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Spherical fuzzy power partitioned Maclaurin
Symmetric Mean Operators and their application
in Multiple Attribute Group Decision Making
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Spherical fuzzy sets (SFSs) provide more free space for decision makers (DMs) to express
preference information from four aspects: approval, objection, abstention and refusal. The par-
titioned Maclaurin symmetric mean (PMSM) operator is an effective information fusion tool,
which can fully capture the interrelationships among any multiple attributes in the same block
whereas attributes in different block are unrelated. Therefore, in this paper, we first extend PMSM
operator to spherical fuzzy environment and develop spherical fuzzy PMSM (SFPMSM) oper-
ator as well as spherical fuzzy weighted PMSM (SFWPMSM) operator. Meanwhile, we discuss
some properties and special cases of these two operators. To diminish the impact of extreme
evaluation values on decision-making results, then we integrate power average (PA) operator
and PMSM operator to further develop spherical fuzzy power PMSM (SFPPMSM) operator
and spherical fuzzy weighted power PMSM (SFWPPMSM) operator and also investigate their
desirable properties. Subsequently, a new multiple attribute group decision making (MAGDM)
method is established based on SFEWPPMSM operator under spherical fuzzy environment. Fi-
nally, two numerical examples are used to illustrate the proposed method, and comparative
analysis with the existing methods to further testy the validity and superiority of the proposed
method.

Key words: spherical fuzzy sets, partitioned Maclaurin symmetric mean operator, power
average operator, multiple attribute group decision making
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1. Introduction

MAGDM is an important part of decision theory, which is to evaluate the alter-
native through a group of DMs on the premise of considering multiple attributes
to get the optimal alternative. However, in the face of increasingly complex
decision-making environment and uncertainty of evaluation information, how to
effectively obtain attribute information is an important challenge for MAGDM.
Thus Zadeh [1] proposed fuzzy sets (FSs) to reflect the fuzziness of things by
defining membership degree (MD) function. Subsequently, Atanassov [2] pro-
posed intuitionistic FSs (IFSs) on the basis of FSs. IFSs could describe things
more accurately by adding non-membership degree (N-MD), which have been
broadly used in many ways [3—10]. Nonetheless, IFSs also had some problems.
For example, they required that the sum of MD and N-MD did not exceed 1,
which limited the expression of DMs. To overcome above problem, Yager [11]
proposed Pythagorean FSs (PyFSs) which satisfied that the sum of squares of
MD and N-MD was no more than 1 and provided a wider range of MD and
N-MD. However, abstinence degree (AD) depended on MD and N-MD in IFSs
and PyFSs, which leaded to many unsatisfactory results. To do so, Cuong [12]
presented picture fuzzy sets (PFSs) which utilized three indices (MD M (s), N-
MD N(s), AD I(s)) with the condition 0 < M (s) + N(s) + I(s) < 1. Obviously,
PFSs were more reasonable than IFSs and PyFSs for dealing with ambiguous
information. So far, the concept of PFSs has been widely used in many multiple
attribute decision-making (MADM) problems [13-19].

Whereas in many cases, DMs tend to encounter situation which is invalid to
use PFSs for example M (s) + N(s) + I(s) > 1. In such situation, a new type of
FSs called SFSs were proposed by Mahmood, Ullah, Khan and Jan [20]. SFSs
could not only express the attitude of DMs towards things from four aspects
(yes, no, abstain, refusal), but also satisfy 0 < M?>(s) + N?(s) + I’(s) < 1,
which provided DMs with expansive space of information expression. There-
fore, SFSs were better at capturing the fuzziness of things. Since SFSs were
put forward, they have attracted the attention of many researchers. Ali [21] pro-
posed a new score function based on CRITIC-MARCOS approach under SFSs.
Dogan [22] designed spherical fuzzy AHP and sensitivity analysis for process
mining technology selection. Fernandez-Martinez and Sanchez-Lozano [23] uti-
lized SFSs to evaluate near-earth asteroid deflection techniques. Peng and Li [24]
extended combined compromise solution approach in SFSs for IIoT industry
evaluation. Zhang, Wei and Chen [25] designed spherical fuzzy CPT-MABAC
method for green supplier selection. Seyfi-Shishavan, Gundogdu, Donyatalab,
Farrokhizadeh and Kahraman [26] developed bi-objective linear assignment ap-
proach on basis of SESs on insurance options selection. Zhang, Wei and Wei [27]
presented spherical fuzzy TOPSIS approach based on cumulative prospect theory
(CPT) for solving residential location issue. Wei, Wang, Lu, Wu and Wei [28]
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proposed similarity measures of SFSs by cosine function for MAGDM issues.
Oztaysi, Onar, Gundogdu and Kahraman [29] used spherical fuzzy AHP-VIKOR
approach for choosing ad position. Zhang, Wei and Chen [30] designed GRA
method based on CPT in spherical fuzzy environment for emergency supplies
supplier selection. Aydogdu and Gul [31] designed a novel entropy proposition
of SFSs to MADM.

In decision system, aggregation operators (AOs) occupy a vital position in
information fusion. Recently, numerous AOs have been developed by researchers
to aggregate spherical fuzzy information. For example, Ashraf, Abdullah, Mah-
mood, Ghani and Mahmood [32] proposed spherical weighted averaging aggrega-
tion (SFNWAA) operator and spherical weighted geometric aggregation (SFN-
WGA) operator. Gundogdu and Kahraman [33] developed spherical weighted
arithmetic mean (SWAM) and spherical weighted geometric mean (SWGM) op-
erators. Donyatalab, Farokhizadeh, Garmroodi and Shishavan [34] introduced
Harmonic mean AOs in spherical fuzzy environment. Ashraf, Abdullah and
Mahmood [35] presented spherical fuzzy Dombi AOs for MADGD problems.
Sindhu, Rashid and Kashif [36] established Hamy mean AOs of SFSs. Zhang,
Wei and Chen [37] proposed spherical fuzzy Dombi power Heronian mean AOs
for MAGDM issues. Ashraf, Abdullah and Aslam [38] put forward symmet-
ric sum AOs for spherical fuzzy information, Farrokhizadeh, Seyfi Shishavan,
Donyatalab, Kutlu Giindogdu and Kahraman [39] designed spherical fuzzy Bon-
ferroni mean (SFBM) AOs to MADM. However, most aforementioned operators
are based on algebraic product and algebraic sum. In addition, these operators
fail to model this situation where attributes are divided into some partitions and
multiple attributes exist the interrelationships in each partition. As an extension
of Maclaurin symmetric mean (MSM) [40] operator, PMSM [41] operator can
not only reflect the relationship between attributes, but also capture the inter-
relationships among any multiple attributes in each category. The advantages
of PMSM operator in information fusion have been elaborated in many liter-
atures [42-45]. In view of these, in order to fuse spherical fuzzy information
more effectively, we extend PMSM operator to spherical fuzzy environment and
present SFPMSM as well as SFWPMSM operators. Meanwhile, we investigate
some properties and special cases of these two operators. To minish the influ-
ence of extreme values on results in the evaluation process, then we integrate PA
operator and PMSM operator to further develop SFPPMSM operator as well as
SFWPPMSM operator and discuss some desirable properties of the developed
operators. Whereafter, we establish a novel MAGDM approach by SFWPPMSM
operator for settling spherical fuzzy uncertain problems. Eventually, we testify
the availability and superiority of the established approach with existing ap-
proaches.

The motivation of this paper: SFSs can provide DMs with more free space to
express preference information. At present, most spherical fuzzy AOs can only
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capture the relationship between two attribute values. As an effective informa-
tion aggregation tool, PMSM operator can not only reflect the interrelationships
between multiple attribute values but also capture the interrelationships among
any multiple attribute values in each category. Thus, in order to better carry out
information fusion, we extend PMSM operator to SFSs and present SFPMSM
operator and SFWPMSM operator. Meanwhile, we investigate some properties
and special cases of SFPMSM and SFWPMSM operators. In addition, consider-
ing the impact of extreme data on results in the evaluation process, we embed PA
into PMSM operator to further develop SFPPMSM operator and SFWPPMSM
operator. Then we design a new MAGDM method based on SFWPPMSM oper-
ator for settling spherical fuzzy uncertain problems. Finally, the availability and
superiority for the designed approach are certified via comparative analysis with
existing methods.

The main contributions of this article are: (1) to extend PMSM operator
to SFSs and develop SFPMSM operator and SFWPMSM operator. Meanwhile,
some properties and special cases of SFPMSM and SFWPMSM operators are
researched; (2) to integrate PA operator and PMSM operator and further de-
velop SFPPMSM operator as well as SFWPPMSM operator. Meanwhile, some
desirable properties of these two operators are discussed; (3) to establish a new
MAGDM approach based on SFWPPMSM operator to settle uncertain problems;
(4) to utilize numerical examples to illustrate the established approach and use
comparative analysis by existing approaches to demonstrate the feasibility and
superiority for the established approach.

To do this, the remainders of this article are constructed as following: Part two
briefly reviews some basic knowledge of SFSs and definitions of PMSM and PA
operators. Part three develops SFPMSM and SFWPMSM operators and investi-
gates some properties and special cases of these two operators. Part four integrates
PA and PMSM operator to develop SFPPMSM and SFWPPMSM operators. Part
five establishes a novel spherical fuzzy MAGDM method by SFWPPMSM op-
erator. Part six provides numerical examples to certify the established method
and gives a comparative analysis to illustrate the superiority of the established
method. At last, we briefly summarize this article.

2. Preliminaries

2.1. SFSs

Definition 1 [20]. The SFS CE) of the universe of discourse ﬁ is defined as:

T RN T R
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where ﬁé: Fo [0, 1], 7_?)(3): F o [0, 1], 55): F o [0,1] are MD of f to

Cf), AD off to Cf) and N-MD of]? to Cf) respectively Also ﬁé, 7?6, 5@ meet the
conditions: \7’]? € I_T:, 0 < ,u (f) + 72 (f) + 72 (f) < 1. In addition, ‘zj'é(];) =

\/1 _— (f) — 72 (]?) — 72 (f) denotes the refusal degree.
S} e 6
The triple component © = (ﬁé(f), 7?(3) (f), 5§(f)) is said to spherical fuzzy

number (SFN), which is denoted by 0= (ﬁ, 7_?), 5), satisfying ﬁ, 7—7'), b€ [0, 1] and
O<p@?+m>+02 < 1.

Definition 2 [46]. Suppose there are three SFNs, é = (4,7,0), Cf)l =
(ﬁl, 7:r)1, 1:11) and ©, = (ﬁz,%z, 52) respectively, then:
2\ C > o> o
i (@) (ﬁ z, ﬂ), )
.. 2 = 2y 2 22 2 55 52
ii. ©©0;= (#1+,u2 /11ﬂ2) , T, U2 |, 3)
> > N N N m s\ 1/2 N om s\ 1/2
i, ®188, = (fijin (i -77) (7 52 - 5257 ) @)
v.  5-0= (1—(1—,12)) ,f5,175), 550, 5)
. s\1/2 1/2
v, @° = pﬁ,(l—(l—ﬁz)) (1—(1— )) ) 5>0. (6)

Obviously, the above operations have the following rules:
(1) 6 ©60,=0,006,;
(2) é1®é2=éz®él;
(3) 6(6;®6,) =66, ©50, s> 0;
4) (6:0®6,0) = (6, +62)0, 61,6, > 0;
5) 0" e0”=06"" 6,56 >0
(6) 60 ® 6% = (6, ® ©,)°, 5> 0.
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Definition 3 [32]. Let ©, = (ﬁlﬁl,ﬁl), 0, = (ﬁz,ﬁz,ﬁz) are two SFNs, the

score function S f(©1) and accuracy function A f(0©1) are given as:

- 2+ i) — 71— Uy -
Sf(©) = ( 3 ) ; Sf(©1) € [0, 1], (7)

Af(©)) = fi -1, Af(©) € [0.1]. (8)

And, they have the following comparison rules:
1 IFSF(®)) < SF(By), then ®, < @y
2. IFSF(®)) = Sf(Bs) and Af(®)) < Af(Oy), then ®) < Oo;
3 17 SF(®)) = Sf(Bs) and Af(®)) = Af(©), then ©, = ©».

Definition 4 [46). Let ®, = ({1, 71, 01) and ©y = (fi2, 72, U2) are two SFNs
respectively, the normalized Hamming distance between © and ©, is given as:

Dis = (@1,®2) = (‘ul ,uz‘ ‘_)2 7?% + v% zjg) 9)
2.2. PMSM operators
Definition 5 [41]. Let A = {):/)1, 7:/2, s yq} be aset ofnonneganve real numbers,

which are divided into e different partitions Yl, Yz, .. Y with Y N Y O and
US_, ¥» = A, then PMSM operator is defined as followmg.

PMSM(gl 82500 ge) (717 ')’2,' : 75_/)[1)

8b
1] 1 -
o o{ N i 8 I T
b=1 |)3b| 1§7]|<:' x=1
<T]gh<|Yb|

e
where Y| is the cardinality of Yy(b = 1,2,--- ,e) and Z \Yy| = q, gp is the
b=1

parameter in the partition Yy, and g, = 1,2, ,|Yp|. (1,12, .. ., Ng,) traverses
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all the gp-tuple combination of (1,2, .. .,|Ys|), and Clgf | represents the binomial
Yy
Y5 |!

coefficient satisfying C% = ——————.
ol gy 1175 — gb)!

In addition, the PMSM operator has the following properties:
(1) PMSM(81:82:-8¢) (0,0, - - - ,0) = 0, PMSM (81:82-:8¢) (72,, SRR ,)2,) = 5.

=/ o/ >/

(2) PMSM (81:82:8¢) (73,1,)7,2’... j,q) < PMSM 8182805 50 ... Ty
if ¥, < ¥, for all 1.
(3) mnin{«?n} < PMSM(81-82:78¢) (?1, Vo, iq) < m}gx{%}-

2.3. PA operator

In 2001, PA operator was developed by Yager [47]. As a nonlinear weighted
average aggregation operator, which integrates information by considering the
support degree between input values and effectively reduces the impact of extreme
values on assessment results.

Definition 6 [47]. Let )j/n (n=1,2,...,q) be a set of nonnegative real numbers,
PA operator is defined as following:

(1+T (7)) ¥s

M=

- - - =1
PA(’)_/I’F}_/Za""’}_/q):n q 5 (11)
D (1+T(Fy)
n=1
where
TG = Y. Sup(¥1.7) (12)

e=l,e#n

and Sup ()j/n, 3¢) is the support for }:/n from Ve, satisfying the following conditions:
(1) Sup(¥y. 7e) € [0.1];
(2) Sup(¥y ¥e) = Sup Ve, ¥):
(3) Sup Gy 3e) > Sup(5 3, if [ - 7o

<77i—)j’j~
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3. The SFPMSM AOs

In this part, we shall extend PMSM operator to SFSs and develop some
SFPMSM AOs based on operation laws of SFNs.

3.1. The SFPMSM operator

Definition 7 Let ﬁ = {(:)1,(32, cee (:)q} be a set of SFNs, which are divided
e

into e different partitions Y1,Y>, -+, Y, with 1777 NY, =@ and U Y, = N, then

b=1
SFPMSM operator is defined as following:
SEPMSM(81:82-8¢) (él, 62’ e éq)
1
2
e 1 8b (13)

<'7gb§|Yb|

e
where |Yp| is the cardinality of Y, (b = 1,2,...,¢e) and Z \Yy| = q, gp is the
b=1

parameter in the partition Yy and gp = 1,2, -+, |Yp|. (71,m2, . .., 1g,) traverses
all the g,-tuple combination of (1,2, .. .,|Y|), and C|gf | represents the binomial
Yp

Al
coefficient satisfying C> = lj#l.
1ol g 1(1V] — g5)!

Theorem 1 Let éﬂ = (ﬁ,,, 7:r,7, 5,7) (m=1,2,...,q) be aset of SFNs with param-

eter vector (g1, &2, - - -, 8e), then the aggregated value by SFPMSM operator is
still a SFN, and
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SFPMSM (81:82::8e) (Cf)l, (32’ e (f)q)

. 1\ l/e
%\
e 8b 2 !
o I | i I W |
b=1 1<ni<-- x=1
\ <’7gb<|Yb|
) Ll/e
o\
1Y
e 8b
=22
([ 11 [-170-7) |
b=1 1<ni<-- x=1
\ <ngb<|Yb|
) Ll/e
o \*
. p 1Y
=2
[T -1 IT (t-T1(-3.) . a4)
b=1 1<y <+ x=1
\ <ngb§|Yb|

Proof. According to operational rules of SFNs in Definition 2, we have

8b

3 2 2
. ([T -[T0-7) -1 (0-5%)
x=1
and
g gb 2 g
= _ =g :’2
D Qb,=| [1- 1 [1-{[1a) } 11y -[10-7)
1<nr< x=1 1<ni<- x=1 1<ni<- x=1
<77gb<|Yb| <T]gb<|}_/b| <r]gb<|Yb|

[T - ]g_b[ (1 - 5%}()
1<y < x=1

<77gb<|)7b|



188

www.czasopisma.pan.pl P N www.journals.pan.pl
Y
S~

H.ZHANG, Q. CAL G. WEI

Thereafter, we can get

and

&b
C+b @ @ ®77x
x=

8b

-

o1 \ 1<) <<y <[V

2 L
&b %
| l1=f1-{1- ul (1—(1—1%)) i
<[y x=l

1§7—“<...<7]gb\

8b - %
1-|1- I (1—n(1—ﬁ3,x)) e
1<?71<“'<77gb<|1:/b| =1
cglf’ é
&b =5 IV |
1-|1- 1 (1—11(1—%))
x=1

1< < o<npg,, <[V |

@Qun

Mx

| 8b
ol 9

Mol \ 1<) <-+<ng, <IVs|

1_1_[1_ | — n (1_(8 /jnx)) ¥pl

1< <++<ng, <|Vp|

mli-|i- ! (1—%(1—%,“)) il

b=1 1<771<“'<77g,,<|)7h| x=1
1
cglb &
¢ gb = 17|
m l1-]1- 0 1—11(1—%
b=1 x=1

1<y <-<ng, <|Vp|
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Therefore,

-

SFPMSM &) (61,85, -+ .6,

1 e 1 8b >
:g @ Cc8b @ ®®7]x

b=1 |)j/b| 1§T]|<2 x=1
<T’gb<|Yb|
1
c8b
¥ |
e 8b 2
o I I | O
b=1 1<y < x=1
\ <77gh<|}7b|
€1
o \*
[V |
e 8b
=2
(Th-pe| 11 (-110-%)
b=1 1<y < x=1
\ <77gb<|Yb|
1 n
%\
¢ Y1
e
(1P| 11 (-r10-3)
b=1 I<ni<-- x=1
\ <77gb<|)7h|

Moreover, SFPMSM operator have the following properties:

=

o=

Theorem 2 (Idempotence) Let ©, = (fiy 7y By) (1 = 1,2,...,q) be a set of
SFNs with parameter vector (g1, €2, - - - &e), if(:),, =0 = (@, 7, 0) for all n, then

SFPMSM(gl’gZ""ge)(g)l, éz, cee

-

0, =6

(15)
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Proof. Since (f)q

-

=~

S
I
—_

:@:(ﬁ 7? 5) then
SFPMSM( €729 (6,6, , 6,
1
L L
e 8b 2 C‘\?I N
. b
1- I-11- l—[ - (l_l'a)
b=1 1<;7,<~~<ngb<|§b| =
1
i\
. 8b . A
== [T [-T10-#)
1<7]1<"'<ngb<|§b| x=l
1
L\ ‘
" c®b
e N ¥
=l ] 1‘1_[(1"72))
b=1 1<7]|<"'<ngb§|§b| =
1
cglb ﬁ )
¢ A
== T ()]
b=1 1<) <e <11, <IFp |
1
S\8b\ | !
el T (- (R ’
1gm<~~~<ngb<|§h|
1
S\86y | 1
-l T (-(-2))
1<7]]<"'<ngb<|§b|

Q=
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A1\ e
e o\ |
= 1- 1- 1—((1—ﬁ2gb) Ybl) 1% ,
\ b=1
1
) o=\
- 1—((1—(1—%2)“) ,;bl)C;b ,
b=1
1
Ly
e cb \ %\
- 1—((1—(1—52)gb) th)cm,
b=1
1 1 1
e e e e e e
-\ (1_,12)) {2 1_(1_52))
b=1 b=1 b=1
= (ﬁ,?r,z?) =0.
And that completes the proof. O

Theorem 3 (Monotonicity) Let ©, = (ﬁn’ s 5,7) and ©, = (fip:7n0p)
(n=1,2,...,q) be two sets of SFNs with same partitions and parameter vector
(81,82, -, 8e), If fly > [y, Ty < Ty, Uy < Uy for all n, then,

SEPMSM (81:82-8¢) (él, (3)2’ e éq)

@v

> SFPMSM o250 (8,6, -+, 8, . (16)

Proof. Let

SFPMSM #2759 (81,85, ,6,) = 6 = (.7,3)

and
SFPMSM (8182 8e) ((f)l, 0y, -- ,(f)q) =0 = (fL.7.D).
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192
Since g, > 1, Uy, > 0, 7, > 7, >0, v, > U, > 0, then we have
n n n n n n
An, > iy, >0, 7T, >7‘r,7x > 0, f;nx > Uy, > 0. Therefore, we can obtain
8b 2 8b 2
AL ) <=L
x=1 x=
8b 8b
- [-[f1a])e 1 ()
x= <
1< < <77g;,<|Yb| ! Ismi<
<T’gb<|Yb|
1 1
ctb ctb
b 2\ | ™! b 2 v
= (- (Ca) )| | T (T
1<y <+ x=1 1<y <+ x=1
<Tlgb<|)7b| <Tlgb<|Yb|
2 cgl” #
e 8b N ‘):/b‘
| ES A Y (N
b=l 1< < <ng, <|¥s| =l
1
2 cglb &
e gb ) 7l
TPl ({1
b=l 1< <o<npg,, <|Vp| x=1
1
1 é g
2\ \ c®?
e 8b > |Yh‘
L 1 R (R P
\ b=1 1<t <++<npg), <[V | =l
1
1 i e
2\ \ c®
e 8b R |
> |1- 1-|1- [] =] [ An
\ b=1 1<y <-<ng, <|Vp| x=1
= g>pu.
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Furthermore,
Ry >7y = 1-72 <1-7
Nx = *1Nx Nx 77x
1 1
ctb ctb
Y | [V |
&b b
=TT t-T10=-2)]1 = 11 ©-11(-#)
x Nx
1<y < x=1 1< < x=1
<T]gh<|Yb| <T]gh<|Yb|
8b . “:/b|
= |1- [1 1-1] (1 _3 )
Nx
1< <+<ng, <|Vp| x=1
1 1
b
25
C
8b . A
1- l_[ (1 -7, )
1<y < <77gb<|yb| =l
1
T\«
L L
cb |
e 8b R 7 |
= l_[ 1—[ 1- (1-73,)
b=1 1< <+ <ng, <|Vp| x=1
1
1 e
oL
P
e 8b 2r ‘Yb|
> 1-|1- [] -] ]a-42)
b=l 1< <+ <ng, <IVp| x=l
= 1>7.

Similarly, we have U>0.
Based on Definition 3, we have

SF(©) - Sf(6) = 2pAY _ 2HAAD (ﬁ—ﬁ) + (7% —Fr) + (5 - 5) >0,

s0 O > O that is

-

SFPMSMU 12 50) (8,85, , 6, ) > SFPMSMU 12 50) (8,65, .6, ).
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Theorem 4 (Boundness) Let (:),7 = (ﬁn’ 7?,7, 5,7) (m=1,2,...,q)beaset of SFNs

with parameter vector (81,82, ...,8e), if ®F = |max ﬁ,], min 7:r),7, min 577) and
n 1 1
é_ = |min & ,maxﬁ ,max5 , then
1 Hn n n)
6" < SFPMSM 1) (8,85, 6, ) < 6", (17)
Proof. By Theorem 2 and Theorem 4, we have
SFPMSM (81:82::8e) (C:)l, 0y, -, C:)q)
> 6 = SFPMSMe29 (67,67, -, 67)
and
SFPMSM818278)@,,@,,--- ,0,
<@ = SFPMSM( ) (67,67, -, 6).
Therefore, Theorem 4 is proved. O

Next, we further study the monotonicity of SFPMSM operator in regard to
parameter g, for which we first introduce the following lemma:

q
Lemmal [48]. Let)j/,l > 0, )?,7 >0m=12,...,q) andZ)?n =1, then
n=1

2 q

[16.)7 <% (18)

n=1 n=1

-

with equality if and only if):/l = ):/)2 =Yy

Theorem 5 Let (:),7 = (ﬁn’ 7?,7, 5,7) (n=1,2,...,q)be a set of SFNs with param-
eter vector (g1, &2, - - - » &p), then SEPMSM operator is monotonically decreasing

in regard to the parameter g, (g, = 1,2, ..., |Y]).
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Proof. By Theorem 1, we have

SEPMS M &1-82:8c) (61,62, e (f)q)

. 1
L vz \\ ¢
2\ \ c8b
. 8 Y
= |1-|1f1-]1- N Ea R ’
b=1 1< <+<ng, <[V | =
1
1 e
L oL
. 8b Cg:b N
1-|1 - (-7)) ™
LRI I (R R
B \ 1< < <ng, <[Vs| .
1
1 L\
. 4\
. 1Y
m 1-[1- I1 H(l—v )) b
b=1 \ 1< <+<ng, <[V | =
Therefore, let
. 1
NGAR e
e £ ’
N 1Y |
I(gp) =| |1- I=1- 1—[ 1_(Hﬂnx) |
\ b=1 1§771<“'<7]gh<|Yh| =
1
1 L ‘
%\
. &b 2 1Y
m(gp) = 1-1- 1_[ 1‘“(1_”’“) ’
b=1 1<n1<+<ng, <|Vp | =

and

=

4N

g . 17 |
n(gp) = 1-]1- [1 (1—]_[(1—5,2”))
x=1

1< <++<ng, <|Vp|
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First, we prove [(g,) about the parameter g, is monotonically decreasing.
According to Lemma 1, we can get

_1
ctb

o (-(e))”
x:1:“77x

1<1 <+ <ng, <[V

] L2

= =1
1 1< << <]
S Z Cgb - Cgb
1<y <+ <ng, <[V | 1Y | Y5

> 8b
2\ \ c®P
8b N |b‘
S O I (W[ P
1<’71<"'<77gb§|}7b| x=1
2\\ 2
b
1 S
2y (fa
v 7 \x=1
Yol \1<m1<-<ng, <|Vp]
RN
g, |\ 8P
¢ 8b 2 C\:bl
I [ SR W P
b=1 1§’71<"'<’78b§|yb| x=1

N

1 &b 2)\*%
b=1 o C Z Hﬁnx)

|Yh| 1§n1<...<ngh<|yb| x=1

Q=

2 cgl.b £
e N ¥
= |1- 1-|1- [ 1= (] | fn.
b=1

\ 1< <+ <ng, <|Vp|
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L\\e

e 8b 2\\%
o 1 = N Y N

b=1 Vol \1< <<y <[] ¥

1 \\e
8b

e 8b 2
s> [1-|[]1-| = 2. (]_[ﬁnx) (19)

b=1 o] \1<mi <o <ng, <ITp] \*=!

Then we take the following proof by the contradiction method. We assume
that /(gp) is increasing with respect to g, then it follows that

1Y) > (Y| = 1) > -+~ > 1(1).
By (19), we have

—l—
=

e 1 2
> [1-{[]|1- C% > (l:!l;n)

\ b=1 V5| \1<n1<-<ng, <[V |
v
Y| -
e 'uTI

S
Il
—

S

\

Thereafter, let g, = |V}|, then

2 =z Y1
Y;
C‘ Al

e =
1Yp |

_ A
1= (1= [f1-]1- [ - ]_b[ﬁnx
x=1

\ b=l 1< < <11, <7

=
ol
Il
—_
=
Il
—
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Based on the assumption, we have

Q=
=

e 1A W e lea’%
= =t n=
1= [1={T]{1-|] ]2 > > |1- 1-
b=1 =1 b=1 Y|

1 Il -
5 \Wl XA
=) n=1
= ([ |&] =
n=1

¥

However, according to Lemma 1, we have

B\ K
) n=1
2l <5
n=1

Obviously, it is not true that /(g ) increases monotonically with g, increasing, so
[(gp) is monotonically decreasing about g.

Similarly, we can also show that the functions m(g,) and n(gp) are monoton-
ically increasing about gy,.

According to Definition 3, we have

Sf(gy) = 2+1(gp) - ”;(gb) - n(gp) .

Thereafter, for any g, = (1,2, ..., |)j’b|), we can get

Sf(gy+1) - Sf(gp) = 2+l(gb+1)—m(§b+1)—n(gb+l)
~ 2+1(gp) —m(gp) — n(gp)
3
= (l(gp+1) —1(gp)) + (m(gp) —m(gp +1))
+(n(gp) —n(gpr+1)) <0

that is, Sf(gp + 1) < Sf(gp) for all g,. For which completes the proof. O
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Theorem 6 Let ©, = (ﬁn’ 7?,7, 5,7) (n=1,2,...,q)be a set of SFNs with param-
eter vector (g1,82,-+ ,8¢) and gp = 1,2, ..., |Yp|, then

max {SFPMSM 275 (81,85, -+, 0, )}

-

= SFPMSMLD ((3)1, 0y, ,Gq)

Next, we study some special circumstances for SFPMSM operator.
(1) When all inputs belong to the same partition and the types of relationship
among inputs are same, in other words, e = 1, [Yi|=gandg1 =g=1,2,...,q,

then SFPMSM operator becomes spherical fuzzy MSM(SFMSM)operator as
follows:

- = 1 N &
SFPMSM$! ((91,@2,"' ’(”)q) ~ | c® @ ®®'7"
[T | Psm<s sl
<7]g1<|yl|

o |—

(1] @ ©8.|| -srwswe (6180 3,
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(2) When e = 1 and g = 1, SFPMSM operator becomes the spherical fuzzy
arithmetic averaging operator as follows:

(2 = = 1< <f| !
SFPMSM' (81,65, ,8, ) =
cL
Y1
7| q
1 = 1 =
-=—Pe,. ®,
|Y1] m=1 q n=1

(3) When e = 1 and g = 2, SFPMSM operator becomes the special SFBM
operator as follows:

=

1l
—_

) _ 1< << |
q) =

C2
71

SFPMSM> ((3)1, Q.- .0

=

@ll

B q(q—) EB

nx=1,n#x

26

= SFBM'(6,,0,- - ,0,)

(4) When e = 1 and g = g, SFPMSM operator becomes the spherical fuzzy
geometric averaging operator as follows:

Q=

9 =
@ . ®®77x

2 2 2 1<’71<"’<Tlg¢,<|571|x=1 4 -
SFPMSM4(©,,0,, -+ ,0,) = “a - 6,
7] n=1

Q=
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3.2. The SFWPMSM operator

Definition 8 Let (:),7 = (ﬁ,], 7?,7, 5,7) (n=1,2,...,q) be a set of SFNs, which are
divided into e different partitions Y, Y, -, Y, with Y,,ﬁ?x =@ and UZ:] Y, = N.
The® = (91,1, -, ﬂq)T is the weightvectorofC:),7 (m=12,...,q),withd, >0

q
and Z W, = 1, then SEFWPMSM operator is given as follows:
n=1

SFPW MSM (81:82-8¢) (él’ (32’ e é)q)

Aol @ pa| | o

b=1 |Yb| 1<T]1<: x=1
<7]gb<|yh|

where |Ij/b| is the cardinality ofI?;, (b =1,2,---,e) and |Ij/b| = q, gp is the

e

b=1
parameter in the partition Y, and g, = 1,2, -+, |Yp|. (1,72, .. ., ng,) traverses
all the gp,-tuple combination of (1,2, . ..,|Y|), and Ci; | represents the binomial
b

coefficient satisfying

Cgb _ |Yb|'
A AR

Theorem 7 Let ©, = (ﬁn,ﬁn,ﬁn) (n=1,2,...,q) be a set of SFNs with pa-
rameter vector (g1,82,...,8e), and & = (¥, -, ﬂq)T is the weight vector

- q
of ®, (n=12,...,q), with i, > 0, Z ¥, = 1, then the aggregated value by

n=1
SFWPMSM operator is still a SFN, and
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SFWPMSM (81-82-8¢) ((f)l, (E)z, e (f)q)

T
|
e 8b 2y \Pnx "
el fe o (B )]
b=1 1<771<_> x=1
\ <N, <IVs|
1
¥
e 8b - 219'7)‘
ml1-{1-| 1 (1‘1—[(1_(7?’“) )) ’
b:l 1§T]1<_} )C=l
\ <ng, <IVp|
1
vw |
. gb - 21977)( Cig;l;;‘
[ [1-|1- I (1‘H(1_({”7*) ))
b=1 1<y <-<ng, <|Vp] =
(21)

The proof of Theorem 7 is similar to Theorem 1. Furthermore, it is easy to obtain
that SFWPMSM operator satisfies idempotence, monotonicity and boundness.

Theorem 8 Let 5),7 = (ﬁ,,,fr),],l:/n) (n=1,2,...,q) be a set of SFNs with pa-

rameter vector (g1, 82, ...,8¢) (g» = 1,2, ..., |Yp|), then SEFEWPMSM operator is
monotonically decreasing in regard to the parameter gp.

Theorem 9 Let ©, = (ﬁ,,, 7?,7, 5,7) (n=1,2,...,q)be a set of SFNs with param-
eter vector (81,82, ...,8¢) (8p = 1,2, ,|Yp|), and & = (%, D, . .. ,ﬁq)T is the

o q
weight vector of ©, (n=1,2,...,q), with ¥, > 0, Zﬁn = 1. Then
n=1

min {SFWPMSME125) (8,65, .6, )|

= SFWPMSM DTl 7D ((E)l,(f)z, .. ,(f)q) _
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_Q

max {SFWPMSM 15275 (8,85, ,6,)}

SFWPMSM11 1) (81,65, , 6,

1 1
= e
1\ e 1

; Y : 7
e Y| -~ 1977)( e || R Zﬂ’]x
= |1~ 1=, . T )
b=1\ =1 b=1 \|\ n=1
1
_1\¢
):’ ¥ |
€ | b| - 219”)(
[ (L1
b=1 n=1

Next, we study some special circumstances about SFWPMSM operator.

(1)Whene =1,|V;|=gandg; =g =1,2, - - , g, then SFWPMSM operator
becomes spherical fuzzy weighted MSM (SFWMSM) operator as follows:

SFWPMSM(gl’gZ""’ge) (g:)l, (32’ e éq)

1 81

| B X(®e)

V1] \1<m<-<ng, <1 =1

g N N N N
_ % P R (96.)]| =sFWMSM(6,,65,---,8,).
q

I<ni<-<ng<q x=1

(2) When e = 1, g = 1, SFWPMSM operator becomes the spherical fuzzy
weighted average operator as follows:

SFWPMSM' (61,65, .6,

1 -
= % @ ®(ﬂnxéﬂx) =

Wl \1<m<|fy) *=! 7=l

Q| =
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(3) Whene = 1and g = 2, SFWPMSM operator becomes the special spherical
fuzzy weighted BM (SFWBM) operator as follows:

2
> 2 2 1 2
SFWPMSM? (61,65, ,6,) = o P X (9.6.)

|§1| 1<’71_f’72 x=1
<M
1

2

1 4 = = 11,2 2 =
-l @1 (ﬁ,,@n ®ﬂx®x) = SFWBM"(8,,8,,--,0,)/
T

(4) When e = 1 and g = g, SFWPMSM operator becomes the spherical fuzzy
weighted geometric operator as follows:

2 2 2 1 q =
SFWPMSM® (@1,@)2,---,®q): o ' @(ﬁm@m)

Wl | IS =l
<77gq§|Yb|

4. The SFPPMSM AOs

This part we shall present some new AOs based on PMSM operator and PA
operator under SFSs.

4.1. The SFPPMSM operator

Definition 9 Let ﬁ = {(31,62, cee, éq} be a set of SFNs, which are divided

into e different partitions Yi, Yo, ..., Y, with Yn NY, =@ and U Yy, = N, then
b=1



www.czasopisma.pan.pl N www.journals.pan.pl
Y
S~

SPHERICAL FUZZY POWER PARTITIONED MACLAURIN
SYMMETRIC MEAN OPERATORS AND THEIR APPLICATION. . . 205

SFPPMSM operator is defined as following:

-

SFPPMSM(gl’g2’ ,ge) (él’ éz’ cee C:)q)

1l 1 8b q(1+T(é,}x))

Dl | © Bla—=
b=1 |§h| 1§’71<:' x=1 1> (1+T(®0))

<’7gb<|y_vb| 0=1

O

N . (22)

e
where |Yy,| is the cardinality of Y, (b = 1,2, ...,e) and Z \Yy| = g, gp is the pa-
b=1
rameter in the partition Y, and gp = 1,2, -+, |Yp|. (1,12, .. ., Ng,) traverses all

the gp,-tuple combination of (1,2, . ..,|Yy|), and C |gf’ | represents the binomial co-
Yy
q

efficient satisfying C* = %.Meanwhile, T(0,) = Z Sup(©,,0,),
Yol gn!(I¥sl-gn)! o= Torto

Sup(Cf),], (f)o) =1- Dis((:),,, Cf) 0) and Sup(Cf)n, (f) ) is the support for (f),,from (f),,,
satisfying the following conditions: (1) Su p(@n, ,) € [0,11; (2) Su p(cf),], (f)o) -
Sup(G)g,@,]) (3) Sup(@,],(ao) Sup(@,,@ ) szzs(G)n,G ) < Dzs(@,,@ ),
here DlS(@,], @ o) represents distance between @ and ©,, defined in Definition 4.

To simplify (22), let
o (1+7(8))

wn = q ’ (23)
> (1 + T((:)o))
o=1
- - q -
where @, is called the power weight, and w,, € | with Z @y = 1. Then (22)
n=1

can be further expressed as:

SEPPMSM (81:82-8e) (él, (32’ e éq)

22 @ C;b @ ®(qwnx Ux) : (24)

b=U\ 10l \ 1< <<, <] ¥
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Theorem 10 Let (:),7 = (ﬁn, 7_?),], 5,7) (mn=1,2,...,q)beaset of SFNs with param-
eter vector (g1, 82, .. .,8e), then the aggregated value by SFPPMSM operator is
still a SFN, and

SFPPMSM(gl’gZ’""g“) ((E)l, éz’ oo (E)q)

1
d\\e
cglP 0
. ¥p !
< L oy \ Py
=| |1- -{1-1 ] (1— (1_(1‘ﬂ%x) ,) ,
b=1 1<ni< x=1

\ <77gb<|)7b|

1
c‘gl!’ #
p Y|

e b N zqtz—;lx

1h-1-] 17 (1_n(1 5. )) ,

b=1 1<ni<-- x=1

\ <T]gh<|Yb|
1
cgl!’ i
g Y|
e b N 2q(lz)1x
[T -t T] (1—“(1—(%) ’)) (25)
b=1 1<y < x=1
\ <77gb<|Yb|

Proof. In accordance with operational rules of Definition 2, then

- =2 - q(:_;?]x - q(zﬂx - q‘fh]x
= _ _2 = =
qwnxe)nx - \/1 - (1 - IJTIX) ’ (ﬂnx) ’ (vnx) ’

8b L = 8b . q&;']x
®qa_)ﬂx®nx = l_l 1 - (1 _/1727)() ’
x=1 x=1
8b . 2qu:) . 8b . an:),x
Jl—“(l—(ﬁ%) n),Jl—]—[(l—(ﬁnx) ’)

x=1 x=1
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and

8b >
@ ® q“j’nx Oy,

<< x=1

<’7gb<|Yb|

8b =
2y \ 4Dy
=[ 1= T[] 1-||(1—(1—p$x) ’),
I<ni<-- x=1

<77gb<|)7h|

8b R 2‘10:):7); 8b R
- C - ) T -1
1<y < x=1 1<y < x=1
<r]gb<|Yb| <T]gb<|Yb|

Thereafter, we can get

1 8b L =
Cgf @ ® q‘*—’nx ®77x

B | s 2=
<’7gb§|Yb|

<77gb<|yb|

1< <+ <ng, <|Vp|

8b . qéﬂx
=l -] T] 1—“(1—(1—[@) )
1< <o x=1
\ <77gb<|yh|
1
c®b
Z ¥, |
b o \2q6n,
[ 1—H(1—(ﬁﬂx) 7) ,
1<y < x=1

[ =1 (1 _ (5%)2@”) 7o
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and
1
e | 8b 52 £
Ven EB ) ®Clwnx®nx
b=1 ¥y, | 1<,71<...<;7gb<|)7b|)€:l
1
cglf’ s
. ¥ |
e gb 2y 4Dy ’
= I—H 1— 1_ H 1_1—[ 1_(1_l’t77x)
b=1 1<T]1< x=1
\ <Ng, <|Ys|
Lo L
——\ &b
. 8b S \240n, C\?;,l
I |1-{1- m o \t-1I 1‘(”'”) ’
b=1 \ 1<y <+ <ng, <|Vp| =
5\
, g = \248nc\\ |yl
I |[1-|1- m_|t-1 1‘(%)
b=1 \ 1<771<"'<’7gb<|)7’7| x=1
Therefore,
SFPPMSM 8182789 (0,0, -, 0,)
1
Lo L
% \*
. ¥ |
¢ 8b >y \ 9D ’
b=1 1<771< x=1
\ <g, <V
1
. &b > 2‘1‘377)( Cll?bl
m[1-]1- I |- 1‘(”’7x)
b=1 1< <++<ng, <[5 | x=l
1
1 L\
> &b
e 8b - 2‘15’77;( CT?I:,\
I [1-1- o |t-1I 1—(%)
b=1 1< <+ <ng, <|Vp| =
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Theorem 11 (Idempotence) Let é (/1,7, 7?,7 U 7) (m=1,2,...,q) be a set of
SFEN with parameter vector (g1, 82, - - -, 8e), L é =0

ﬁ, i, 5) for all n, then

@1

(
SFPPMSM @125 (8,85, ,6,) = € (26)

-

Proof. Since (i),, = (f) = (ﬁ, 7?, 5), we have Sup (@,7,(3)0) = 1 for all n,o0 =

1,2,---,q. Thereby &, = —,n=1,2,...,q, and

SFPPMSM (81:82-8¢) (él, é2, e éq)

1
e c¥ \ &\
= 1= l_[ 1— 1_((1_ Zgb) th)cm, ’

Q=

=

Q

Q=

= (ﬁn’ﬁn’ﬁn) =0,

which completes the proof. O
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Theorem 12 (Boundness) Let C:),7 = (ﬁn,ﬁn,z?n) (n=12,...,q) be a set of
SFNs with parameter vector (g1, 82, - - -,8e), if(:)_ = min{@n} = (ﬁ_, 7jr_, 5_)
n

-

and ©F = max{©,} = (at, 7", 0", then
n

1

X < SFPPMSM(81:828e) ((f)l, By, --- ,(f)q) <7, (27)

where

1-11-
b=1 1< <
\ <T]gh<|Yb|

P
Il
(U
I
o
P
[
|
Iz
S
——
(U
I
—_
U
I
~
tlll
N
[\e)
N —
)
IS
B
S —
N —

Q=

Q
o
<

1—|1- [ (1—1_[(1— (ﬁ-)zqé’“)) "

1<y <+ <ng, <|Vp|

il
-

0 |—

Y|

1-1- |']

1<y <-<ng, <|Vp|

S
Il Al
—
—
I
e
S
—
|
—_—
Qlu
~—
(W)
Q9
Su
By
~—
~—

and

1-|1-
b=1 1<n1<
\ <ngb<|Yb|

~u
I
—
|
x
“ —
|
1%
o
e
—
|
—_
p—
|
~
=i
+
N—
NS}
~——
E~
Su
By
S —
S —
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=

g\ 5P
e 8b S Zqénx % |
R I O VRTINS ,
b=1 1<q1<...<ng<|}7b| x=1
1
1 e
glh 8b
¢ 5b L\ 2460, ¥
-l (1P
b=1 1<'71<"'<]78b<|?h| x=1

Proof. Since

S 2 N (]0:;17)( N qa:)qx - q(f)nx
2 _ =2 = —
qiy, Oy, = \/1 - (1 _:“nx) ) (”nx) > (Unx)

o TR o N Ca

So,

b

= )qa_)ilx

8b - 8b
®qd’nx®nx = n - (1 ~ iy,
x=1 x=1
8b - 2qa:)lx 8b - 2qa:)7x
¢1—]—[(1—(ﬁ%) ! ) ¢1—]—[(1—(ﬁnx) ' )
x=1

x=1

g . \dGn . = 2qésy,
> XE 1—(1—(,1)2) ,Jl le(l ( ) )
Jl - ]g—h[ (1 - (5—)2‘]5"")

x=1
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then
8b qa_';,lx
= ®qwnx - o (t-Tf-(-2)")
1< <o x=1 Ismi< x=1
<77g,,<|Yb| <Ng;, <IYs|
gb S \2q0n, gb o \29Gn,
M «1-T11 1—(%) N 1—(%)
1<ni< x=1 1<ni<-- x=1
<ng,, <|Yp| <Ng;, <[]
8b - ‘I‘f’nx
o = =g (- (- ) ™)
<< x=1
<77gb<|Yb|
&b - 2qu:;r]x &b > 2qaj),7x
il 1—n(1—(n—) T =TI 1—(v)
<< x=1 I<ni<-- x=1
<Ng, <IVp| <1y, <Y
Further, we can get
T
c®b
- ¥
1 8b - 2 8b = qnx
| B ®dB6,|=| -] 1 [1-T1(1-(1-4.) ,
C|:| 1<ny< x=1 Ism<- x=1
’ <ng, <Y <Ng, <I¥p|
1 1
c®b c®h
- ¥ | - ¥, |
gb = q“_)ﬂx 8b = qWnx
=1 (1 - (#) ) | n 1—H(—(v,7x) )
1<m< x:1 1<y < x=1
<ngb<|Yb| <gy, <V
.
> cob
8b - qWnyx A
(1—H - (1- ) )) ,
1< <- <ng,, <p
1 1
csb c®b
e Yy ol ¥ |
8b > qWny 8b > qi,
- n - (#) ) Ao 1—n(1—(u—) )
1<m< x:1 1<y < x=1
<;7gb<|Yb| <ng, <IVs|
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Therefore,

SFPPMSM 525 (81,85, .6,

8b
e 1 8b - -
=Dl | D Kaénén
b=1 “_/bl 1<7]1<__> x=1
<7]gh<|Yb|
| 1
cbh s
Y|
e 8b 2 61577,(
S I | Ty (R g TR |
b=1 1<ni<-- x=1
\ <77gh§|ib|
! 1
c®b ‘b
Y|
e 8b > an)']x
(10| 11 (=T 5 |
b=1 1<ni<-- x=1
\ <77gb§|17b|
| 1
cbh &
Y|
e 8b > 24“—’77);
(- 11 (=110~ (5)
b=1 1<ni<-- x=1
\ <77gb<|)7b|
1 €1
b\
. ¥, |
e b =
=g qWnx
=TT == ] 1—]_[(1—(1—(,1—)2) )
b=1 1< < x=1
\ <77gb<|Yb|
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e
ctb s
1Yy, |

e 8b L\ 248

1= 11 (=11 ) ,

b=1 << x=1

\ <ngb<|Yb|

L
c®b b
1Yy, |

Il
.><|l

ﬁ L l_l (1_1&[(1_(5_)%5%))
b=1 1< <+
\ <77gb<|}7b|

t‘<|l

<

Similarly, it is easy to prove that SEPPMS M (81:82::8e) (C:)l, @y, -, C:)q)

-

Hence, we can get )% < SFPPMSM(81:82:-8e) ((:)1, Oy, -, ®q) < ;

In the following we investigate some special circumstances for SFPPMSM
operator.

(1) When all attributes belong to the same partition and the types of re-

lationship among attributes are same, in other words, e = 1, |Yi| = ¢ and
g1=¢g=12,...,q, then SFPPMSM operator becomes spherical fuzzy power
MSM (SFPMSM) operator as follows:

SFPPMSM® (é],éz,"',éq): c% $ (X)(qcf)nxénx)

np | s =l
<Tlg1 <|Y1|

1

8

_ é an (i)(qa:)nxénx) = SFPMSM® (61,65, ,,) .
q

1<y < x=1
<ng<q
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(2) When e = 1 and g = 1, SFPPMSM operator becomes the spherical fuzzy
power averaging operator as follows [49]:

1
> = = 1 > 2
1 =
SFPPMSM (@1,(92,--- ,®q) =|—/—| D (qw,]x@nx)
TN i
<77g1§|Y1|
q . q By oz 1oz
_ > = 29\ ¢ 2, =
- wy0, = 1—||(1—,u,7) ,||7r,7’,||v,,"
n=1 n=1 n=1 n=1

(3) When e = 1 and g = 2, SFPPMSM operator becomes the special spherical
fuzzy power BM (SFPBM) operator as follows:

=

= = = 1 9 L 2 5 2
SFPPMSM? (@1,@)2,--- ,0 ): _ (qa‘) e ®qa_)x®x)
q q(q @ n=mnm

4.2. The SFWPPMSM operator

Definition 10 Let ﬁ = {0,0,,--, (:)q} be a set of SFNs, which are divided
into e different partitions Y1,Y»,--- ,Y, with Yn NY, = @ and UZZI Y, = N.
The 9 = (91,9, - ,ﬂq)T is the weight vector of @,7 (m=1,2,...,q), with

q
U, € [0,1] and 3, 9, = 1, then SFWPPMSM operator is defined as following:
n=1

SFWPPMSM (81:82::8e) (Cf)l, éz’ e éq)

el w | gy, (1+7(6,,)
= = $ - 0, . (28)

7yl | 1Sm< 2=l Zﬁo(uT(cf)o))

<’7gb<|?b|
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e

where |Yp| is the cardinality of Yy, (b = 1,2,--- ,¢) and Z 1Yy = g, gp is
b=1

the parameter in the partition Yy, and gp = 1,2, ,|Vp|. (71,72, ..., 0g,) tra-

verses all the gj-tuple combination of (1,2, ...,|Y,|), and Cf;" | represents the
Yy

Ij/ ! 2
binomial coefficient satisfying C%° = Y| . Meanwhile, T(®,) =

Ml gy (1Y — gp)!
el = > =4 =g = =g = =g

> Sup(6,,6,). Sup (8,.6,) = 1-Dis (8,.6,) and Sup (8,,6,) is the
o=1,n#0
support for @,7 from ©,, satisfying the following conditions: (1) Sup((:)n, Q,) €
[0, 1]_,; (22 Sup((:)n,(:zo) = Sup((:)o,(:),L); (f) Sup((:),],C:)O) > Sup((:)i,(:)j),_)if
Dis(0,,0,) < Dis(0;,0;), here Dis(0,,®,) represents distance between ©,
and @, defined in Definition 4.

To simplify (28), let

9, (1 +T(cf),7))
wn = P .
>0, (1 +T(cf)0))
o=1

Then (28) can be further expressed as

(29)

SFWPPMSM 15250 (81,85, .6,

o
S

1 | 1 &L oz
=7 @ % @ ®(Clwnx®nx) (30)

b=1 |Yb| 1<T]1<: x=1
<ngb<|Yb|

Theorem 13 Let (:),7 = (ﬁn,fr,,,z_fn) (n = 1,2,...,q) be a set of SFNs with
parameter vector (g1, 82,...,8e¢), and 9 = (91,92, -, ﬁq)T is the weight vector

- q
of ©,(n = 1,2,...,q), with 9, > 0, Z ¥, = 1, then the aggregated value by
n=1



www.czasopisma.pan.pl P N www.journals.pan.pl
Y
S~

SPHERICAL FUZZY POWER PARTITIONED MACLAURIN
SYMMETRIC MEAN OPERATORS AND THEIR APPLICATION. . . 217

SFWPPMSM operator is still a SFN, and

SFWPPMSM 14229 (6,85, -+ .6,

1
i\
p Y|
e b o NGBy
= |1- 1-]1- 1_[ (1_ﬂ(1—(1—ﬂ%x) n) ,
b=1 1<y <+ x=1
\ <77gh<|Yb|
1
v\
c% %
p Y|
¢ b - 2q%7x
[1 -] [] (1_ (1—(ﬁ-nx) )) |
b=1 1<ni<-- x=1
\ <77gb<|yh|
1
L \°
c% %
¢ ¥ |
e b N qu:';x
[T 1t-1-] T] (1—]_[(1—(17%) ’)) . 6D
b=1 1<ni<-- x=1
\ <77gb§|Yb|

The proof is similar to Theorem 10.

S. A novel method for MAGDM based on SFWPPMSM operator

For this section, we shall establish a novel approach for MAGDM with SFNs
by SFWPPMSM operator.

Let gg = {551, 52, cee g_jp} be the set of p alternatives and N =
(N1,8o, -, &q} is the corresponding ¢ attributes with attribute weights ¢ =

g = = = =
(1,0, )7, % > 0, Y B =1, and R = {Ry, Ry, -+, R.} stands for z
k=1

DMs, where 6 = (61,62, --- ,0,)! stands for the weight vector of z experts with
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- 2 -

0 > 0and on = 1. Assume that attributes are divided into e distinct partitions
Y1, Ys,---,Y,, and any g, attributes have an interrelationship in partition ¥}, but

attributes in distinct partitions are irrelevant.
Moreover, considering the uncertainty of evaluation environment in MAGDM
problems SENs are employed to express the preference information of DMs

Let 2 2h = (”};k) represents a spherical fuzzy decision matrix, where =
pXq

fk
(ﬁfckﬁfckj;k) (h = 1,2,---,7) denotes SFN of the h-th DM about the f-th
alternative under the k-th attribute.

Next, we shall give the general steps of the established approach to MAGDM
issues.

Step 1. Acquire spherical fuzzy decision matrices by DMs.
Step 2. Normalize decision matrix 2" (h = 1,2, ..., z) depending on (32):

vf,h:(@?k)pxq’ f=12--,p; k=1,2,---,q; h=12---,z,

ap _[(2h 2k 2h
Wrk = (lufk’ﬂfk’vfk)
Sh o gh  Fho Zh for benefit attribut
B = a7, v, or benefit attribute
o AL _hfz . (32)
:fk) = U Ty ,ufk) for cost attribute.

Step 3. Determine support by (33):

Ly ag . ap aj
F=1,2,....p; k=1,2,....q; hi=1,2,....,2, h#i.

Here, Sup (@;ﬁk, vf/;k)
cates the distance measure computed by (9).

Step 4..Calcu1ate the support degree T(ﬁ’?k) of the SFN "
SFNs v?/’fk (h,i=1,2,---,z,h # 1) with (34):

Wi ) indi-

meets the support conditions, and Dis ( Wi Wik

i to the other

() = | Z Sup (¥ 7 (34)



www.czasopisma.pan.pl P N www.journals.pan.pl
Y
S~

SPHERICAL FUZZY POWER PARTITIONED MACLAURIN
SYMMETRIC MEAN OPERATORS AND THEIR APPLICATION. . . 219

Step 5. Compute power weights 5}7,( by weight gh (h =1,2,---,z) for DM
associated with the SFN v@? . given as follow:

(1 (#,)
=S .
Ty = (h=1,2,...,2) (35)

on (147 (W)
h=1

Z
and z%?k >0, Z%?k =1.
h=1

Step 6. Get the comprehensive decision matrix W= (ﬁ fk)
xq

Since there are no partition among DMs, all the individual decision matrices
wh = (v?/ﬁik)pxq are aggregated into comprehensive matrix W = (vtv fk)quby
using SFWPPMSM operator with e = 1, and

Wk = SFWPPMSM 8182 8) (w}k Wher o fv;k)
= SEWPMSME (W), 02, 0%, ). (36)
Step 7. Calculate the support Sup (w fhs W fr) by 37):

Sup (;:ka’%fr) =1- Dis (VTka,v?/fr) R
(f=12,...,p; kyr=1,2,...,q, k#r),

(37)

where, Dis(ﬁ fhs W fr) is computed by Definition 4.
Step 8. Determine the support degree T'(w k) of the SFN W 7k to the other SFNs
we (r=1,2,...,q, r # k) with (38):

q
T (Wfk) = Z Sup (Wfk,ﬂ/fr) . (38)
r=1,r£k

Step 9. Obtain the power weights {7, (f = 1,2,--- ,p,k =1,2,--- , g) associated
with the SFN w rk by attribute weight ¢, and

- qﬁk(1+T(fvfk)) | o)

;ﬁk(ln(%&ﬂ))
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Step 10. Aggregate all SFNs w fk to obtain the total assessment value W r of each
alternative by using the SFWPPMSM operator,

Wp=SFWPPMSM(Wri,Wra, ..., Wrg)s (f=12,...,p). (40)

Step 11. Determine the score S f (vtvf) (f=1,2,...,p) by Definition 3.
Step 12. Sort all alternatives based on S f (ﬁf) (f =1,2,...,p). The largest
score value is the best alternative. If Sf (vzvf) =Sf (vat) (f,t = 1,2,...,p,

t # f), then sort alternatives ‘R ¢ and R, according to the accuracy degrees

Af (@ f) and Af (v:vt), the more the accuracy degree is , the alternative will be.

6. Numerical example and discussion

6.1. Numerical example

In this part, we certify the practicability and feasibility of the established
method with an example of hydroelectric power plant construction projects.

Example 1 Suppose a company invites thrcie e)iperjenged experts (91%1, ‘)%\2, ‘)j’\g)
to evaluate the following five projects ( @1, 92, 93, 94, 95) according to five
attributes: (1) workforce quantity §1 , (2) power generation capacity §2, (3) con-
struction cost §3, (4) environmental damage impact §4, (5) security level §5
to build a hydroelectric power plant, where § 1 ?:43 and %4 are cost attributes.
(0.35,0.4,0. 25)T is the weight Vector of three experts ?3\1, 9%2, ‘)3\3, and the
weights of attributes Nl, N, N3, N4, 85 are 0.16, 0.25, 0.21, 0. 20 and 0. 18 sepa-
rately Assume that five attributes are divided into two parts: Y1 = {Nl, 83} and
Yz = {Nz, ?24, 85}, that is, workforce quantity and construction cost are classified
as part % 1 and power generatiorl capacity, environmental damage impact and secu-

rity level are classified as part ¥,. The evaluation information obtained by experts
using SFNSs is presented in Tables 1-3. Next, we use the established approach to
deal with this problem.

Step 1. Evaluation matrices of DMs are given in Tables 1-3, so Step 1 has
been completed.
Step 2. Normalize the attributes by (32) (see Tables 4-6).
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Table 1: The evaluation information from ‘)7'{1
Alternatives § 1 §2 §3 §4 § 5
51 (0.3,0.4,0.5) | (0.3,0.6,0.4) | (0.6,0.3,0.3) | (0.5,0.5,0.5) | (0.2,0.3,0.5)
52 (0.6,0.4,0.5) | (0.3,0.2,0.1) | (0.3,0.3,0.7) | (0.3,0.2,0.3) | (0.3,0.6,0.4)
53 (0.1,0.2,0.5) | (0.7,0.2,0.3) | (0.1,0.2,0.8) | (0.2,0.6,0.5) | (0.8,0.1,0.4)
54 (0.2,0.5,0.6) | (0.9,0.1,0.1) | (0.4,0.5,0.2) | (0.4,0.7,0.4) | (0.4,0.5,0.5)
55 (0.6,0.5,0.1) | (0.6,0.4,0.2) | (0.1,0.2,0.8) | (0.5,0.1,0.4) | (0.3,0.2,0.7)
Table 2: The evaluation information from ‘)_%2
Alternatives § 1 §2 ?:43 §4 ?:45
51 (0.3,0.4,0.6) | (0.4,0.6,0.4) | (0.5,0.2,0.8) | (0.3,0.4,0.5) | (0.5,0.4,0.3)
52 (0.6,0.5,0.5) | (0.3,0.1,0.8) | (0.4,0.8,0.4) | (0.8,0.1,0.2) | (0.9,0.3,0.1)
53 (0.3,0.2,0.5) | (0.7,0.6,0.2) | (0.1,0.7,0.3) | (0.2,0.6,0.7) | (0.7,0.6,0.3)
54 (0.5,0.5,0.6) | (0.3,0.8,0.2) | (0.4,0.7,0.5) | (0.3,0.8,0.4) | (0.4,0.3,0.6)
55 (0.2,0.8,0.1) | (0.5,0.6,0.4) | (0.4,0.2,0.3) | (0.1,0.1,0.8) | (0.3,0.6,0.4)
Table 3: The evaluation information from ‘Rg
Alternatives gﬁ 1 §2 §3 §4 ?:45
51 (0.6,0.7,0.1) | (0.3,0.1,0.7) | (0.4,0.6,0.3) | (0.3,0.7,0.4) | (0.3,0.4,0.6)
5/32 (0.2,0.3,0.5) | (0.4,0.3,0.5) | (0.6,0.4,0.2) | (0.5,0.2,0.6) | (0.2,0.7,0.4)
53 (0.2,0.3,0.9) | (0.7,0.2,0.3) | (0.2,0.3,0.7) | (0.4,0.3,0.5) | (0.3,0.4,0.2)
54 (0.2,0.1,0.5) | (0.3,0.3,0.7) | (0.2,0.5,0.1) | (0.2,0.1,0.3) | (0.5,0.5,0.6)
o5 (0.1,0.4,02) | (0.6,0.6,0.4) | (0.4,0.6,04) | (0.1,0.5,0.2) | (0.3,0.1,0.7)

Step 3. Determine support Sup(

Sup(v@ﬁ’ck, fk) Sﬁi’k,thenwehave

§12 = §21 = 0.96333,

$12 = §21 = 0.91667,
$12 = §21 = 0.78000,

fk’

§12 = §21 = 0.97667,

S12 = §21 = 0.85333,

S12 = §21 = 0.68333,

a21
SZl - S21

) by (33). For simplicity, let

$12 = §21 = 0.76333,

= 0.97000,
$12 = §21 = 0.79000,
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Table 4: Normalized evaluation information of ‘)_%1
Alternatives § 1 §2 §3 §4 § 5
o1 (0.5,0.4,03) | (0.3,0.6,0.4) | (0.3,0.3,0.6) | (0.5,0.5,0.5) | (0.2,0.3,0.5)
0> (0.5,0.4,0.6) | (0.3,0.2,0.1) | (0.7,0.3,0.3) | (0.3,0.2,0.3) | (0.3,0.6,0.4)
03 (0.5,02,0.1) | (0.7,0.2,0.3) | (0.8,0.2,0.1) | (0.5,0.6,0.2) | (0.8,0.1,0.4)
@4 0.6,0.5,0.2) | (0.9,0.1,0.1) | (0.2,0.5,04) | (0.4,0.7,0.4) | (0.4,0.5,0.5)
55 (0.1,0.5,0.6) | (0.6,0.4,0.2) | (0.8,0.2,0.1) | (0.4,0.1,0.5) | (0.3,0.2,0.7)
Table 5: Normalized evaluation information of R,
Alternatives § 1 §2 §3 §4 §5
o1 (0.6,0.4,0.3) | (0.4,0.6,0.4) | (0.8,0.2,0.5) | (0.5,0.4,0.3) | (0.5,0.4,0.3)
0> (0.5,0.5,0.6) | (0.3,0.1,0.8) | (0.4,0.8,0.4) | (0.2,0.1,0.8) | (0.9,0.3,0.1)
03 (0.5,0.2,0.3) | (0.7,0.6,0.2) | (0.3,0.7,0.1) | (0.7,0.6,0.2) | (0.7,0.6,0.3)
04 (0.6,0.5,0.5) | (0.3,0.8,0.2) | (0.5,0.7,0.4) | (0.4,0.8,0.3) | (0.4,0.3,0.6)
Os (0.1,0.8,0.2) | (0.5,0.6,0.4) | (0.3,0.2,0.4) | (0.8,0.1,0.1) | (0.3,0.6,0.4)
Table 6: Normalized evaluation information of ‘)_%3
Alternatives § 1 §2 §3 §4 § 5
o1 (0.1,0.7,0.6) | (0.3,0.1,0.7) | (0.3,0.6,0.4) | (0.4,0.7,0.3) | (0.3,0.4,0.6)
0> (0.5,03,02) | (0.4,0.3,0.5) | (0.2,04,0.6) | (0.6,0.2,0.5) | (0.2,0.7,0.4)
03 0.9,0.3,0.2) | (0.7,0.2,0.3) | (0.7,0.3,0.2) | (0.5,0.3,0.4) | (0.3,0.4,0.2)
54 (0.5,0.1,0.2) | (0.3,0.3,0.7) | (0.1,0.5,0.2) | (0.3,0.1,0.2) | (0.5,0.5,0.6)
55 (0.2,0.4,0.1) | (0.6,0.6,0.4) | (0.4,0.6,0.4) | (0.2,0.5,0.1) | (0.3,0.1,0.7)

$12 = §21 = 0.62000,
$12 = §21 = 0.66667,
12 = §21 = 0.93000,
S12 = §21 = 0.92667,
S12 = §21 = 0.85667,

= §21 = 0.78333,

$12 = §21 = 0.97333,

$12 = §21 = 0.92000,

$12 = 52 = 0.54000,

12 _ a21
545 = 545

12 _ &21
553 = 553

_ &3l
=57

= 0.91000,
= 0.76667,
= 0.72000,

$12 = §21 = 0.81000,

$12 = §21 = 0.85000,

G2 _ Q21
S51 - SS]

= 0.76333,

al2 _ a21
554 = 554 = 0.76000,

al13 _ &31
S =51

= 0.77333,
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§13=83120.84333, §13=831-0383667, S§13=53=092333,
SB3 = $31 = 0.87000, S$13 =531 =0.88000, S$13=S3=0.73667,
SB = $3l = 085667, S$13=331=0.94000, S$13=53=0.78667,
§13 =831 =1.00000, S$13=531=092333, S$L3=33!=0.87000,
S =83 =0.72667, S =531-0.88333, S§13=531=057333,
S = 8§31 2095000, S =831 =0.77667, S§13=S3)=0.93333,
SB=83120.84333, $13=531-0.89333, S$13 =53 =0.68333,
SB = $31=0.80000, S13=$3k=0.99000, S$33 =532 =0.68333,
§23 =832 2075000, $23=532=0.68000, $23 =532 =0.86000,
§23=832-0.85667, S$23=532=0.84000, S$23 =532 =0.82000,
§23=82-0.73333, §3=52-0.75333, $% =532 =0.56000,
$2 =52 -0.78000, $23=52-0387667, S$3=532=0.72333,
$2 =82 =0.79000, §2=52=078333, $% =53 =081333,
§23 =832 =0.66667, $23=532=0.80000, $23 =532 =0.75000,
$23=82-091667, 52 =52=0.82000, S$2=52=0.96333,
S2=52-087000, S =52=0.72000, S$Z=532=0.77333.

Step 4. Calculate the support degree T(v?/?k) with (34). For simplicity, let

2h \ — Th
T(wfk) = Tf

o then we have

7!, = 1.68333, T}, = 1.75000, T}, = 1.60667, T}, = 1.75333, T/5 = 1.77667,
T}, = 1.84000, T, = 1.66000, T} = 1.42000, T}, = 1.64667, T = 1.56000,
T) = 176000, T1, = 1.87667, Tk = 1.59000, T1, = 1.79000, T = 1.53667,

T) = 1.81333, T =1.11333, T} = 1.80000, T}, = 1.70333, T\ = 1.84333,
Tl = 1.60667, T, =1.75000, T& = 1.45000, T2, = 1.56000, Tk =1.77333,
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T2 = 1.64667,

2 = 1.81000,
T2 = 1.75333,

T2, = 1.74333,
T2 = 1.58333,

T3 = 1.40333,
73, = 1.71000,

T3 = 1.56667,
T2, = 1.69667,
T3, = 1.66333,

Step 5. Compute power weights

ing (35).

@, =0.36140,

@), =0.35557,
@, =0.35659,
@, =0.35726,
@), =0.34935,
@2, =0.40739,
&2, =0.40207,
@2, =0.40655,
@2, =0.39814,
&2, =0.39569,
&3, =0.23121,
@3, =0.24235,
&3, =0.23686,

T2, = 1.72667,
T2, = 1.60000,

T2, = 175333,

T2, = 1.20667,
T2, = 1.82000,

T3, = 1.52333,
T3, = 1.70000,

T3 = 1.87667,
T2, = 1.24000,
T2, = 1.85667,

&1, =0.35861,

@5, =0.35185,
@3, =0.35611,
@, =0.33893,
@i, =0.34318,

@, = 0.40636,

@3, =0.39305,

@3, =0.38953,

@2, = 0.40446,

@2, =0.40219,

@3, =0.23503,

@3, =0.25510,
&3, =0.25436,

T2, = 1.44333,
T2 = 1.41667,
72, = 1.39000,
T2, = 1.65000,
T2 = 1.63667,
T2, = 1.52333,

73, = 1.47000,

T3, = 1.64667,
T2, = 1.75000,
T2, = 1.55333,

@3 =0.36197,

@5, =0.34839,
@1, =0.35913,
@13 =0.35930,
@l =0.33621,
&%, =0.38775,
@3, =0.39761,
@3 =0.37874,
&2, =0.38863,
@2 =0.41351,
@3, =0.25028,

@3, =0.25399,
@3, =0.26213,

T2, = 1.77667,
T2, = 154333,
72, = 1.71000,
T2, = 1.67667,

72
T2, = 1.48000,
T3, = 1.69667,

73, = 1.61000,
T3, = 1.66000,
T3, = 152667,
73, = 1.52000,
z%;k (h = 1,23, f.k = 1,...,

@, =0.35062,

@1, =0.35681,
@1, =0.35828,
@, =0.35725,
@, =0.35584,
@2, =0.40410,
@3, =0.39186,
@3, =0.39773,
@2, = 0.40425,
@2, =0.39396,

@3, =0.24529,
@3, =0.25133,
@3, =0.24399,

T2 = 1.71000,
T2 = 1.18000,
T2 = 159333,
T2 = 1.82667,
T2 = 1.55667,
T3 = 1.78000,
T3 = 1.50000,
T3 = 1.51000,
T2 = 1.85000,
T3 = 1.76333.
5) by utiliz-

&5 =0.35329,

@5 =0.37443,
@i =0.34781,
@5 =0.35062,
@l =0.36163,
@ =0.39406,
@2, = 0.36440,
@35 = 0.40637,
@35 =0.39836,
&% =0.38100,
@35 =0.25265,
@35 =0.26118,
@35 =0.24582,
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@3, =0.24460, @2, = 0.25661, G2 = 0.25206, &2, = 0.23850, &3 = 0.25103,
&3, =0.25496, &3, =0.25464, &2, =0.25028, &2, =0.25020, &3 =0.25737.

Step 6. Get the comprehensive decision matrix W= (@ fk) by (36) (suppose
pxq

g = 1), the results are shown in Table 7.

Table 7: Comprehensive decision matrix

WS s [ [ s
551 (0.50,0.46,0.35) |(0.35,0.39,0.46) | (0.60,0.30,0.51) | (0.48,0.50,0.36) | (0.38,0.36,0.43)
52 (0.50,0.41,0.46) |(0.33,0.17,0.34) | (0.52,0.48,0.40) | (0.39,0.15,0.50) | (0.69,0.49,0.24)
553 (0.68,0.22,0.18)|(0.70,0.31,0.26) | (0.66,0.36,0.12) | (0.60,0.51,0.24) | (0.69,0.29,0.30)
554 (0.58,0.34,0.29) |(0.68,0.31,0.22) | (0.35,0.57,0.34) | (0.38,0.46,0.30) | (0.43,0.41,0.56)
55 (0.13,0.57,0.25) | (0.56,0.52,0.32) | (0.59,0.26,0.25) | (0.61,0.15,0.18) | (0.30,0.25,0.57)

Step 7. Calculate the support Sup(w fk,v:& fr) by (37), for convenience, let

Sup(vtka, v:&fr) = g?, then

§12=521=0.91083,
§12=52'=0.86997,
Sy°=531=0.84851,
$3*=53'=0.88935,
$,°=53'=0.84981,
§33=572=0.88173,
§37=832=0.91041,
§24=512=0.83805,
§3°=537=0.98510,
§34=533=0.86188,
$39=57°=0.88880,
§3=52°=0.82716,

§12=52'=0.87519,
$13=831=0.88002,
§13=531=0.80466,
Sy=53'=0.89967,
§3°=53'=0.96222,
§3°=532=0.56523,
§34=512=0.90658,
§34=§%=0.87391,
§37=532=0.79251,
$31=837=0.91547,
§39=857=0.89343,
S1P=574=0.91389,
§=534=0.89507,

$32=55'=0.96362,
$,7=831=0.95638,
S14=851'=0.97828,
Si*=531=0.76981,
Sy°=53'=0.85413,
§3°=532=0.95491,
§24=532=0.93977,
§29=572=0.97636,
§37=827=0.78127,
§34=537=0.94885,
§39=837=0.94729,
§5°=53'=0.75531,
§3°=83*=0.79377.

S}%=53'=0.93838,
$1°=83'=0.96084,
§)*=83'=0.90551,
§1°=871=0.91814,
§:°=52'=0.80313,
§37=522=0.78689,
§31=837=0.89819,
§3°=532=0.78821,
§34=517=0.86147,
§31=547=0.96350,
§37=537=0.85839,
§7°=53"=0.89058,
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Step 8. Determine the support degree T(v:vfk) (f,k=1,2,---,5) by (38) (see
Table 8).
Step 9. Obtain the power weights {7 (f,k = 1,2,---,5) based on (39) (see
Table 9).

Table 8: The support degree (T(v:vfk))5X5

Alternatives § 1 ?2(2 §3 §4 § 5
91 3.68726 3.67550 3.51203 3.66022 3.69718
0> 3.58689 3.46840 3.57692 3.46247 3.28677
03 3.77603 3.80182 3.77851 3.59359 3.78519
04 3.54069 3.35583 3.44264 3.58163 3.40011
95 3.24757 3.43555 3.50573 3.40098 3.20533

Table 9: Power weight matrix £ = ({7 x)sxs

Alternatives §1 §2 §3 §4 §5
551 0.16149 0.25170 0.20404 0.20070 0.18207
5/32 0.16395 0.24956 0.21472 0.19938 0.17238
553 0.16094 0.25283 0.21134 0.19349 0.18140
54 0.16301 0.24434 0.20933 0.20560 0.17771
55 0.15545 0.25364 0.21643 0.20133 0.17314

Step 10. Obtain the total assessment value w s of each alternative over all attributes
by (40) (suppose g1 = g2 = 2), and
w1 = (0.47288,0.42042,0.43136), w, = (0.48109,0.35864, 0.40782),
w3 = (0.66132,0.34163,0.22583), w4 = (0.47092,0.43934,0.35584),
ws = (0.41707,0.39792, 0.31896).
Step 11. Determine the score Sf(vTVf) (f=1,2,...,5) by Definition 4.

Sf(wi) =0.54037, Sf(w) =0.57154, Sf(w3) =0.69795,
Sf(ws) =0.55858, Sf(ws) = 0.56673.
Step 12. Rank all alternatives to obtain the optimal one based on Sf(Ww f)
(f=12,...,5).
P3> 92> 95 > 04> 91
Through the above calculation, it can be concluded that 553 is the best hydropower
station construction project.
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6.2. The influence of parameters on results

Next, we take different values of parameters g1, g to study their influence on
evaluation results, as shown in Table 10.

Table 10: The evaluation results of SFWPPMSM operator under different parameter
values

Methods Score values Rankings
Sf(¢1) = 0.55383, S f(92) = 0.60043,
=1 g=1 Sf(93) =0.71310, S f(94) = 0.59065, | 93 > @5 > 92 > 94 > 91

Sf(@s) = 0.63206

Sf(¢1) =0.55038, S f(9,) = 0.57474,
gi=1,g=2 Sf(p3) =0.70491, S f(94) = 0.56418, | 93 > @5 > 92 > 94 > 91
Sf(gs) = 0.60919
SF(p1) = 0.54884, S f(9,) = 0.55643,

gi=1,8=3 Sf(93) =0.70114,S£(94) = 0.55337, | 93> 95 > $2 > P4 > P
Sf(gs) =0.59202

Sf(91) = 0.54394, S f(92) = 0.59736,
g1=2, g =1 Sf(93) =0.70631, S f(94) = 0.58545, | 93 > 92 > @5 > 94 > 91
Sf(gs) =0.59226

Sf(91) = 0.54037, S f(92) = 0.57154,
g1=2 g=2 Sf(93) = 0.69795,Sf(94) = 0.55858, | 93 > 92 > 95 > 94 > P
Sf(ps) =0.56673

Sf(¢1) = 0.53878, S f(9,) = 0.55316,
g1=2 g=3 SF($3) = 0.69411,Sf(3a) = 0.54763, | §3 > 92 > 91 > 95 > 61
Sf(9s) = 0.54704

As can be seen from Table 10, for different values of parameters g1, g», the
optimal alternative @3 and the worst alternative ¢ stay the same, whereas the

orders of alternatives 52, 554, 55 have changed for different values of g1, g>. The
reason for the difference is that the relational structure of attributes has changed
about different parameter values. The variation of parameters can capture any
types of interrelationships among attributes in the same partition. According to
the characteristics of SFWPPMSM operator, parameters g1, g> can reflect DMs’
risk attitude. In the actual decision making, DMs can set appropriate parameter
values according to their own risk attitude. When DMs pursue the risk type, they
can assign large parameter values g1, g» within the allowable range. Otherwise,
smaller parameter values g1, g> will be assigned if DMs is risk-averse. Thus, DMs
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can choose suitable parameter values to make decisions according to the actual
meaning of attributes and personal preference. In addition, it is observed that the
more interrelationships among attributes are considered in the same partition, the
smaller the scores will be.

6.3. Comparative analysis

6.3.1. The effectiveness of the proposed method

In this part, we deal with aforementioned example by existing methods under
SESs to illustrate the effectiveness of the proposed method. The results are shown

in Table 11.

Table 11: Score values and orders of different methods in Example 1

Methods Score values Orders
Sf(¢1) = 0.55301, Sf(92) = 0.61742,
SENWAA [32] Sf(@3) = 0.70941, S f(94) = 0.60241, | 93 > @5 > 92 > 94 > 91
Sf(gs) = 0.63770
Sf(¢1) = 0.50745,S f(9,) = 0.51778,
SFNWGA [32] Sf(93) = 0.67136,Sf(94) = 0.52333, | 93 > 95 > 94 > 92 > 91
Sf(gs) =0.54144
Sf(91) = 0.52845, S f(9,) = 0.56242,
SWAM [33] Sf(93) = 0.66445, S f(94) = 0.55246, | 93 > @5 > 92 > 94 > 91
Sf(@s) = 0.59051
Sf(91) =0.55188, Sf(9>) = 0.61204,
SFPWA [49] Sf(@3) = 0.71066, S f(94) = 0.59888, | 93 > 95 > 92 > 94 > 91
Sf(@s) = 0.63808
Sf(91) =0.50747, S f(9>) = 0.51631,
SFPWG [49] Sf(@3) = 0.67274, S f(94) = 0.52162, | 93 > 95 > 94 > 92 > 91
Sf(gs) =0.54272
Sf(¢1) =0.51479, S f(9,) = 0.53582,
SFWBM [39] floy) = e f(o2) = oz == =
(suppose p = 2, ¢ = 1) §f(93) = 0.67116,5f(94) = 0.53004, | 93 > 95 > 92 > 94 > 91
Sf(gs) = 0.57264.
SFGWMSM [50] Sf(91) = 0.47811,Sf(92) = 0.50954,
(suppose k =2, Sf(93) =0.66314,Sf(94) = 0.50889, | 93 > @5 > 92 > P4 > 91
A1 =0.5,1, =0.5) Sf(9s) = 0.52400.
Sf(¢1) = 0.54037, S f(92) = 0.57154,
SFWPPMSM Fn) F(92) L. .
o Sf(93) =0.69795,S f(94) = 0.55858, | 93 > 92 > 95 > P4 > 91
(suppose g1 = g2 =2) S
Sf(gs) = 0.56673.
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It is known from Table 11 that the sorting of the presented method is dif-
ferent from SFNWAA, SFNWGA, SWAM, SFPWA, SFPWG, SFWBM and
SFWGMSM, whereas the selection of optimal and worst alternatives of all meth-
ods is consistent. The above comparative analysis proves the effectiveness of the
established method.

6.3.2. The superiority of the proposed method
To further elaborate the superiority of the established approach, a novel in-

stance by more complex case is given below:

Example 2 An organization plans to build a new office block among gol, 302,
gJ3, g)4 and 305 alternatlves by considering the following five attributes: (1) con-

struction cost N 1, (2) traffic convenience Nz, (3) surrounding environment N3,

(4) building quality 84, (5) building area N5, where N is the cost attribute, and
(0.2,0.18,0.21,0.23,0.18) represents the weight vector of attributes. Based on
the characteristics of attributes, the five attributes are divided into two parts:
Y| = {?:41, N, &5} and Y, = {Rz, 83}. Moreover, there is a correlation between
any three attributes in Y}, and there is a correlation between any two attributes
in ¥», in other words, g = 3, g» = 2. There are three experts who evaluate the

- -

above five alternatives according to attributes N 1, R, 83, Ry, Ns using SFNs, the
evaluation results are presented in Tables 12—14. In addition, the weights of three
experts are 0.30, 0.35 and 0.35, respectively.

Table 12: The evaluation information from f’\l

Alternatives ??4] §2 ??43 §4 §5
91 (0.4,0.5,0.5) | (0.6,0.6,0.3) | (0.8,0.3,0.5) | (0.6,0.6,0.1) | (0.5,0.1,0.4)
92 (0.2,0.2,0.5) | (0.7,0.1,0.4) | (0.3,0.1,0.6) | (0.9,0.1,0.4) | (0.4,0.2,0.6)
93 (0.6,0.3,0.5) | (0.4,0.1,0.2) | (0.8,0.2,0.4) | (0.5,0.1,0.7) | (0.4,0.5,0.2)
94 (0.7,0.4,0.5) | (0.9,0.3,0.2) | (0.6,0.2,0.3) | (0.4,0.4,0.7) | (0.6,0.4,0.4)
?s (0.2,0.6,0.4) | (0.7,0.1,0.3) | (0.7,0.2,0.3) | (0.6,0.1,0.3) | (0.7,0.2,0.6)

We use the aforementioned methods to settle Example 2. The score values
and rankings of alternatives with different approaches are shown in Table 15.

It is observed by Table 15 that there is a striking difference between the
rankings of the presented approach and the existing approaches. The main reason
for the difference is that the proposed approach can model interrelationships
among any multiple attributes in same part while other methods cannot. And
more detailed explanation is presented below:
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Table 13: The evaluation information from ‘Rz
Alternatives §1 §2 §¢3 §4 §¢5
551 (0.6,0.4,0.6) | (0.3,0.6,0.4) | (0.8,0.2,0.3) | (0.8,0.3,0.4) | (0.8,0.3,0.2)
52 (0.2,0.6,0.6) | (0.6,0.5,0.6) | (0.4,0.4,0.8) | (0.3,0.1,0.4) | (0.8,0.2,0.2)
3/33 (0.2,0.2,0.4) | (0.2,0.6,0.4) | (0.2,0.8,0.2) | (0.3,0.3,0.8) | (0.8,0.4,0.2)
54 (0.3,0.4,0.6) | (0.4,0.5,0.5) | (0.4,0.7,0.5) | (0.3,0.4,0.8) | (0.7,0.1,0.5)
55 (0.7,0.4,0.2) | (0.2,0.1,0.4) | (0.3,0.2,0.4) | (0.7,0.3,0.2) | (0.7,0.3,0.6)
Table 14: The evaluation information from ‘)7&3
Alternatives ?:41 §2 §3 §4 §5
51 (0.9,0.1,0.4) | (0.6,0.1,0.3) | (0.2,0.6,0.5) | (0.3,0.2,0.6) | (0.3,0.5,0.6)
0> (0.3,0.4,0.5) | (0.4,0.3,0.2) | (0.1,0.5,0.4) | (0.5,0.1,0.5) | (0.2,0.7,0.4)
553 (0.7,0.4,0.5) | (0.5,0.4,0.2) | (0.3,0.3,0.5) | (0.3,0.1,0.1) | (0.7,0.2,0.5)
54 (0.1,0.2,0.5) | (0.8,0.1,0.2) | (0.1,0.3,0.8) | (0.4,0.1,0.3) | (0.6,0.3,0.6)
o5 (0.9,0.2,0.2) | (0.6,0.2,0.1) | (0.4,0.3,0.8) | (0.3,0.5,0.4) | (0.2,0.3,0.7)

1. Compared with the proposed method, SFNWAA, SEFNWGA and SWAM
mainly aggregate information by algebraic product and algebraic sum, which
cannot automatically adjust parameters in the evaluation process according
to DMs’ risk preferences, nor can they reflect the relationship between the
arguments. In addition, they also fail to capture interrelationships among any
multiple attributes in the same partition. However, the proposed method makes
up for all the shortcomings of the aforementioned three methods, so the pre-
sented approach is more robust and reasonable to dealing with MAGDM
issues.

2. On the basis of algebraic product and algebraic sum operational rules, the
methods of Garg, Ullah, Mahmood, Hassan and Jan [49] use PA operator
to diminish the impact of negative data on evaluation results by computing
the support degree between arguments. However, the presented approach not
only utilizes the advantage of PA operator but also makes full use of PMSM
operator to capture interrelationships among any multiple attributes in the same
partition. Thus, the established method is more scientific than the methods of
Garg, Ullah, Mahmood, Hassan and Jan [49].
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Table 15: Score values and orders of different methods in Example 2

Methods Score values Rankings
Sf(91) = 0.64027, Sf(92) = 0.65039,
SFNWAA [32] Sf(93) =0.63662,Sf(94) =0.63281, |92 > 91 > 93 > P4 > @5

Sf(gs) = 0.62952.

Sf(¢1) =0.55843, S f(9,) = 0.56921,
SFNWGA [32] Sf(93) = 0.54762, Sf(94) = 0.54258, | §r > 91 > 93 > 94 > 95
Sf(Ps) = 0.53048.

Sf(¢1) = 0.60414, S f(9,) = 0.60793,
SWAM [33] Sf(93) = 0.59450, Sf(94) = 0.60070, | §» > @5 > 91 > Pa > 93
Sf(Ps) = 0.60699.

Sf(¢1) = 0.64245, S f(92) = 0.65062,
SFPWA [49] S£(93) = 0.63556,Sf(94) = 0.63288, [ 9> > 91 > 93 > 94 > 05
Sf(gs) = 0.63157.

Sf(¢1) = 0.56251, S f(9,) = 0.57137,
SFPWG [49] Sf(@3) = 0.54731, S f(94) = 0.54396, | 9r > 91 > 93 > 94 > 95
Sf(gs) = 0.53334.

Sf(¢1) = 0.58431, S f(9,) = 0.59114,
Sf(93) = 0.57196, 51 (94) = 0.57990, | 92 > §1 > 95 > P4 > 3
Sf(Ps) = 0.58331

SFWBM [39]
(suppose p =2, =1)

SFGWMSM [50] Sf(91) =0.55914,5f(9r) =0.56617, |
(suppose k = 2, Sf($3) = 0.55007, Sf(9a) = 0.56056, | $2 > $4 > §1 > 95 > 93
A1 =051, =0.5) Sf($s) = 0.55445.

Sf(¢1) =0.62361, Sf(92) = 0.60650,
Sf(93) = 0.61057,5f(9a4) = 0.60754, | 91 > 93 > 94 > 95 > 92
Sf(@s) =0.60711

SFWPPMSM
(suppose g1 =3, g2 =2)

3. During the evaluation procedure, SFWBM can reflect the correlation of any
two attributes, and SFGMSM can consider some correlations of different
attributes. However, the presented approach can not only capture the interre-
lationships among any multiple attributes in the same part, but also minish
the impact of extreme values on results, so the presented approach is more
effective than the methods of Farrokhizadeh, Seyfi Shishavan, Donyatalab,
Kutlu Giindogdu and Kahraman [39] and Liu, Zhu and Wang [50] for dealing
with uncertain problems.

In addition, the main characteristics of the presented method and the existing
methods are displayed in Table 16.
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Table 16: Comparison of the characteristics of different methods

Whether can
Whethe'r can Whethe'r can | g her can | Whether can | . capture Fhe
capture inter- | capture inter- interrelation-
. . . . reduce the aggregate .
Methods relationship | relationships | . . . ships among
impact of information .
of two of among extreme data Aexibl any attributes
attributes attributes y in the same
part
SENWAA [32] No No No No No
SFNWGA [32] No No No No No
SWAM [33] No No No No No
SFPWA [49] No No Yes No No
SFPWG [49] No No Yes No No
SFWBM [39] Yes No No Yes No
SFGWMSM [50] Yes Yes No Yes No
SFWPPMSM Yes Yes Yes Yes Yes

7. Conclusions

In this article, we propose a novel spherical fuzzy MAGDM method based on
SFWPPMSM operator. Firstly, we extend PMSM operator to SFSs and develop
SFPMSM as well as SFWPMSM operators. In the meantime, some desirable
properties and special cases of these two operators are investigated. Considering
the advantage of PA operator, we integrate PA operator and PMSM operator under
SESs to further develop SFPPMSM operator as well as SFWPPMSM operator
and investigate their corresponding properties and some special cases. Then a new
MAGDM method on the basis of SFWPPMSM operator is proposed. Finally, the
feasibility and superiority of the presented approach are proved by comparing
existing methods. The proposed method can not only effectively reduce the impact
of negative data on assessment results by calculating the support degree between
arguments but also reflect interrelationships among any multiple attributes in the
same partition, so the established approach is more comprehensive and rational
to MAGDM issues.

However, there are some limitations for the proposed method. On one hand,
this paper only considers the case where the attribute values are SFNs, but
many complex decision environments may appear in the actual decision making.
Therefore, in the subsequent research, we will expand the proposed method to
other fuzzy environments to solve more uncertain problems. On the other hand, the
proposed method in this paper is developed from algebraic t-norm and algebraic t-
conorm on the basis of the assumption that MD, AD and N-MD are independent of



www.czasopisma.pan.pl P N www.journals.pan.pl
Y
S~

SPHERICAL FUZZY POWER PARTITIONED MACLAURIN
SYMMETRIC MEAN OPERATORS AND THEIR APPLICATION. . . 233

each other. However, there is a certain interaction between membership degrees
in many practical problems. In addition, Dombi t-norm and Dombi t-conorm,
Hamacher t-norm and Hamacher t-conorm are better than algebraic t-norm and
algebraic t-conorm in information fusion, because they can adjust parameters
according to DMs’ preference, which make the decision-making process more
flexible. And Hamacher t-norm and Hamacher t-conorm are effective extensions
of algebraic t-norm and algebraic t-conorm. Therefore, based on the research in
this paper, we will consider more complex decision scenarios in a follow-up study
and try to develop some better operators by combining the proposed AOs in this
paper and interactive algorithm, Dombi t-norm and Dombi t-conorm, Hamache
t-norm and Hamache t-conorm to solve practical problems more effectively.
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