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Abstract
This paper highlights the storage charging and discharging issue. The study objective is
to manage the energy inputs and outputs of the principal grid at the same time in order to
maximize profit while decreasing costs, as well as to ensure the availability of energy according
to demand and the decisions to either save or search for energy. A fuzzy logic control model
is applied in MATLAB Simulink to deal with the system’s uncertainties in scheduling the
storage battery technology and the charging- discharging. The results proved that the fuzzy
logic model has the potential to efficiently lower fluctuations and prolong the lifecycle.
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Introduction

With the increasing scarcity of fossil fuels (i.e. oil,
gas, coal), the search for less energy dependence and
the fight against greenhouse gas emissions, it is in-
creasingly necessary to use renewable energy sources
(RES), which, unlike fossil fuels, can regenerate at
the same rate as which they are used. For this pur-
pose, many countries intend to adapt the new MG
(i.e. microgrid) concept. The MG system is a grid sys-
tem powered by local RES, i.e. solar panels, to gen-
erate electricity for the building. The MG transmits
not only energy, but also production and consumption
status, along with storage data if required. Although
each MG is connected directly to the network, in case
of breakdown, some systems can operate in “island
mode” standalone units (Meliani et al., 2021). Fig-
ure 1 present the conceptual framework of an inter-
connected system. Along with power and heat gener-
ation, using mainly RES, these systems can store the
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energy in batteries for local distribution, the so-called
energy storage systems (ESS). ESS systems are de-
signed to save electricity during off peak periods and
deliver it back during on peak periods.

The ESS’s performance relies on its material, char-
ge-to-discharge performance, sizing, power density,
lifetime, power electronic interface, source type, and
loads (Faisal et al., 2018). Therefore, researchers are
still attempting to select efficient ESSs and apply
them to MGs. In comparison to other storage devices,
Li-ion storage technology is becoming highly adopted.
A series of research on Battery Energy Storage Sys-
tem (BESS) in MG applications have been conducted.
Despite the fact that they exist a diver’s storage de-
vices, batteries have drawn interest of researchers for
their maturity, control, and effectiveness. Their main
benefit is their ability to operate as standalone stor-
age or to be used as hybrid storage by including ad-
ditional batteries or non-battery storage devices (Li
et al., 2016).

In general, the conventional charge-discharge con-
trolling methods are related to complexities, charg-
ing cycle time, accuracy, high temperatures, and over-
charge or self-discharge problems. As a way to over-
come these problems, fuzzy logic systems to control
the charge and discharge BESS devices were proposed
from various researchers, among different other ap-
proaches. Table 1 summarizes the advantages and lim-
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Fig. 1. Interconnected system concept

Table 1
Advantages and disadvantages of the most used approaches in the storage control field

Avantages Limitations
Rule based
control –
Fuzzy logic

Making decisions with uncertain information;
Good robustness;
Very effective in regulating both source and load
variations for both voltage and frequency fluctuations.

Limited number of input usage variables;
Long system run time;
Lower accuracy.

Multi-agent
system

Lower computational load on agents;
Capacity to run multiple services in parallel;
Independency of the programming language;
Management and error control independent of the
agents.

Need for robust communications;
Restricted reliability for computational
purposes.

Model
predictive
Control

Simple control policy for complex systems;
Generic consideration of constraints;
Generic consideration of complex control goals;
Disturbance robustness.

Plant model is required;
High computational load;
High algorithmic complexity;
High number of control parameters.

PSO
(Particle
Swarm
Optimization)

Effective for non-linear optimization problem with
multiple constraints on generator output power limits;
Easy constraints;
Good for multi-objective optimization.

Low quality solution;
Needs memory to update velocity;
Early convergence.

ARIMA
(Autoregressive
Integrated
Moving
Average)

Straight forward;
Parametric and autoregressive model used for
forecasting applications;
General class of nonlinear model used for forecasting
a regression model and developing a fit;
High computational speed.

Need data linearization;
Less accuracy with time series data;
Presumed linear form of the related
time-series;
Includes complex data preprocessing;
Hard to automate;
Highly sensitive to outliers;
Requires complex differentiation, and
recording techniques for data linearization;
Work only with stationary data.

ANN
(Artificial
Neural
Network)

Can be easily automated;
Able to identify non-linear relationships;
Predictive power;
Less restrictions and assumptions.

Low interpretability;
Low scalability in handling large volumes
of data;
Requires large volumes of data.
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itations of the most adapted approaches. The ma-
jor benefit of the fuzzy logic controller (FLC) is
that mathematical calculations are not needed, which
allows easy implementation for battery charge-dis-
charge control (Faisal et al., 2019). It is inherently
robust since it does not require precise, noise free in-
puts and can be programmed to fail safely if a feed-
back sensor quits or is destroyed. The fuzzy logic (FL)
system is not limited to a few feedback inputs and one
or two control outputs, and it does not require mea-
surement or calculation of rate-of-change parameters
for implementation. It also controls also the complex
non-linear systems. This strategy permits the mini-
mization of unnecessary consumption during storage
before injection.

In Arcos-Aviles et al. (2018), a fuzzy-based BESS
approach for controlling the SOC (state of charge)
of battery is introduced, wherein its SOC limit was
fixed between 50% and 100%. Another similar ap-
proach was followed by Martínez et al. (2018), in
which twenty one fuzzy rules were employed in con-
trolling the battery SOC over five membership func-
tions (MFs). However, the limitation in this paper is
considering the limit of the SOC from 0% to 100%,
only the load control method was developed. There-

fore, considering fuzzy inputs and outputs for battery
charge and discharge control in MG applications re-
mains a major challenge to bound the SOC from 20%
to 80% of the operating range. Table 2 lists a brief
overview of some research on battery charge and dis-
charge control using the FLC. Based on the analysis
above, an FL-based control system with Mandani type
structure was considered, and inference, for MGs with
batteries, which ensures the power balance according
to the load demand, taking into account the improve-
ment of the MG performance. Multiple constraints
were considered, such as distributed generation op-
timization, priority, and real-time user consumption
information. In order to address the challenge of con-
trolling energy storage efficiently, and to optimise the
energy consumption of an MG.

In this paper, the focus is only on Time To Decision
(TTD) for injection shutdown and meanwhile storage
activation. The model’s objective is make the decision
automatically whether to store the power generated
by different RES waiting for injection by using fuzzy
logic reasoning of fictitious load losses.

The aim of the proposed fuzzy inference system
(FIS) is to lower the network fluctuations, and ex-
tend the battery life cycle through charge and dis-

Table 2
Researches on ESS charge and discharge controllers

Work Objective Features
Controlling the charging and discharging with the

FLC. 21 rules are performed from 5 MF of two inputs.

Martínez
et al.
(2018)

Controlling battery SOC in terms of secure limit.
SOC limits 50% to 100% using 72 kWh lead-acid
battery bank. MF ZE is applied to maintain the

battery SOC.
Cheng
et al.
(2018)

ESS charging control based on Fuzzy model. The input of SOC is 0 to 100%. Only charging
condition is fulfilled.

Moradi
et al.
(2015)

Minimize the MG optimal cost sizing while choosing
the FLC operational strategy.

The optimization is based on PSO program. An
integration of the RES to maximize the profit.

Viegas
& da
Costa
(2021)

Fuzzy logic controllers for electric vehicle battery
charging-discharging. A comparison of two fuzzy logic
controllers and a meta-heuristic optimizing method.

The optimizing method adopted is annealing
simulation. Off peak pricing, smart pricing, and

peak pricing are the pricing approaches considered.
Along with demand side management techniques.

Natsheh
et al.
(2013)

Managing energy flow with standalone hybrid power
system

The authors used 3 MFs. For the inputs they
consider PV power and load demand, and as output

SOC. While for battery storage an S-R is used.
Faisal
et al.
(2020)

FLC for charging and discharging and scheduling the
ESSs in an MG

FLC is optimized using PSO accounting the
available power, load demand, battery temperature

and SOC. 25 rules where performed.
Leonori
et al.
(2020)

Controlling the battery charging-discharging. life cycle
and charging efficiency.

An MG energy management system based on
genetic algorithms is defined for improving the

ESS-grid power balance.
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charge decision-making, depending on the RES and
current state-of-charge (SOC) of the energy storage
system. Section II presents the adopted MG, the char-
acteristics and parameters of the RES considered (e.g.
PV, wind turbine, battery). Section III describes the
model proposed, the fuzzy logic system, its structure,
and the rules adopted for the controller. Results and
discussion of the simulation are outlined in Section
IV. And section V, conclusion.

The adopted MG system

In this study, an MG was considered that in-
cludes distributed generators (e.g. diesel generators,
fuel cells), RES (wind turbines, PV panels), local de-
mand and storage batteries. The adopted MG, based
in Fez, Morocco, is illustrated in Figure 2. Note that
the MG is operating in main network connected mode.
The system is made of 8 PV solar panels, 36 cells each,
and the load varies between 4 kW. The PV panels are
powered by a wind turbine due to weather conditions
and to guarantee energy accessibility. Batteries are
also integrated to store excess or provide energy dur-
ing low RES production.

Fig. 2. The structure of the adopted MG system

PV panels

PV panels are based on photovoltaic cells (made
out of crystalline silicon) that can transform sunlight
into electric current (Meliani et al., 2021). Nowadays,
they are seen as the principal energy source. For PV
power output calculation, the equation (1) is needed
(Faisal & Koivo, 2011):

PPV = PSTC × (GING/GSTC)× [1 + k(Tc − Tr)] (1)

where PPV is the energy output of the module at irra-
diance GING, GINC is the incident irradiance, GSTC
is the irradiance at STC, PSTC is the module maxi-
mum power at standard test conditions (STC), Tc is
the cell temperature, k is the temperature coefficient
of power, and Tr is the reference temperature. Oper-
ating temperature of solar PV cells is estimated using
the equation (2) presented in Migan (2013):

Tc = Tair + (NOCT − Tsoc) ∗G/Gsoc (2)

Tair is the ambient temperature whereas NOCT is
the rated operating cell temperature. Gsoc and Tsoc
are the irradiance during standard operating condi-
tions and ambient temperature, respectively. In this
paper, the Solarex, MSX-83 is supposed to be em-
ployed (Solarex, Frederick, MD, USA). Its output fea-
tures are represented in Table 3 (Solar Electric Sup-
ply, 2017).

Table 3
Characteristics of the output

Parameters Value

Ppv, n Max power 83 W

Maximum voltage power 17.1 V

NOCT 47◦C

GSOC 800 W/m2

GSTC 1000 W/m2

Current at maximum power 4.85 A

TSOC 20◦C

Tstc 25◦C

Approximate effect of temperature
on power, k 0.5 %/◦C

Wind turbine

The energy output generated from turbines may be
characterized as a wind speed function that maybe
calculated using the equation (3) (Vestas, 2017):

Pwind =


0 UZ ≤ Uci or UZ > Uco

UZ − Ud

Ur − Uci
· Pt Uci ≤ UZ ≤ Ur

Pt Ur ≤ UZ ≤ Uco

(3)

Pt and Pwind are the rated wind power of the tur-
bine and the potential wind energy output, respec-
tively. Uci, Ur, UZ , Uco, are the input wind speed, the
rated wind speed, the wind speed at the hub height
of Z, and the output wind speed of the wind tur-
bine selected, respectively (Faisal et al., 2020). All
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parameters used in the given equation (3) were cho-
sen on basis of the V90-3.0 MW wind turbines man-
ufactured by Vestas, they are listed in Table 4 (Ves-
tas, 2017).

Table 4
Parameters of the V90-3.0 MW wind turbines

Parameter Value

Z, Hub height 105 m

Ur 15 m/s

Uci 3.5 m/s

Uco 25 m/s

Pt 3 MW

Storage system

Batteries provide a means of storing excess energy,
once the demand for energy is satisfied, in case there is
insufficient energy from the PV panels and the wind
field for later use. The battery’s SOC is character-
ized by its available capacity in percent. The follow-
ing equation (4) can be used to calculate the SOC of
a battery:

SOC = C × 100/CRef (4)

where C is battery capacity and CRef is the battery
reference capacity. Based on size, efficiency (> 90%),
cost, capacity, storage lifetime and charging time
(Graditi et al., 2016).

Fuzzy logic-based charging and
discharging model of batteries

Fuzzy logic is a general purpose logic, unlike
Boolean logic, in which the truth variable values are
real numbers from 0 to 1, instead of being true or false

(Garcia-Gutierrez, 2021). Logic considers a variety of
numerical factors to reach a suitable solution (Zadeh,
1965). Such formalization takes place by means of op-
erations called fuzzy subsets which are characterized
by a membership function µ as in equation (5), where
V is a reference frame:

µ : x ∈ V → µ(x) ∈ [0, 1] (5)

The fuzzy logic method is widely applied in data
processing, automation and computer science. The
various characteristics of Boolean logic can be found
in fuzzy logic, such as OR, AND, addition, etc. This
approach helps in making decisions according to a cer-
tain rules that are predefined or learned, instead of nu-
merical calculations. However, the input data must be
represented in such a way that it retains its meaning
while still allowing for manipulation before the rule
base can be used (El Bourakadi et al., 2020). Once the
linguistic and fuzzy parameters are defined, the com-
plete inference system can be considered as a fuzzy
inference system development (El Bourakadi et al.,
2020). The application of this system in a controlling
problem comprises many phases (Figure 3, presents
the concept).
• Fuzzification engine: Converts the system inputs,

clear numbers, into fuzzy sets. It classifies input
signals to 5 stages (e.g. small, medium negative,
large positive, large negative, medium positive). In
general, input parameters are decided according to
the user’s requirements, while MFs are not limited
in number.

• Inference engine: simulates the process of human
rationality through fuzzy inferences on inputs and
IF-THEN rules. The fuzzy output sets of each rule
is aggregated into a single fuzzy output set.

• Defuzzification engine: Converts the fuzzy set gen-
erated by the inference engine into a crisp out-
put. There are different defuzziication options, the
common ones are centroid and average of maxima.

Fig. 3. Fuzzy logic concept
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Fuzzy logic controller structure

In this paper, a FLC-based energy management
controller is suggested to take a decision on the power
sale or purchase from the main network and the
charging-discharging of the batteries. To sum up, Fig-
ure 4 describes the different steps of the energy man-
agement strategy used to address the problem.

The Mamdani fuzzy inference system (FIS) is used
in this research, while the battery SOC and the differ-
ence between the power generated by the RES and the
demanded load (∆P ) are considered. Therefore, the
inputs are ∆P and the SOC of batteries. The output
is the decision I from among four options that should
be used: take energy from the distributed network,
discharge the batteries, charge the batteries, and feed
the excess to the grid. In the safe operating zone be-
tween 20% and 80%, the battery will be charged or
discharged based on the difference between the ref-
erence SOC and the current SOC, the load demand
and the power availability of the grid and distributed
sources. At 20% SOC, the battery will be charged
permanently despite the load demand and the SOC
will not cross the 80% maximum threshold. The FLC
input, ∆P , which is the difference in power demand
from the load PL and the overall available power PT
from distributed sources and the grid, it can be found
through the following equations (6) and (7):

∆P (t) = PT (t)− PL(t) (6)

with
PT (t) = PPV(t) + PW (t) (7)

where ∆P can either be positive (if the output of RE
is higher than the load) or negative (if the load is
higher than the RE output). For example, when ∆P
is negative, it is necessary to complete the energy need
from the grid or from batteries if the batteries are
discharged.

In simulation, four functions represented ∆P first
input: VS (Very Small), MS (Medium Small), ML
(Medium Large), VL (Very Large). For SOC, five
functions were supposed:
• VS (Very Small) from 0% to 30%;
• MS (Medium Small) from 25% to 35%;
• Normal (N) from 30% to 70%;
• ML (Medium Large) from 65% to 75%;
• VL (Very Large) from 75% to 100%.
The output decisions are represented by four func-

tions: MGS (Microgrid Supply), DB (Discharge Bat-
teries), CB (Charge Batteries), and SE (sell energy
to the grid). Figure 6 shows the MFs that have been
designed considering the MG and the power demand
of the load.

There are 20 rules defined to simultaneously
smooth the current for controlling the battery charge-
discharge to realize the global charge-discharge con-
troller strategy, because there are four functions rep-
resenting ∆P and five representing the SOC. Table 5
represents the controller conditions. The decisions in

SOC < SOC max
SOC >SOC max

Yes

NoYesYesNo

No
ΔP =Ptot -Ploads > 0

Buy electricity Discharge of battery Charge of battery Sell electricity

Irradiation
Temperature 
Wind speed

Start 

SOC, Ploads

Reduction of energy 

production

Ptot = Ppv + Pwind

Fig. 4. Flowchart proposed
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Table 5
Rules of the fuzzy controller

Decision
∆P

VS MS ML VL

VS VS VS VS VS

MS VS VS ML ML

SOC N MS MS ML ML

ML MS MS ML VL

VL N N ML VL

each mix were selected to ensure proper use of batter-
ies by guaranteeing no < 20% discharged or > 80%
charged batteries. Table 6 summarizes these rules.
However, the purpose behind setting up the rules as
a matrix is making the operating point closer to the
maximum power point with less fluctuation while rais-
ing or lowering the usage rate based on which direc-
tion the maximum peak occurs.

Table 6
Presentation of the rules block on fuzzy system

1. If (SOC is VS) & (∆P is VS) then (Decision is MGS)
2. If (SOC is VS) & (∆P is MS) then (Decision is MGS)
3. If (SOC is VS) & (∆P is ML) then (Decision is CB)
4. If (SOC is VS) & (∆P is VL) then (Decision is CB)
5. If (SOC is MS) & (∆P is VS) then (Decision is MGS)
6. If (SOC is MS) & (∆P is MS) then (Decision is DB)
7. If (SOC is MS) & (∆P is ML) then (Decision is CB)
8. If (SOC is MS) & (∆P is VL) then (Decision is CB)
9. If (SOC is N) & (∆P is VS) then (Decision is DB)

10. If (SOC is N) &(∆P is MS) then (Decision is DB)
11. If (SOC is N) & (∆P is ML) then (Decision is CB)
12. If (SOC is N) & (∆P is VL) then (Decision is CB)
13. If (SOC is ML) & (∆P is VS) then (Decision is DB)
14. If (SOC is ML) & (∆P is MS) then (Decision is DB)
15. If (SOC is ML) & (∆P is ML) then (Decision is CB)
16. If (SOC is ML) & (∆P is VL) then (Decision is SE)
17. If (SOC is VL) & (∆P is VS) then (Decision is DB)
18. If (SOC is VL) & (∆P is MS) then (Decision is DB)
19. If (SOC is VL) & (∆P is ML) then (Decision is SE)
20. If (SOC is VL) & (∆P is VL) then (Decision is SE)

According to the analysis, when there isn’t enough
total energy from RES to supply the load, the battery
needs to switch to discharge mode. However, when
the load demand decreases below the available energy,
then the battery can switch to charge mode. Thus,
according to Table 6 the fuzzy rules are explained as
follow:

Rule 1: If (SOC is VS) and (∆P is VS) then
(Decision is MGS): This means that if the SOC is
low and the load demand is low, then power should
be taken from the main grid.

Rule 8: If (SOC is MS) and (∆P is VL) then
(Decision is CB): Meaning that if the SOC is small
medium to be discharged and the load demand is very
high, then the battery can work in charge or discharge
mode.

Rule 20: If (SOC is VL) and (∆P is VL) then
(Decision is SE): Meaning that if both SOC and ∆P
are very large, and the battery is already overcharged,
then the excess of energy will be sold to the main
distributed network.

According to the rules, when the SOC is below the
limit, the battery will be on mode charge and will pre-
vent overcharging. But if the battery is full, it would
not accept the load to protect the overcharge. How-
ever, if ∆P is Large Positive, there is a large excess
of energy. So, it is better to sell the surplus energy
because if the batteries are charged, the limit can be
exceeded (> 80%).

Simulation and results

In this section, the results and discussion of the nu-
merical analyses are presented. First, the curve results
are shown, and then the FIS performance is discussed.
For the input parameters ∆P and SOC, an actual
weather data of wind speed, temperature, and irra-
diation of the FEZ city were used. For load demand
profile, the data of Aghajani & Yousefi (2019) was
used. The forecasting study was based on time series
model, with the help of Zaitun Time Series software,
and the following profiles are chosen (see Figure 5):
the PV power profile and the wind power profile, of
one summer and one winter day.

Each row of plots represents one rule in total there
is 20. If power should be taken from the values will
change and generate a new output response. If the ex-
ample in Figure 6 is considered, the SOC is around
28.5% which is in the area of medium low, while ∆P
is in the very small rang with a value of 28.1%, so as
a result in this case, power must be taken from the
grid. The line in the output plot provides a defuzzi-
fied value, the decision value in this example equals
to 0.623. The graph at the bottom right illustrates
how the output of every rule is combined to get an
aggregated output, and then defuzzified. The model
treats all the possibilities with all different rules that
were set, and collects all plot results in a 3D surface
as shown in Figure 6.
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Fig. 5. Representation of the profile of: the load demand, temperature, solar irradiance, and wind speed

Fig. 6. The fuzzy rule viewerinterface from MATLAB

The computation of fuzzy control action signal in-
cludes multiple steps. Those steps can be mixed to-
gether, given different inputs, in order to create the
rule’s visualization surface or control surface, since the

system has two inputs (∆P and SOC) and one out-
put I. Figure 7, represent the FIS 3D surface current
with variation of SOC and ∆P , simulated by Matlab.
This interface’s shape demonstrates the way the out-
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put values vary with any combination of the two input
values. In addition, this shows the surface of how the
output is varied with different variations of the error
and error change values.

Fig. 7. The 3D FIS surface inference systems

Conclusions

In this study the MG is supported by RES (i.e.
PV and wind turbine) combined together to enhance
the system efficiency. For this systema batteries for
storage unit are suggested. The power generated by
the RES were forecasted using the Zaitun Time Series
software. Then, the FLC technique is applied to make
a decision out of four options to match the economic
objectives and to minimize the cost and benefit ratio.
The obtained results of the simulation were quite fa-
vorable. Employing the FLC for decision making has
provided a better capability for controlling different
operations to get the maximum profit and a mini-
malcost. The maximum discharge rate and maximum
battery SOC have been taken into account for correct
usage.

Therefore, our main objective in this research is
to enhance the BESS performance and thereby to
provide the MG with reliable operation through an
adequate control over battery’s SOC. The fuzzy op-
timized model considered with two main entries 20
rules (∆P and SOC) and one output (Decision I).
The obtained results prove that the controller works
with a designed mechanism to either charge or dis-
charge the battery. The model developed is not de-
pendent on any mathematical features, and it may
be easily implemented in any DC system with mul-
tiple devices with only output power and minimum
alternating current constraints under suitable rules.
However, the discharge setting rules must be prop-
erly defined based on the DC loads and power sources
available.
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