0.1,0.1) (0.4,0.5,0.2) (0.4,0.7,0.4) (0.4,0.5,0.5)
®̄℘5 (0.6,0.5,0.1) (0.6,0.4,0.2) (0.1,0.2,0.8) (0.5,0.1,0.4) (0.3,0.2,0.7)

Table 2: The evaluation information from ®̄<2

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.3,0.4,0.6) (0.4,0.6,0.4) (0.5,0.2,0.8) (0.3,0.4,0.5) (0.5,0.4,0.3)
®̄℘2 (0.6,0.5,0.5) (0.3,0.1,0.8) (0.4,0.8,0.4) (0.8,0.1,0.2) (0.9,0.3,0.1)
®̄℘3 (0.3,0.2,0.5) (0.7,0.6,0.2) (0.1,0.7,0.3) (0.2,0.6,0.7) (0.7,0.6,0.3)
®̄℘4 (0.5,0.5,0.6) (0.3,0.8,0.2) (0.4,0.7,0.5) (0.3,0.8,0.4) (0.4,0.3,0.6)
®̄℘5 (0.2,0.8,0.1) (0.5,0.6,0.4) (0.4,0.2,0.3) (0.1,0.1,0.8) (0.3,0.6,0.4)

Table 3: The evaluation information from ®̄<3

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.6,0.7,0.1) (0.3,0.1,0.7) (0.4,0.6,0.3) (0.3,0.7,0.4) (0.3,0.4,0.6)
®̄℘2 (0.2,0.3,0.5) (0.4,0.3,0.5) (0.6,0.4,0.2) (0.5,0.2,0.6) (0.2,0.7,0.4)
®̄℘3 (0.2,0.3,0.9) (0.7,0.2,0.3) (0.2,0.3,0.7) (0.4,0.3,0.5) (0.3,0.4,0.2)
®̄℘4 (0.2,0.1,0.5) (0.3,0.3,0.7) (0.2,0.5,0.1) (0.2,0.1,0.3) (0.5,0.5,0.6)
®̄℘5 (0.1,0.4,0.2) (0.6,0.6,0.4) (0.4,0.6,0.4) (0.1,0.5,0.2) (0.3,0.1,0.7)

Step 3. Determine support 𝑆𝑢𝑝
(
ˆ̄𝑤ℎ
𝑓 𝑘
, ˆ̄𝑤𝑖

𝑓 𝑘

)
by (33). For simplicity, let

𝑆𝑢𝑝

(
ˆ̄𝑤ℎ
𝑓 𝑘
, ˆ̄𝑤𝑖

𝑓 𝑘

)
= ˆ̄𝑆ℎ𝑖

𝑓 𝑘
, then we have

ˆ̄𝑆1211 =
ˆ̄𝑆2111 = 0.96333,

ˆ̄𝑆1212 =
ˆ̄𝑆2112 = 0.97667,

ˆ̄𝑆1213 =
ˆ̄𝑆2113 = 0.76333,

ˆ̄𝑆1214 =
ˆ̄𝑆2114 = 0.91667,

ˆ̄𝑆1215 =
ˆ̄𝑆2151 = 0.85333,

ˆ̄𝑆1221 =
ˆ̄𝑆2121 = 0.97000,

ˆ̄𝑆1222 =
ˆ̄𝑆2122 = 0.78000,

ˆ̄𝑆1223 =
ˆ̄𝑆2123 = 0.68333,

ˆ̄𝑆1224 =
ˆ̄𝑆2124 = 0.79000,
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Table 4: Normalized evaluation information of ®̄<1

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.5,0.4,0.3) (0.3,0.6,0.4) (0.3,0.3,0.6) (0.5,0.5,0.5) (0.2,0.3,0.5)
®̄℘2 (0.5,0.4,0.6) (0.3,0.2,0.1) (0.7,0.3,0.3) (0.3,0.2,0.3) (0.3,0.6,0.4)
®̄℘3 (0.5,0.2,0.1) (0.7,0.2,0.3) (0.8,0.2,0.1) (0.5,0.6,0.2) (0.8,0.1,0.4)
®̄℘4 (0.6,0.5,0.2) (0.9,0.1,0.1) (0.2,0.5,0.4) (0.4,0.7,0.4) (0.4,0.5,0.5)
®̄℘5 (0.1,0.5,0.6) (0.6,0.4,0.2) (0.8,0.2,0.1) (0.4,0.1,0.5) (0.3,0.2,0.7)

Table 5: Normalized evaluation information of ®̄<2

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.6,0.4,0.3) (0.4,0.6,0.4) (0.8,0.2,0.5) (0.5,0.4,0.3) (0.5,0.4,0.3)
®̄℘2 (0.5,0.5,0.6) (0.3,0.1,0.8) (0.4,0.8,0.4) (0.2,0.1,0.8) (0.9,0.3,0.1)
®̄℘3 (0.5,0.2,0.3) (0.7,0.6,0.2) (0.3,0.7,0.1) (0.7,0.6,0.2) (0.7,0.6,0.3)
®̄℘4 (0.6,0.5,0.5) (0.3,0.8,0.2) (0.5,0.7,0.4) (0.4,0.8,0.3) (0.4,0.3,0.6)
®̄℘5 (0.1,0.8,0.2) (0.5,0.6,0.4) (0.3,0.2,0.4) (0.8,0.1,0.1) (0.3,0.6,0.4)

Table 6: Normalized evaluation information of ®̄<3

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.1,0.7,0.6) (0.3,0.1,0.7) (0.3,0.6,0.4) (0.4,0.7,0.3) (0.3,0.4,0.6)
®̄℘2 (0.5,0.3,0.2) (0.4,0.3,0.5) (0.2,0.4,0.6) (0.6,0.2,0.5) (0.2,0.7,0.4)
®̄℘3 (0.9,0.3,0.2) (0.7,0.2,0.3) (0.7,0.3,0.2) (0.5,0.3,0.4) (0.3,0.4,0.2)
®̄℘4 (0.5,0.1,0.2) (0.3,0.3,0.7) (0.1,0.5,0.2) (0.3,0.1,0.2) (0.5,0.5,0.6)
®̄℘5 (0.2,0.4,0.1) (0.6,0.6,0.4) (0.4,0.6,0.4) (0.2,0.5,0.1) (0.3,0.1,0.7)

ˆ̄𝑆1225 =
ˆ̄𝑆2125 = 0.62000,

ˆ̄𝑆1231 =
ˆ̄𝑆2131 = 0.97333,

ˆ̄𝑆1232 =
ˆ̄𝑆2132 = 0.87667,

ˆ̄𝑆1233 =
ˆ̄𝑆2133 = 0.66667,

ˆ̄𝑆1234 =
ˆ̄𝑆2134 = 0.92000,

ˆ̄𝑆1235 =
ˆ̄𝑆2135 = 0.81000,

ˆ̄𝑆1241 =
ˆ̄𝑆2141 = 0.93000,

ˆ̄𝑆1242 =
ˆ̄𝑆2142 = 0.54000,

ˆ̄𝑆1243 =
ˆ̄𝑆2143 = 0.85000,

ˆ̄𝑆1244 =
ˆ̄𝑆2144 = 0.92667,

ˆ̄𝑆1245 =
ˆ̄𝑆2145 = 0.91000,

ˆ̄𝑆1251 =
ˆ̄𝑆2151 = 0.76333,

ˆ̄𝑆1252 =
ˆ̄𝑆2152 = 0.85667,

ˆ̄𝑆1253 =
ˆ̄𝑆2153 = 0.76667,

ˆ̄𝑆1254 =
ˆ̄𝑆2154 = 0.76000,

ˆ̄𝑆1255 =
ˆ̄𝑆2155 = 0.78333,

ˆ̄𝑆1311 =
ˆ̄𝑆3111 = 0.72000,

ˆ̄𝑆1312 =
ˆ̄𝑆3112 = 0.77333,
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ˆ̄𝑆1313 =
ˆ̄𝑆3113 = 0.84333,

ˆ̄𝑆1314 =
ˆ̄𝑆3114 = 0.83667,

ˆ̄𝑆1315 =
ˆ̄𝑆3115 = 0.92333,

ˆ̄𝑆1321 =
ˆ̄𝑆3121 = 0.87000,

ˆ̄𝑆1322 =
ˆ̄𝑆3122 = 0.88000,

ˆ̄𝑆1323 =
ˆ̄𝑆3123 = 0.73667,

ˆ̄𝑆1324 =
ˆ̄𝑆3124 = 0.85667,

ˆ̄𝑆1325 =
ˆ̄𝑆3125 = 0.94000,

ˆ̄𝑆1331 =
ˆ̄𝑆3131 = 0.78667,

ˆ̄𝑆1332 =
ˆ̄𝑆3132 = 1.00000,

ˆ̄𝑆1333 =
ˆ̄𝑆3133 = 0.92333,

ˆ̄𝑆1334 =
ˆ̄𝑆3134 = 0.87000,

ˆ̄𝑆1335 =
ˆ̄𝑆3135 = 0.72667,

ˆ̄𝑆1341 =
ˆ̄𝑆3141 = 0.88333,

ˆ̄𝑆1342 =
ˆ̄𝑆3142 = 0.57333,

ˆ̄𝑆1343 =
ˆ̄𝑆3143 = 0.95000,

ˆ̄𝑆1344 =
ˆ̄𝑆3144 = 0.77667,

ˆ̄𝑆1345 =
ˆ̄𝑆3145 = 0.93333,

ˆ̄𝑆1351 =
ˆ̄𝑆3151 = 0.84333,

ˆ̄𝑆1352 =
ˆ̄𝑆3152 = 0.89333,

ˆ̄𝑆1353 =
ˆ̄𝑆3153 = 0.68333,

ˆ̄𝑆1354 =
ˆ̄𝑆3154 = 0.80000,

ˆ̄𝑆1355 =
ˆ̄𝑆3155 = 0.99000,

ˆ̄𝑆2311 =
ˆ̄𝑆3211 = 0.68333,

ˆ̄𝑆2312 =
ˆ̄𝑆3212 = 0.75000,

ˆ̄𝑆2313 =
ˆ̄𝑆3213 = 0.68000,

ˆ̄𝑆2314 =
ˆ̄𝑆3214 = 0.86000,

ˆ̄𝑆2315 =
ˆ̄𝑆3215 = 0.85667,

ˆ̄𝑆2321 =
ˆ̄𝑆3221 = 0.84000,

ˆ̄𝑆2322 =
ˆ̄𝑆3222 = 0.82000,

ˆ̄𝑆2323 =
ˆ̄𝑆3223 = 0.73333,

ˆ̄𝑆2324 =
ˆ̄𝑆3224 = 0.75333,

ˆ̄𝑆2325 =
ˆ̄𝑆3225 = 0.56000,

ˆ̄𝑆2331 =
ˆ̄𝑆3231 = 0.78000,

ˆ̄𝑆2332 =
ˆ̄𝑆3232 = 0.87667,

ˆ̄𝑆2333 =
ˆ̄𝑆3233 = 0.72333,

ˆ̄𝑆2334 =
ˆ̄𝑆3234 = 0.79000,

ˆ̄𝑆2335 =
ˆ̄𝑆3235 = 0.78333,

ˆ̄𝑆2341 =
ˆ̄𝑆3241 = 0.81333,

ˆ̄𝑆2342 =
ˆ̄𝑆3242 = 0.66667,

ˆ̄𝑆2343 =
ˆ̄𝑆3243 = 0.80000,

ˆ̄𝑆2344 =
ˆ̄𝑆3244 = 0.75000,

ˆ̄𝑆2345 =
ˆ̄𝑆3245 = 0.91667,

ˆ̄𝑆2351 =
ˆ̄𝑆3251 = 0.82000,

ˆ̄𝑆2352 =
ˆ̄𝑆3252 = 0.96333,

ˆ̄𝑆2353 =
ˆ̄𝑆3253 = 0.87000,

ˆ̄𝑆2354 =
ˆ̄𝑆3254 = 0.72000,

ˆ̄𝑆2355 =
ˆ̄𝑆3255 = 0.77333.

Step 4. Calculate the support degree 𝑇 ( ˆ̄𝑤ℎ
𝑓 𝑘
) with (34). For simplicity, let

𝑇 ( ˆ̄𝑤ℎ
𝑓 𝑘
) = ˆ̄𝑇 ℎ

𝑓 𝑘
, then we have

ˆ̄𝑇111 = 1.68333,
ˆ̄𝑇112 = 1.75000,

ˆ̄𝑇113 = 1.60667,
ˆ̄𝑇114 = 1.75333,

ˆ̄𝑇115 = 1.77667,

ˆ̄𝑇121 = 1.84000,
ˆ̄𝑇122 = 1.66000,

ˆ̄𝑇123 = 1.42000,
ˆ̄𝑇124 = 1.64667,

ˆ̄𝑇125 = 1.56000,

ˆ̄𝑇131 = 1.76000,
ˆ̄𝑇132 = 1.87667,

ˆ̄𝑇133 = 1.59000,
ˆ̄𝑇134 = 1.79000,

ˆ̄𝑇135 = 1.53667,

ˆ̄𝑇141 = 1.81333,
ˆ̄𝑇142 = 1.11333,

ˆ̄𝑇143 = 1.80000,
ˆ̄𝑇144 = 1.70333,

ˆ̄𝑇145 = 1.84333,

ˆ̄𝑇151 = 1.60667,
ˆ̄𝑇152 = 1.75000,

ˆ̄𝑇153 = 1.45000,
ˆ̄𝑇154 = 1.56000,

ˆ̄𝑇155 = 1.77333,
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ˆ̄𝑇211 = 1.64667,
ˆ̄𝑇212 = 1.72667,

ˆ̄𝑇213 = 1.44333,
ˆ̄𝑇214 = 1.77667,

ˆ̄𝑇215 = 1.71000,
ˆ̄𝑇221 = 1.81000,

ˆ̄𝑇222 = 1.60000,
ˆ̄𝑇223 = 1.41667,

ˆ̄𝑇224 = 1.54333,
ˆ̄𝑇225 = 1.18000,

ˆ̄𝑇231 = 1.75333,
ˆ̄𝑇232 = 1.75333,

ˆ̄𝑇233 = 1.39000,
ˆ̄𝑇234 = 1.71000,

ˆ̄𝑇235 = 1.59333,
ˆ̄𝑇241 = 1.74333,

ˆ̄𝑇242 = 1.20667,
ˆ̄𝑇243 = 1.65000,

ˆ̄𝑇244 = 1.67667,
ˆ̄𝑇245 = 1.82667,

ˆ̄𝑇251 = 1.58333,
ˆ̄𝑇252 = 1.82000,

ˆ̄𝑇253 = 1.63667,
ˆ̄𝑇254 = 1.48000,

ˆ̄𝑇255 = 1.55667,
ˆ̄𝑇311 = 1.40333,

ˆ̄𝑇312 = 1.52333,
ˆ̄𝑇313 = 1.52333,

ˆ̄𝑇314 = 1.69667,
ˆ̄𝑇315 = 1.78000,

ˆ̄𝑇321 = 1.71000,
ˆ̄𝑇322 = 1.70000,

ˆ̄𝑇323 = 1.47000,
ˆ̄𝑇324 = 1.61000,

ˆ̄𝑇325 = 1.50000,
ˆ̄𝑇331 = 1.56667,

ˆ̄𝑇332 = 1.87667,
ˆ̄𝑇333 = 1.64667,

ˆ̄𝑇334 = 1.66000,
ˆ̄𝑇335 = 1.51000,

ˆ̄𝑇341 = 1.69667,
ˆ̄𝑇342 = 1.24000,

ˆ̄𝑇343 = 1.75000,
ˆ̄𝑇324 = 1.52667,

ˆ̄𝑇325 = 1.85000,
ˆ̄𝑇351 = 1.66333,

ˆ̄𝑇352 = 1.85667,
ˆ̄𝑇353 = 1.55333,

ˆ̄𝑇354 = 1.52000,
ˆ̄𝑇355 = 1.76333.

Step 5. Compute power weights ®̄𝜛ℎ
𝑓 𝑘
(ℎ = 1, 2, 3, 𝑓 , 𝑘 = 1, . . . , 5) by utiliz-

ing (35).

®̄𝜛111 = 0.36140, ®̄𝜛112 = 0.35861, ®̄𝜛113 = 0.36197, ®̄𝜛114 = 0.35062, ®̄𝜛115 = 0.35329,

®̄𝜛121 = 0.35557, ®̄𝜛122 = 0.35185, ®̄𝜛123 = 0.34839, ®̄𝜛124 = 0.35681, ®̄𝜛125 = 0.37443,
®̄𝜛131 = 0.35659, ®̄𝜛132 = 0.35611, ®̄𝜛133 = 0.35913, ®̄𝜛134 = 0.35828, ®̄𝜛135 = 0.34781,
®̄𝜛141 = 0.35726, ®̄𝜛142 = 0.33893, ®̄𝜛143 = 0.35930, ®̄𝜛144 = 0.35725, ®̄𝜛145 = 0.35062,
®̄𝜛151 = 0.34935, ®̄𝜛152 = 0.34318, ®̄𝜛153 = 0.33621, ®̄𝜛154 = 0.35584, ®̄𝜛155 = 0.36163,
®̄𝜛211 = 0.40739, ®̄𝜛212 = 0.40636, ®̄𝜛213 = 0.38775, ®̄𝜛214 = 0.40410, ®̄𝜛215 = 0.39406,
®̄𝜛221 = 0.40207, ®̄𝜛222 = 0.39305, ®̄𝜛223 = 0.39761, ®̄𝜛224 = 0.39186, ®̄𝜛225 = 0.36440,
®̄𝜛231 = 0.40655, ®̄𝜛232 = 0.38953, ®̄𝜛233 = 0.37874, ®̄𝜛234 = 0.39773, ®̄𝜛235 = 0.40637,
®̄𝜛241 = 0.39814, ®̄𝜛242 = 0.40446, ®̄𝜛243 = 0.38863, ®̄𝜛244 = 0.40425, ®̄𝜛245 = 0.39836,
®̄𝜛251 = 0.39569, ®̄𝜛252 = 0.40219, ®̄𝜛253 = 0.41351, ®̄𝜛254 = 0.39396, ®̄𝜛255 = 0.38100,
®̄𝜛311 = 0.23121, ®̄𝜛312 = 0.23503, ®̄𝜛313 = 0.25028, ®̄𝜛314 = 0.24529, ®̄𝜛315 = 0.25265,
®̄𝜛321 = 0.24235, ®̄𝜛322 = 0.25510, ®̄𝜛323 = 0.25399, ®̄𝜛324 = 0.25133, ®̄𝜛325 = 0.26118,
®̄𝜛331 = 0.23686, ®̄𝜛332 = 0.25436, ®̄𝜛333 = 0.26213, ®̄𝜛334 = 0.24399, ®̄𝜛335 = 0.24582,
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®̄𝜛341 = 0.24460, ®̄𝜛342 = 0.25661, ®̄𝜛343 = 0.25206, ®̄𝜛344 = 0.23850, ®̄𝜛345 = 0.25103,
®̄𝜛351 = 0.25496, ®̄𝜛352 = 0.25464, ®̄𝜛353 = 0.25028, ®̄𝜛354 = 0.25020, ®̄𝜛355 = 0.25737.

Step 6. Get the comprehensive decision matrix ˜̄𝑊 =

(˜̄𝑤 𝑓 𝑘

)
𝑝×𝑞
by (36) (suppose

𝑔 = 1), the results are shown in Table 7.

Table 7: Comprehensive decision matrix

Alterna-
tives

®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.50,0.46,0.35) (0.35,0.39,0.46) (0.60,0.30,0.51) (0.48,0.50,0.36) (0.38,0.36,0.43)
®̄℘2 (0.50,0.41,0.46) (0.33,0.17,0.34) (0.52,0.48,0.40) (0.39,0.15,0.50) (0.69,0.49,0.24)
®̄℘3 (0.68,0.22,0.18) (0.70,0.31,0.26) (0.66,0.36,0.12) (0.60,0.51,0.24) (0.69,0.29,0.30)
®̄℘4 (0.58,0.34,0.29) (0.68,0.31,0.22) (0.35,0.57,0.34) (0.38,0.46,0.30) (0.43,0.41,0.56)
®̄℘5 (0.13,0.57,0.25) (0.56,0.52,0.32) (0.59,0.26,0.25) (0.61,0.15,0.18) (0.30,0.25,0.57)

Step 7. Calculate the support 𝑆𝑢𝑝(˜̄𝑤 𝑓 𝑘 , ˜̄𝑤 𝑓 𝑟) by (37), for convenience, let
𝑆𝑢𝑝(˜̄𝑤 𝑓 𝑘 , ˜̄𝑤 𝑓 𝑟) = 𝑆𝑘𝑟

𝑓
, then

𝑆121 =𝑆
21
1 =0.91083, 𝑆122 =𝑆

21
2 =0.87519, 𝑆123 =𝑆

21
3 =0.96362, 𝑆124 =𝑆

21
4 =0.93838,

𝑆125 =𝑆
21
5 =0.86997, 𝑆131 =𝑆

31
1 =0.88002, 𝑆132 =𝑆

31
2 =0.95638, 𝑆133 =𝑆

31
3 =0.96084,

𝑆134 =𝑆
31
4 =0.84851, 𝑆135 =𝑆

31
5 =0.80466, 𝑆141 =𝑆

41
1 =0.97828, 𝑆142 =𝑆

41
2 =0.90551,

𝑆143 =𝑆
41
3 =0.88935, 𝑆144 =𝑆

41
4 =0.89967, 𝑆145 =𝑆

41
5 =0.76981, 𝑆151 =𝑆

51
1 =0.91814,

𝑆152 =𝑆
51
2 =0.84981, 𝑆153 =𝑆

51
3 =0.96222, 𝑆154 =𝑆

51
4 =0.85413, 𝑆155 =𝑆

51
5 =0.80313,

𝑆231 =𝑆
32
1 =0.88173, 𝑆232 =𝑆

32
2 =0.56523, 𝑆233 =𝑆

32
3 =0.95491, 𝑆234 =𝑆

32
4 =0.78689,

𝑆235 =𝑆
32
5 =0.91041, 𝑆241 =𝑆

42
1 =0.90658, 𝑆242 =𝑆

42
2 =0.93977, 𝑆243 =𝑆

42
3 =0.89819,

𝑆244 =𝑆
42
4 =0.83805, 𝑆245 =𝑆

42
5 =0.87391, 𝑆251 =𝑆

52
1 =0.97636, 𝑆252 =𝑆

52
2 =0.78821,

𝑆253 =𝑆
52
3 =0.98510, 𝑆254 =𝑆

52
4 =0.79251, 𝑆255 =𝑆

52
5 =0.78127, 𝑆341 =𝑆

43
1 =0.86147,

𝑆342 =𝑆
43
2 =0.86188, 𝑆343 =𝑆

43
3 =0.91547, 𝑆344 =𝑆

43
4 =0.94885, 𝑆345 =𝑆

43
5 =0.96350,

𝑆351 =𝑆
53
1 =0.88880, 𝑆352 =𝑆

53
2 =0.89343, 𝑆353 =𝑆

53
3 =0.94729, 𝑆354 =𝑆

53
4 =0.85839,

𝑆355 =𝑆
53
5 =0.82716, 𝑆451 =𝑆

54
1 =0.91389, 𝑆452 =𝑆

54
2 =0.75531, 𝑆453 =𝑆

54
3 =0.89058,

𝑆454 =𝑆
54
4 =0.89507, 𝑆455 =𝑆

54
5 =0.79377.
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Step 8. Determine the support degree 𝑇 (˜̄𝑤 𝑓 𝑘 ) ( 𝑓 , 𝑘 = 1, 2, · · · , 5) by (38) (see
Table 8).
Step 9. Obtain the power weights ℓ 𝑓 𝑘 ( 𝑓 , 𝑘 = 1, 2, · · · , 5) based on (39) (see
Table 9).

Table 8: The support degree (𝑇 (˜̄𝑤 𝑓 𝑘))5×5

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 3.68726 3.67550 3.51203 3.66022 3.69718
®̄℘2 3.58689 3.46840 3.57692 3.46247 3.28677
®̄℘3 3.77603 3.80182 3.77851 3.59359 3.78519
®̄℘4 3.54069 3.35583 3.44264 3.58163 3.40011
®̄℘5 3.24757 3.43555 3.50573 3.40098 3.20533

Table 9: Power weight matrix ℓ = (ℓ 𝑓 𝑘)5×5

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 0.16149 0.25170 0.20404 0.20070 0.18207
®̄℘2 0.16395 0.24956 0.21472 0.19938 0.17238
®̄℘3 0.16094 0.25283 0.21134 0.19349 0.18140
®̄℘4 0.16301 0.24434 0.20933 0.20560 0.17771
®̄℘5 0.15545 0.25364 0.21643 0.20133 0.17314

Step 10.Obtain the total assessment value ˜̄𝑤 𝑓 of each alternative over all attributes
by (40) (suppose 𝑔1 = 𝑔2 = 2), and˜̄𝑤1 = (0.47288, 0.42042, 0.43136), ˜̄𝑤2 = (0.48109, 0.35864, 0.40782),˜̄𝑤3 = (0.66132, 0.34163, 0.22583), ˜̄𝑤4 = (0.47092, 0.43934, 0.35584),˜̄𝑤5 = (0.41707, 0.39792, 0.31896).
Step 11. Determine the score 𝑆 𝑓 (˜̄𝑤 𝑓 ) ( 𝑓 = 1, 2, . . . , 5) by Definition 4.

𝑆 𝑓 (˜̄𝑤1) = 0.54037, 𝑆 𝑓 (˜̄𝑤2) = 0.57154, 𝑆 𝑓 (˜̄𝑤3) = 0.69795,
𝑆 𝑓 (˜̄𝑤4) = 0.55858, 𝑆 𝑓 (˜̄𝑤5) = 0.56673.

Step 12. Rank all alternatives to obtain the optimal one based on 𝑆 𝑓 (˜̄𝑤 𝑓 )
( 𝑓 = 1, 2, . . . , 5).

®̄℘3 > ®̄℘2 > ®̄℘5 > ®̄℘4 > ®̄℘1 .
Through the above calculation, it can be concluded that ®̄℘3 is the best hydropower
station construction project.
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6.2. The influence of parameters on results

Next, we take different values of parameters 𝑔1, 𝑔2 to study their influence on
evaluation results, as shown in Table 10.

Table 10: The evaluation results of SFWPPMSM operator under different parameter
values

Methods Score values Rankings

𝑔1 = 1, 𝑔2 = 1
𝑆 𝑓 ( ®̄℘1) = 0.55383, 𝑆 𝑓 ( ®̄℘2) = 0.60043,
𝑆 𝑓 ( ®̄℘3) = 0.71310, 𝑆 𝑓 ( ®̄℘4) = 0.59065,
𝑆 𝑓 ( ®̄℘5) = 0.63206

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

𝑔1 = 1, 𝑔2 = 2
𝑆 𝑓 ( ®̄℘1) = 0.55038, 𝑆 𝑓 ( ®̄℘2) = 0.57474,
𝑆 𝑓 ( ®̄℘3) = 0.70491, 𝑆 𝑓 ( ®̄℘4) = 0.56418,
𝑆 𝑓 ( ®̄℘5) = 0.60919

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

𝑔1 = 1, 𝑔2 = 3
𝑆 𝑓 ( ®̄℘1) = 0.54884, 𝑆 𝑓 ( ®̄℘2) = 0.55643,
𝑆 𝑓 ( ®̄℘3) = 0.70114, 𝑆 𝑓 ( ®̄℘4) = 0.55337,
𝑆 𝑓 ( ®̄℘5) = 0.59202

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

𝑔1 = 2, 𝑔2 = 1
𝑆 𝑓 ( ®̄℘1) = 0.54394, 𝑆 𝑓 ( ®̄℘2) = 0.59736,
𝑆 𝑓 ( ®̄℘3) = 0.70631, 𝑆 𝑓 ( ®̄℘4) = 0.58545,
𝑆 𝑓 ( ®̄℘5) = 0.59226

®̄℘3 > ®̄℘2 > ®̄℘5 > ®̄℘4 > ®̄℘1

𝑔1 = 2, 𝑔2 = 2
𝑆 𝑓 ( ®̄℘1) = 0.54037, 𝑆 𝑓 ( ®̄℘2) = 0.57154,
𝑆 𝑓 ( ®̄℘3) = 0.69795, 𝑆 𝑓 ( ®̄℘4) = 0.55858,
𝑆 𝑓 ( ®̄℘5) = 0.56673

®̄℘3 > ®̄℘2 > ®̄℘5 > ®̄℘4 > ®̄℘1

𝑔1 = 2, 𝑔2 = 3
𝑆 𝑓 ( ®̄℘1) = 0.53878, 𝑆 𝑓 ( ®̄℘2) = 0.55316,
𝑆 𝑓 ( ®̄℘3) = 0.69411, 𝑆 𝑓 ( ®̄℘4) = 0.54763,
𝑆 𝑓 ( ®̄℘5) = 0.54704

®̄℘3 > ®̄℘2 > ®̄℘4 > ®̄℘5 > ®̄℘1

As can be seen from Table 10, for different values of parameters 𝑔1, 𝑔2, the
optimal alternative ®̄℘3 and the worst alternative ®̄℘1 stay the same, whereas the
orders of alternatives ®̄℘2, ®̄℘4, ®̄℘5 have changed for different values of 𝑔1, 𝑔2. The
reason for the difference is that the relational structure of attributes has changed
about different parameter values. The variation of parameters can capture any
types of interrelationships among attributes in the same partition. According to
the characteristics of SFWPPMSM operator, parameters 𝑔1, 𝑔2 can reflect DMs’
risk attitude. In the actual decision making, DMs can set appropriate parameter
values according to their own risk attitude. When DMs pursue the risk type, they
can assign large parameter values 𝑔1, 𝑔2 within the allowable range. Otherwise,
smaller parameter values 𝑔1, 𝑔2 will be assigned if DMs is risk-averse. Thus, DMs
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can choose suitable parameter values to make decisions according to the actual
meaning of attributes and personal preference. In addition, it is observed that the
more interrelationships among attributes are considered in the same partition, the
smaller the scores will be.

6.3. Comparative analysis

6.3.1. The effectiveness of the proposed method

In this part, we deal with aforementioned example by existing methods under
SFSs to illustrate the effectiveness of the proposed method. The results are shown
in Table 11.

Table 11: Score values and orders of different methods in Example 1

Methods Score values Orders

SFNWAA [32]
𝑆 𝑓 ( ®̄℘1) = 0.55301, 𝑆 𝑓 ( ®̄℘2) = 0.61742,
𝑆 𝑓 ( ®̄℘3) = 0.70941, 𝑆 𝑓 ( ®̄℘4) = 0.60241,
𝑆 𝑓 ( ®̄℘5) = 0.63770

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

SFNWGA [32]
𝑆 𝑓 ( ®̄℘1) = 0.50745, 𝑆 𝑓 ( ®̄℘2) = 0.51778,
𝑆 𝑓 ( ®̄℘3) = 0.67136, 𝑆 𝑓 ( ®̄℘4) = 0.52333,
𝑆 𝑓 ( ®̄℘5) = 0.54144

®̄℘3 > ®̄℘5 > ®̄℘4 > ®̄℘2 > ®̄℘1

SWAM [33]
𝑆 𝑓 ( ®̄℘1) = 0.52845, 𝑆 𝑓 ( ®̄℘2) = 0.56242,
𝑆 𝑓 ( ®̄℘3) = 0.66445, 𝑆 𝑓 ( ®̄℘4) = 0.55246,
𝑆 𝑓 ( ®̄℘5) = 0.59051

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

SFPWA [49]
𝑆 𝑓 ( ®̄℘1) = 0.55188, 𝑆 𝑓 ( ®̄℘2) = 0.61204,
𝑆 𝑓 ( ®̄℘3) = 0.71066, 𝑆 𝑓 ( ®̄℘4) = 0.59888,
𝑆 𝑓 ( ®̄℘5) = 0.63808

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

SFPWG [49]
𝑆 𝑓 ( ®̄℘1) = 0.50747, 𝑆 𝑓 ( ®̄℘2) = 0.51631,
𝑆 𝑓 ( ®̄℘3) = 0.67274, 𝑆 𝑓 ( ®̄℘4) = 0.52162,
𝑆 𝑓 ( ®̄℘5) = 0.54272

®̄℘3 > ®̄℘5 > ®̄℘4 > ®̄℘2 > ®̄℘1

SFWBM [39]
(suppose 𝑝 = 2, 𝑞 = 1)

𝑆 𝑓 ( ®̄℘1) = 0.51479, 𝑆 𝑓 ( ®̄℘2) = 0.53582,
𝑆 𝑓 ( ®̄℘3) = 0.67116, 𝑆 𝑓 ( ®̄℘4) = 0.53004,
𝑆 𝑓 ( ®̄℘5) = 0.57264.

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

SFGWMSM [50]
(suppose 𝑘 = 2,
𝜆1 = 0.5, 𝜆2 = 0.5)

𝑆 𝑓 ( ®̄℘1) = 0.47811, 𝑆 𝑓 ( ®̄℘2) = 0.50954,
𝑆 𝑓 ( ®̄℘3) = 0.66314, 𝑆 𝑓 ( ®̄℘4) = 0.50889,
𝑆 𝑓 ( ®̄℘5) = 0.52400.

®̄℘3 > ®̄℘5 > ®̄℘2 > ®̄℘4 > ®̄℘1

SFWPPMSM
(suppose 𝑔1 = 𝑔2 = 2)

𝑆 𝑓 ( ®̄℘1) = 0.54037, 𝑆 𝑓 ( ®̄℘2) = 0.57154,
𝑆 𝑓 ( ®̄℘3) = 0.69795, 𝑆 𝑓 ( ®̄℘4) = 0.55858,
𝑆 𝑓 ( ®̄℘5) = 0.56673.

®̄℘3 > ®̄℘2 > ®̄℘5 > ®̄℘4 > ®̄℘1
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It is known from Table 11 that the sorting of the presented method is dif-
ferent from SFNWAA, SFNWGA, SWAM, SFPWA, SFPWG, SFWBM and
SFWGMSM, whereas the selection of optimal and worst alternatives of all meth-
ods is consistent. The above comparative analysis proves the effectiveness of the
established method.

6.3.2. The superiority of the proposed method

To further elaborate the superiority of the established approach, a novel in-
stance by more complex case is given below:

Example 2 An organization plans to build a new office block among ®̄℘1, ®̄℘2,
®̄℘3, ®̄℘4 and ®̄℘5 alternatives by considering the following five attributes: (1) con-
struction cost ®̄ℵ1, (2) traffic convenience ®̄ℵ2, (3) surrounding environment ®̄ℵ3,
(4) building quality ®̄ℵ4, (5) building area ®̄ℵ5, where ®̄ℵ1 is the cost attribute, and
(0.2, 0.18, 0.21, 0.23, 0.18)𝑇 represents the weight vector of attributes. Based on
the characteristics of attributes, the five attributes are divided into two parts:
®̄𝑌1 = { ®̄ℵ1, ®̄ℵ4, ®̄ℵ5} and ®̄𝑌2 = { ®̄ℵ2, ®̄ℵ3}. Moreover, there is a correlation between
any three attributes in ®̄𝑌1, and there is a correlation between any two attributes
in ®̄𝑌2, in other words, 𝑔1 = 3, 𝑔2 = 2. There are three experts who evaluate the
above five alternatives according to attributes ®̄ℵ1, ®̄ℵ2, ®̄ℵ3, ®̄ℵ4, ®̄ℵ5 using SFNs, the
evaluation results are presented in Tables 12–14. In addition, the weights of three
experts are 0.30, 0.35 and 0.35, respectively.

Table 12: The evaluation information from ®̄<1

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.4,0.5,0.5) (0.6,0.6,0.3) (0.8,0.3,0.5) (0.6,0.6,0.1) (0.5,0.1,0.4)
®̄℘2 (0.2,0.2,0.5) (0.7,0.1,0.4) (0.3,0.1,0.6) (0.9,0.1,0.4) (0.4,0.2,0.6)
®̄℘3 (0.6,0.3,0.5) (0.4,0.1,0.2) (0.8,0.2,0.4) (0.5,0.1,0.7) (0.4,0.5,0.2)
®̄℘4 (0.7,0.4,0.5) (0.9,0.3,0.2) (0.6,0.2,0.3) (0.4,0.4,0.7) (0.6,0.4,0.4)
®̄℘5 (0.2,0.6,0.4) (0.7,0.1,0.3) (0.7,0.2,0.3) (0.6,0.1,0.3) (0.7,0.2,0.6)

We use the aforementioned methods to settle Example 2. The score values
and rankings of alternatives with different approaches are shown in Table 15.
It is observed by Table 15 that there is a striking difference between the

rankings of the presented approach and the existing approaches. The main reason
for the difference is that the proposed approach can model interrelationships
among any multiple attributes in same part while other methods cannot. And
more detailed explanation is presented below:
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Table 13: The evaluation information from ®̄<2

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.6,0.4,0.6) (0.3,0.6,0.4) (0.8,0.2,0.3) (0.8,0.3,0.4) (0.8,0.3,0.2)
®̄℘2 (0.2,0.6,0.6) (0.6,0.5,0.6) (0.4,0.4,0.8) (0.3,0.1,0.4) (0.8,0.2,0.2)
®̄℘3 (0.2,0.2,0.4) (0.2,0.6,0.4) (0.2,0.8,0.2) (0.3,0.3,0.8) (0.8,0.4,0.2)
®̄℘4 (0.3,0.4,0.6) (0.4,0.5,0.5) (0.4,0.7,0.5) (0.3,0.4,0.8) (0.7,0.1,0.5)
®̄℘5 (0.7,0.4,0.2) (0.2,0.1,0.4) (0.3,0.2,0.4) (0.7,0.3,0.2) (0.7,0.3,0.6)

Table 14: The evaluation information from ®̄<3

Alternatives ®̄ℵ1 ®̄ℵ2 ®̄ℵ3 ®̄ℵ4 ®̄ℵ5
®̄℘1 (0.9,0.1,0.4) (0.6,0.1,0.3) (0.2,0.6,0.5) (0.3,0.2,0.6) (0.3,0.5,0.6)
®̄℘2 (0.3,0.4,0.5) (0.4,0.3,0.2) (0.1,0.5,0.4) (0.5,0.1,0.5) (0.2,0.7,0.4)
®̄℘3 (0.7,0.4,0.5) (0.5,0.4,0.2) (0.3,0.3,0.5) (0.3,0.1,0.1) (0.7,0.2,0.5)
®̄℘4 (0.1,0.2,0.5) (0.8,0.1,0.2) (0.1,0.3,0.8) (0.4,0.1,0.3) (0.6,0.3,0.6)
®̄℘5 (0.9,0.2,0.2) (0.6,0.2,0.1) (0.4,0.3,0.8) (0.3,0.5,0.4) (0.2,0.3,0.7)

1. Compared with the proposed method, SFNWAA, SFNWGA and SWAM
mainly aggregate information by algebraic product and algebraic sum, which
cannot automatically adjust parameters in the evaluation process according
to DMs’ risk preferences, nor can they reflect the relationship between the
arguments. In addition, they also fail to capture interrelationships among any
multiple attributes in the same partition. However, the proposedmethodmakes
up for all the shortcomings of the aforementioned three methods, so the pre-
sented approach is more robust and reasonable to dealing with MAGDM
issues.

2. On the basis of algebraic product and algebraic sum operational rules, the
methods of Garg, Ullah, Mahmood, Hassan and Jan [49] use PA operator
to diminish the impact of negative data on evaluation results by computing
the support degree between arguments. However, the presented approach not
only utilizes the advantage of PA operator but also makes full use of PMSM
operator to capture interrelationships among anymultiple attributes in the same
partition. Thus, the established method is more scientific than the methods of
Garg, Ullah, Mahmood, Hassan and Jan [49].
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Table 15: Score values and orders of different methods in Example 2

Methods Score values Rankings

SFNWAA [32]
𝑆 𝑓 ( ®̄℘1) = 0.64027, 𝑆 𝑓 ( ®̄℘2) = 0.65039,
𝑆 𝑓 ( ®̄℘3) = 0.63662, 𝑆 𝑓 ( ®̄℘4) = 0.63281,
𝑆 𝑓 ( ®̄℘5) = 0.62952.

®̄℘2 > ®̄℘1 > ®̄℘3 > ®̄℘4 > ®̄℘5

SFNWGA [32]
𝑆 𝑓 ( ®̄℘1) = 0.55843, 𝑆 𝑓 ( ®̄℘2) = 0.56921,
𝑆 𝑓 ( ®̄℘3) = 0.54762, 𝑆 𝑓 ( ®̄℘4) = 0.54258,
𝑆 𝑓 ( ®̄℘5) = 0.53048.

®̄℘2 > ®̄℘1 > ®̄℘3 > ®̄℘4 > ®̄℘5

SWAM [33]
𝑆 𝑓 ( ®̄℘1) = 0.60414, 𝑆 𝑓 ( ®̄℘2) = 0.60793,
𝑆 𝑓 ( ®̄℘3) = 0.59450, 𝑆 𝑓 ( ®̄℘4) = 0.60070,
𝑆 𝑓 ( ®̄℘5) = 0.60699.

®̄℘2 > ®̄℘5 > ®̄℘1 > ®̄℘4 > ®̄℘3

SFPWA [49]
𝑆 𝑓 ( ®̄℘1) = 0.64245, 𝑆 𝑓 ( ®̄℘2) = 0.65062,
𝑆 𝑓 ( ®̄℘3) = 0.63556, 𝑆 𝑓 ( ®̄℘4) = 0.63288,
𝑆 𝑓 ( ®̄℘5) = 0.63157.

®̄℘2 > ®̄℘1 > ®̄℘3 > ®̄℘4 > ®̄℘5

SFPWG [49]
𝑆 𝑓 ( ®̄℘1) = 0.56251, 𝑆 𝑓 ( ®̄℘2) = 0.57137,
𝑆 𝑓 ( ®̄℘3) = 0.54731, 𝑆 𝑓 ( ®̄℘4) = 0.54396,
𝑆 𝑓 ( ®̄℘5) = 0.53334.

®̄℘2 > ®̄℘1 > ®̄℘3 > ®̄℘4 > ®̄℘5

SFWBM [39]
(suppose 𝑝 = 2, 𝑞 = 1)

𝑆 𝑓 ( ®̄℘1) = 0.58431, 𝑆 𝑓 ( ®̄℘2) = 0.59114,
𝑆 𝑓 ( ®̄℘3) = 0.57196, 𝑆 𝑓 ( ®̄℘4) = 0.57990,
𝑆 𝑓 ( ®̄℘5) = 0.58331

®̄℘2 > ®̄℘1 > ®̄℘5 > ®̄℘4 > ®̄℘3

SFGWMSM [50]
(suppose 𝑘 = 2,
𝜆1 = 0.5, 𝜆2 = 0.5)

𝑆 𝑓 ( ®̄℘1) = 0.55914, 𝑆 𝑓 ( ®̄℘2) = 0.56617,
𝑆 𝑓 ( ®̄℘3) = 0.55007, 𝑆 𝑓 ( ®̄℘4) = 0.56056,
𝑆 𝑓 ( ®̄℘5) = 0.55445.

®̄℘2 > ®̄℘4 > ®̄℘1 > ®̄℘5 > ®̄℘3

SFWPPMSM
(suppose 𝑔1 = 3, 𝑔2 = 2)

𝑆 𝑓 ( ®̄℘1) = 0.62361, 𝑆 𝑓 ( ®̄℘2) = 0.60650,
𝑆 𝑓 ( ®̄℘3) = 0.61057, 𝑆 𝑓 ( ®̄℘4) = 0.60754,
𝑆 𝑓 ( ®̄℘5) = 0.60711

®̄℘1 > ®̄℘3 > ®̄℘4 > ®̄℘5 > ®̄℘2

3. During the evaluation procedure, SFWBM can reflect the correlation of any
two attributes, and SFGMSM can consider some correlations of different
attributes. However, the presented approach can not only capture the interre-
lationships among any multiple attributes in the same part, but also minish
the impact of extreme values on results, so the presented approach is more
effective than the methods of Farrokhizadeh, Seyfi Shishavan, Donyatalab,
Kutlu Gündoǧdu and Kahraman [39] and Liu, Zhu and Wang [50] for dealing
with uncertain problems.

In addition, the main characteristics of the presented method and the existing
methods are displayed in Table 16.
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Table 16: Comparison of the characteristics of different methods

Methods

Whether can
capture inter-
relationship
of two
attributes

Whether can
capture inter-
relationships
of among
attributes

Whether can
reduce the
impact of
extreme data

Whether can
aggregate
information
flexibly

Whether can
capture the
interrelation-
ships among
any attributes
in the same
part

SFNWAA [32] No No No No No
SFNWGA [32] No No No No No
SWAM [33] No No No No No
SFPWA [49] No No Yes No No
SFPWG [49] No No Yes No No
SFWBM [39] Yes No No Yes No
SFGWMSM [50] Yes Yes No Yes No
SFWPPMSM Yes Yes Yes Yes Yes

7. Conclusions

In this article, we propose a novel spherical fuzzy MAGDMmethod based on
SFWPPMSM operator. Firstly, we extend PMSM operator to SFSs and develop
SFPMSM as well as SFWPMSM operators. In the meantime, some desirable
properties and special cases of these two operators are investigated. Considering
the advantage of PA operator, we integrate PA operator and PMSMoperator under
SFSs to further develop SFPPMSM operator as well as SFWPPMSM operator
and investigate their corresponding properties and some special cases. Then a new
MAGDMmethod on the basis of SFWPPMSM operator is proposed. Finally, the
feasibility and superiority of the presented approach are proved by comparing
existingmethods. The proposedmethod can not only effectively reduce the impact
of negative data on assessment results by calculating the support degree between
arguments but also reflect interrelationships among any multiple attributes in the
same partition, so the established approach is more comprehensive and rational
to MAGDM issues.
However, there are some limitations for the proposed method. On one hand,

this paper only considers the case where the attribute values are SFNs, but
many complex decision environments may appear in the actual decision making.
Therefore, in the subsequent research, we will expand the proposed method to
other fuzzy environments to solvemore uncertain problems.On the other hand, the
proposedmethod in this paper is developed from algebraic t-norm and algebraic t-
conormon the basis of the assumption thatMD,ADandN-MDare independent of
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each other. However, there is a certain interaction between membership degrees
in many practical problems. In addition, Dombi t-norm and Dombi t-conorm,
Hamacher t-norm and Hamacher t-conorm are better than algebraic t-norm and
algebraic t-conorm in information fusion, because they can adjust parameters
according to DMs’ preference, which make the decision-making process more
flexible. And Hamacher t-norm and Hamacher t-conorm are effective extensions
of algebraic t-norm and algebraic t-conorm. Therefore, based on the research in
this paper, we will consider more complex decision scenarios in a follow-up study
and try to develop some better operators by combining the proposed AOs in this
paper and interactive algorithm, Dombi t-norm and Dombi t-conorm, Hamache
t-norm and Hamache t-conorm to solve practical problems more effectively.
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