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Abstract: This study presents a method to directly calculate the stator current Fourier
spectra in double-cage induction motors to diagnose faults in rotor cages. A circuit model is
developed for this purpose, allowing the modelling of any asymmetry in the outer and inner
rotor cages. The model extends the conventional model of a cage motor by considering the
higher space harmonics generated by the stator windings. The asymmetry of the cages is
modelled by growing the resistance of any of the rotor bars. This results in various model
equations, to be solved by looking for diagnostic signals. Motor current signature analysis
is typically used to diagnose cage motors based on the Fourier spectra of the stator currents
during steady-state operation. This study determines these spectra for double cage motors
using the harmonic balance method, omitting the transient calculations. The calculation
results confirmed the sensitivity of the stator current Fourier spectra as a diagnostic signal
to distinguish faults in the outer and inner cages.
Key words: cage asymmetry, double cage induction motor, harmonic balance method,
steady-state analysis, stator current Fourier spectra

1. Introduction

Double cage induction motors are commonly used medium and high-powered AC machines.
The specific rotor design requires a relatively high number of individual elements that should
be distinguished considering the cage asymmetry: 2𝑁 rotor bars for a rotor with 𝑁 slots, 2𝑁
end-ring segments if the end-rings of each cage are separate, or N end-ring segments for a cage
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with common end-rings, found in medium powered motors up to 100 kW [12,19]. A high number
of cage elements significantly complicates the diagnosis of a double cage rotor compared with
one-cage rotors.

Double cage rotors are particularly vulnerable to electrical damage owing to their transient
thermal phenomena. Damage typically occurs during long term transients, caused by a large
moment of inertia of a drive or level of load [11, 23]. During such operations, the starting cage
is mostly loaded and often damaged. Damage to the working cage occurs much less frequently,
primarily because of overloading at steady states. Despite this, diagnosing a double cage rotor
requires distinguishing between faults in the starting (outer) and working (inner) cages.

The electrical asymmetry in a double cage rotor is similar to those in a one-cage rotor. As
the temperature of the stator winding increases, the efficiency and maximal and starting torques
decrease. Uneven distributions of currents in rotor cages negatively affect the mechanical system,
increasing vibration and excessive load on the bearings caused by increased magnetic tension
forces. The level of negative phenomena depends on the location of the damaged bars in the
cage. Damage to a few neighbouring bars in the starting cage can substantially impedes the
starting procedure and force current flow through the rotor yoke to destroy the sheet packets. The
distribution of broken bars in the cages determines the level of stator current fluctuation in steady
states and generates an alternating component of the electromagnetic torque. For double-cage
motors, transient processes are determined by the outer cage; however, steady states at small
slips depend primarily on the inner cage. These essential features were applied in diagnosing
a double cage rotor. Diagnostic signals for the outer cage are based on signals at transients using
time-frequency methods. By contrast, signals for the inner cage are based on the frequency spectra
of stator currents in steady states at sufficiently high loads. Applications of the above-mentioned
phenomena for diagnostic purposes are presented in various studies on one cage and double cage
motors.

Limited studies on the asymmetry of double cage induction motors can be found in the
literature. Most studies present the measurement results for experimental test stands with rotors
specially prepared to damage the bars in the outer and inner cages [13, 16, 17, 24]. Electrical
and mechanical quantities were measured and analysed for transient start up [15–17] and steady-
states operations [18, 24, 25, 28]. These results allow us to recognise the effects of cage damages
and suggest algorithms for rotor diagnostics. Stator currents, often used for diagnostics, are
characterised using the time-frequency method for transients [15, 21, 22]. By contrast, methods
based on frequency and statistical analysis are applied for steady states [5, 24, 25]. Studies used
to analyse mathematical models of double cage motors under faulty conditions prefer field
models [7, 26, 27], however, circuital models are also present [5]. The analyses focus on stator
current properties using various measures; strategies for diagnostics are proposed according to
the results.

This study presents an approach to predict the Fourier spectra of stator currents for a double
cage motor at arbitrary damage to bars in the outer and inner cages. The mathematical model of
these motors is presented as ordinary differential equations for all circuits on the stator and rotor
sides by extending a known circuit model of typical cage motors, considering the higher space
harmonics generated by the stator and rotor windings [1, 4, 6, 8, 14, 20]. The double cage on the
rotor increases the number of rotor equations by twice in this model; thus, the number of model
equations to be solved for diagnostic signals is rather high.
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Detailed assumptions for the model are provided in the respective chapters. The parameters
for this model can be calculated using “classical” formulas for inductances and resistances in
AC machines based on geometrical and materials data [9, 12, 19]. The asymmetry of the cage is
modelled by increasing the resistance of any of the 2𝑁 rotor bars.

Motor current signature analysis (MCSA) is typically used in diagnosing cage motors based
on the Fourier spectra of stator currents during steady-state operations. In this study, these
spectra were directly obtained using the harmonic balance method for the differential equation
set constituting the mathematical model of double cage motors. To evaluate the sensitivity of this
approach, the following calculations were performed. The Fourier spectra of stator currents were
calculated for steady states at near rated loads if faults in the outer or inner cage appear separately
and if the faults occur both in the outer and inner cages. These tests indicate faults in the inner cage.
Faults in the outer cage can be observed in the stator currents during the transients. The outer cage
can also be activated, generating an opposite rotating magnetic field in the motor. Furthermore,
the effects of the outer cage asymmetry should be observed in the Fourier spectra of the stator
currents at the steady state. This allows omitting the simulations of transients, which are time
consuming owing to the high number of mathematical model equations. Subsequently, Fourier
spectra should be calculated by repeating the abovementioned tests on the unloaded motor and
growing the resistance of one from the stator phases to simulate a one-phase break and indicate
faults in the outer cage.

2. Circuital model of double cage induction motors

The mathematical model of the double-cage motors presented below is designed to study
asymmetry in rotor cages; both the magnetic circuit and stator windings are assumed to be
symmetrical. Therefore, the three-phase stator winding generates magneto-motive forces with
odd harmonics of orders 𝑝, 3𝑝, 5𝑝, 7𝑝, (𝑝 – pole-pair number), located symmetrically on the
circumference. Moreover, the rotor has 𝑁 slots, in which the bars of the outer and inner cages are
laid and connected by separate end-rings. The magnetic circuit is fully symmetric and linearised,
the air-gap between the stator and rotor is assumed to be smooth, and the field density in the
air-gap has only a radial component. Under these assumptions, the equations of the circuits on
the stator and rotor take a general form, given by (1).
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where u𝑠 = [𝑢𝑠𝑎 𝑢𝑠
𝑏

𝑢𝑠𝑐]𝑇 and i𝑠 = [𝑖𝑠𝑎 𝑖𝑠
𝑏

𝑖𝑠𝑐]𝑇 are the vectors of the stator phase voltages
and currents, respectively and i𝑜 = [𝑖𝑜1 . . . 𝑖𝑜

𝑁
]𝑇 and i𝑖 = [𝑖𝑖1 . . . 𝑖𝑖

𝑁
]𝑇 are the vectors of

the mesh currents of the outer and inner cages, respectively. Inductance matrices contain self and
mutual inductances owing to the main flux: L𝑠 of stator windings, L𝑜 of outer cage meshes and L𝑖

of inner cage mashes. By contrast, L𝑠𝑟 (𝜑) contains mutual inductances of stator windings to rotor
meshes, both outer and inner, and L𝑜𝑖 mutual inductances between meshes of outer and inner
cages. The matrices with the subscript 𝜎 contain the respective inductances owing to leakages
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fluxes. Detailed forms of these matrices are not presented here because they are the same as
those for classical cage motors and are well known in the literature [1, 4, 8, 9, 20]. The resistance
matrices, which are essential for modelling the asymmetry of the rotor cages and stator side, are
expressed as follows:

The matrix of stator phase resistance:

R𝑠 = diag
[
𝑅𝑠
𝑎 𝑅𝑠

𝑏 𝑅𝑠
𝑐

]
. (2)

Resistance matrices of the rotor cages:

R𝑟 =



𝑅𝑟
𝑚,1 −𝑅𝑟

𝑏,2 0 . . . 0 −𝑅𝑟
𝑏,1

−𝑅𝑟
𝑏,2 𝑅𝑟

𝑚,2 −𝑅𝑟
𝑏,3 . . . 0 0

0 −𝑅𝑟
𝑏,3 𝑅𝑟

𝑚,3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 𝑅𝑟
𝑚,𝑁−1 −𝑅𝑟

𝑏,𝑁

−𝑅𝑟
𝑏,1 0 0 . . . −𝑅𝑟

𝑏,𝑁
𝑅𝑟
𝑚,𝑁


for 𝑟 ∈ {𝑜, 𝑖}. (3)

Resistances in these matrices are given by

𝑅𝑜
𝑚,𝑛 = 𝑅𝑜

𝑏,𝑛 + 𝑅𝑜
𝑏,mod(𝑛,𝑁 )+1 + 2𝑅𝑜

𝑠𝑐 and 𝑅𝑖
𝑚,𝑛 = 𝑅𝑖

𝑏,𝑛 + 𝑅𝑖
𝑏,mod(𝑛,𝑁 )+1 + 2𝑅𝑖

𝑠𝑐 ,

where 𝑅𝑜
𝑏,𝑛

and 𝑅𝑖
𝑏,𝑛

are the resistances of the individual bars of the outer and inner cages,
respectively, and 𝑅𝑜

𝑠𝑐 and 𝑅𝑖
𝑠𝑐 are the resistances of the end-ring segment between the bars in the

outer and inner bars, respectively.
The spectral analysis of steady states simply identifies symmetrical components for descrip-

tion. Equation (1) can be written as

u = R · i + d
d𝑡

[L(𝜑) · i] .

Transformation to symmetrical components requires the following operaton:

S · u = (S · R · S−1) · (S · i) + d
d𝑡

(S · L(𝜑) · S−1) · (S · i). (4)

The general transformation matrix S has the form of a quasi-diagonal Hiper matrix given by

S = diag [T𝑠 T𝑟 T𝑟 ] , (5)

where

T𝑠 =
1
√

3


1 1 1
1 𝑎 𝑎2

1 𝑎2 𝑎

 , 𝑎 = 𝑒j2𝜋/3, T𝑟 =
1
√
𝑁


1 1 . . . 1
1 𝑏 . . . 𝑏𝑁−1

...
...

...

1 𝑏𝑁−1 . . . 𝑏 (𝑁−1)2


, 𝑏 = 𝑒j2𝜋/𝑁 .

The matrix T𝑠 defines symmetrical components of stator phase voltages and currents as

u𝑠 = T𝑠 · u𝑠 =
[
𝑢0
𝑠 𝑢1

𝑠 𝑢2
𝑠

]𝑇
, i𝑠 = T𝑠 · i𝑠 =

[
𝑖0𝑠 𝑖1𝑠 𝑖2𝑠

]𝑇
. (6)
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By contrast, the matrix T𝑟 defines the multiphase symmetrical components of mesh currents
for both the upper and lower rotor cages, expressed as

i𝑜 = T𝑟 · i𝑜 =
[
𝑖0𝑜 𝑖1𝑜 . . . 𝑖𝑁−1

𝑜

]𝑇
, i𝑖 = T𝑟 · i𝑖 =

[
𝑖0𝑖 𝑖1𝑖 . . . 𝑖𝑁−1

𝑖

]𝑇
. (7)

The resulting equations takes similar forms as that of (1).
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 . (8)

The structures of the inductance matrices in these equations are considerably simple. In
addition to the matrix L𝑠𝑟 (𝜑), all other matrices are diagonal, as shown below. Their forms are
based on the matrices for a one-cage motor, as reported in the literature [4, 6, 8, 9].

L𝑠 = L𝜎
𝑠 + L𝜇

𝑠 = diag [L𝑠 L𝑠] = diag
[
𝐿𝜎
𝑠 + 𝐿

𝜇
𝑠 𝐿𝜎

𝑠 + 𝐿
𝜇
𝑠

]
,

L𝑟 = diag
[
𝐿0
𝑜,𝑟 𝐿1

𝑜,𝑟 + 𝐿
𝜇
𝑟 . . . 𝐿𝑁−1

𝜎,𝑟 + 𝐿
𝜇
𝑟

]
, for 𝑟 ∈ {𝑜𝑖},

L𝑜𝑖 = diag
[
0 𝐿

𝜇
𝑟 . . . 𝐿

𝜇
𝑟

]
.

The matrix L𝑠𝑟 (𝜑) has a very specific form. Its Fourier series contains only odd harmonics
with respect to the pole-pair number 𝑝 owing to the assumed symmetry of the stator winding.
The matrix is expressed as

L𝑠𝑟 (𝜑) =
∞∑︁

𝑚=−∞
L𝑠𝑟 ,𝑚 · 𝑒j𝑚𝜑 , for 𝑚 ∈ {±𝑝,±3𝑝,±5𝑝, . . .}.

The coefficients of this matrix Fourier series, the matrices L𝑠𝑟 ,𝑚 with dimensions, have only
one non-zero element in the column mod(𝑚𝑝, 𝑁 − 1) and row mod(𝑚, 3).

The resistance matrices, which are important for analysing the asymmetry in a double rotor,
are determined using the following relations:

R𝑠 = T𝑠 · R𝑠 · T−1
𝑠 , R𝑜 = T𝑟 · R𝑜 · T−1

𝑟 , R𝑖 = T𝑟 · R𝑖 · T−1
𝑟 . (9)

The respective resistance matrices of rotor cages become full if asymmetry arises. Further-
more, by studying the double cage asymmetry, Equation set (8) has a dimension of (3 + 2𝑁),
which is large for rotors with many slots.

Equations (8) is useful for direct spectral analysis at steady state operations, particularly at
a constant rotor angular velocity; that is, during 𝜑 = Ω · 𝑡 + 𝜑0. The matrix L𝑠𝑟 (𝜑) for such
conditions becomes periodic and can be extended to a Fourier series, expressed as

L𝑠𝑟 (𝜑) = L𝑠𝑟 (𝑡) = L𝑠𝑟 (𝑡 + 𝑇) =
∞∑︁

𝑚=−∞
𝐿𝑠𝑟 ,𝑚 · 𝑒j𝑚𝑝Ω𝑡 , (10)

where only odd harmonics with respect to the pole-pair number occur; that is, for𝑚 ∈ {±1,±3, . . .},
owing to the assumed symmetry of the stator winding. The Fourier spectra of all currents can
be determined by balancing harmonics of voltages, inductances, and currents using the harmonic
balance method [2, 3, 8–10,14, 20].
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3. Harmonic balance equations

Harmonic balance equations are presented as steady states at an arbitrary constant angular
velocity Ω = const for monoharmonic, symmetrical stator phase voltages with pulsation Ω𝑠 ,
assuming star connection of stator phases without neutral. The star connection without neutral
eliminates the equation for zero components of stator values; therefore, in Eq. (8) vectors of
voltage u𝑠 and current i𝑠 can be reduced to

u𝑠 =

[
𝑢1
𝑠

∗
𝑢 1
𝑠

]𝑇
, i𝑠 =

[
𝑖1𝑠

∗
𝑖

1
𝑠

]𝑇
, (11)

where 𝑢1
𝑠 =

√
3𝑈 ·𝑒jΩ𝑠 𝑡 and are the RMS values of the phase voltages. Consequently, it is sufficient

to obtain the harmonic balance equations for forced vector u1
𝑠 =

[
𝑢1
𝑠 0

]𝑇 . Under these conditions,
the vector of the currents in the steady state can be predicted using the following Fourier series:

i1𝑠 =
[
𝑖1,1𝑠 𝑖1,2𝑠

]𝑇
=

∞∑︁
𝑚=−∞

[
𝐼1
𝑠,𝑚 𝐼2

𝑠,𝑚

]𝑇
𝑒j(Ω𝑠+𝑝𝑚Ω) ·𝑡 , (12)

i1𝑟 =
[
𝑖1,0𝑟 𝑖1,1𝑟 . . . 𝑖1,𝑁−1

𝑟

]𝑇
=

∞∑︁
𝑚=−∞

[𝐼1,0
𝑟 ,𝑚𝑒

j𝑝𝑚𝜑0 . . . 𝐼1,𝑁−1
𝑟 ,𝑚 𝑒j𝑝𝑚𝜑0 ]𝑇 𝑒j(Ω𝑠+𝑝𝑚Ω)𝑡 , for 𝑟 ∈ {𝑜, 𝑖}. (13)

Harmonic balance equations formulate the relations between the coefficients of all Fourier
series for voltages, resistances, inductances, and currents. The following form is considered for
the steady states


u𝑠

0
0

 =
©­­­«diag


R𝑠

R𝑜

R𝑖

 + j · diag

𝛀𝑠

𝛀𝑟

𝛀𝑟

 ·


L𝑠 L𝑠𝑟 L𝑠𝑟

∗
[L𝑠𝑟 ] 𝑇 L𝑜 L𝑜𝑖

∗
[L𝑠𝑟 ] 𝑇 L𝑖𝑜 L𝑖


ª®®®¬

i𝑠
i𝑜
i𝑖

 . (14)

These equations constitute an infinite set of algebraic equations, with complex variables and
parameters. The arrangement of vectors representing the voltages and currents is shown below.

The only non-zero forced vector u𝑠 on the left-hand side, arranged with respect to the central
element representing the 𝑢1

𝑠 voltage, takes the form

u𝑠 =
[
u1
𝑠 u2

𝑠

]𝑇
, u1

𝑠 = [. . . 0
√

3𝑈 0 . . .]𝑇, u2
𝑠 = [. . . 0 0 0 . . .]𝑇. (15)

The arrangement of the current vector i𝑠 follows that of the vector u𝑠 .

i𝑠 =
[
i1𝑠 i2𝑠

]𝑇
, i1𝑠 =

[
. . . 𝐼1

𝑠,1 𝐼1
𝑠,0 𝐼1

𝑠,−1 . . .
]𝑇

,

i2𝑠 =
[
. . . 𝐼2

𝑠,1 𝐼2
𝑠,0 𝐼2

𝑠,−1 . . .
]𝑇

.
(16)

The vectors of the cage currents are expressed as

i𝑟 =
[
. . . 𝐼1

𝑟 ,1 𝐼1
𝑟 ,0 𝐼1

𝑟 ,−1 . . .
]𝑇
, where I1,0

𝑟 ,𝑚 =
[
𝐼1,0
𝑟 ,𝑚 . . . 𝐼1,𝑁−1

𝑟 ,𝑚

]𝑇
, for 𝑟 ∈ {𝑜, 𝑖}. (17)
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The second terms in the lower subscripts in (16) and (17) follows the subscript 𝑚 in the
Fourier series (12) and (13).

The asymmetry of rotor cages and the break of one from stator phases is modelled by the
matrices R𝑠 , R𝑜 and R𝑖 in (8), which are full but with constant elements. The matrices R𝑠 , R𝑜

and R𝑖 in (14) contain these matrices. The matrix R𝑠 , for the arrangements of stator currents as
in (16) takes the following form:

R𝑠 =

[
R0
𝑠 R2

𝑠
∗
R 2

𝑠 R0
𝑠

]
.

The infinite matrices R0
𝑠 and R2

𝑠 , as shown below, are diagonal.

R0
𝑠 = diag

[
. . . 𝑅0

𝑠 𝑅0
𝑠 𝑅0

𝑠 . . .
]
, R2

𝑠 = diag
[
. . . 𝑅2

𝑠 𝑅2
𝑠 𝑅2

𝑠 . . .
]

with elements

𝑅0
𝑠 =

1
3
·
(
𝑅𝑠
𝑎 + 𝑅𝑠

𝑏 + 𝑅𝑠
𝑐

)
and 𝑅2

𝑠 =
1
3
·
(
𝑅𝑠
𝑎 + 𝑎2𝑅𝑠

𝑏 + 𝑎𝑅𝑠
𝑐

)
.

The infinite matrices R𝑜 and R𝑖 are quasi-diagonal with the respective matrices R𝑜 and R𝑖 on
the main diagonal.

The symmetry of the magnetic circuit and stator winding, assumed for the mathematical
model, causes all inductance matrices in (14), in addition to L𝑠𝑟 , to be diagonal with constant
elements. The matrix has the form:

L𝑠 = diag
[
𝐿1
𝑠 𝐿2

𝑠

]
, where L1

𝑠 = L1
𝑠 = diag [. . . 𝐿𝑠 𝐿𝑠 𝐿𝑠 . . .] .

The infinite matrices L𝑜, L𝑖 , and L𝑜𝑖 are quasi-diagonal with the matrices L𝑜, L𝑖 , and L𝑜𝑖

on the primary diagonal, respectively. The structure of the matrix L𝑠𝑟 is most important for
modelling harmonic interactions. The transpose of the matrix is created by two infinite matrices
L𝑠𝑟 =

[
L1
𝑠𝑟 L2

𝑠𝑟

]𝑇 with the following structures:

L1
𝑠𝑟 =



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 . . . 𝐿𝑝 0 . . . 𝐿7𝑝 0
. . .

. . . . . . 0 . . . 𝐿𝑝 0 . . . 𝐿7𝑝
. . .

. . . 𝐿−5𝑝 . . . 0 . . . 𝐿𝑝 0 . . .
. . .

. . . 0 𝐿−5𝑝 . . . 0 . . . 𝐿𝑝 0
. . .

. . . . . . 0 𝐿−5𝑝 . . . 0 . . . 𝐿𝑝

. . .

. . . 𝐿−11𝑝 . . . 0 𝐿−5𝑝 . . . 0 . . .
. . .

. . . 0 𝐿−11𝑝 . . . 0 𝐿−5𝑝 . . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



,
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L2
𝑠𝑟 =



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 . . . 𝐿5𝑝 0 . . . 𝐿11𝑝 0
. . .

. . . . . . 0 . . . 𝐿5𝑝 0 . . . 𝐿11𝑝
. . .

. . . 𝐿−𝑝 . . . 0 . . . 𝐿5𝑝 0 . . .
. . .

. . . 0 𝐿−𝑝 . . . 0 . . . 𝐿5𝑝 0
. . .

. . . . . . 0 𝐿−𝑝 . . . 0 . . . 𝐿5𝑝
. . .

. . . 𝐿−7𝑝 . . . 0 𝐿−𝑝 . . . 0 . . .
. . .

. . . 0 𝐿−7𝑝 . . . 0 𝐿−𝑝 . . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



.

The inside matrices have a dimension of (3× 𝑁). Each matrix has only one non-zero element
𝐿 𝑚𝑝 = 𝐿𝑚𝑝 · 𝑒j×𝑚𝑝𝜑0 in the column mod (𝑚𝑝, 𝑁 − 1) with respect to the harmonic order.

Differentiation operators in frequency domain have a diagonal structure, expressed as

𝛀𝑜 = diag [𝛀𝑠 𝛀𝑠] ,
𝛀𝑠 = diag [. . . (Ω𝑠 + 𝑝Ω) 𝛀𝑠 (Ω𝑠 − 𝑝Ω) . . .] ,
𝛀𝑟 = diag [. . . (Ω𝑠 + 𝑝Ω)E Ω𝑠E (Ω𝑠 − 𝑝Ω)E . . .] .

A detailed analysis of Eq. (14) quantitatively determines the stator current Fourier spectra. The
results of this analysis indicates that at any fault in the rotor cages, outer and inner, a symmetrical
supply is generated in the stator component 𝑖1,1𝑠 (defined in (12)), harmonics with pulsations
Ω𝑠+6𝑘 𝑝Ω, and component 𝑖1,2𝑠 harmonics with pulsationsΩ𝑠−(2+6𝑘)𝑝Ω, for 𝑘 ∈ {±1,±2, . . .}.
The spectra change qualitatively when one stator phase is broken at the same fault in the rotor. The
stator current components and contain harmonics with pulsationsΩ𝑠+2𝑘 𝑝Ω. Table 1 summarises
the results. The harmonics observed in the stator phase current spectra have a frequency of
𝑓ℎ = 2𝜋/‖Ωℎ ‖.

Table 1. Qualitative features of stator current spectra

Type of asymmetry Stator currents
component Pulsations

Faults in cages,
symmetrical supply

𝑖
1,1
𝑠 Ω𝑠 + 6𝑘 𝑝Ω

𝑖
1,2
𝑠 Ω𝑠 − (2 + 6𝑘)𝑝Ω

Faults in cages,
one-phase supply

𝑖
1,1
𝑠 Ω𝑠 + 2𝑘 𝑝Ω

𝑖
1,2
𝑠 Ω𝑠 + 2𝑘 𝑝Ω

𝑘 ∈ {±1,±2, . . .}.

With a symmetrical supply and small slip, the inner cage is more active, and faults in the
inner cage should be more apparent. The abovementioned tests could indicate faults in the inner
cage. With one-phase supply, the backward MMF is generated by stator phases, activating the
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outer cage. Therefore, faults in this cage should be apparent, and the test can indicate faults in the
outer cage. These suggestions were confirmed by the results of the numerical tests presented in
the next chapter.

4. Results of numerical tests

The numerical calculations were performed to quantitatively confirm if the abovementioned
tests can distinguish between faults in the upper and lower cages. Accordingly, harmonic Eqs. (14)
were solved. The equations are infinitive. The calculations were limited to a finite number,
considering the matrix L𝑠𝑟 harmonics up to 17𝑝. These limited equations contain the Fourier
coefficients of currents with frequencies up to 1.5 kHz. A set of 8 199 algebraic complex equations
were solved after structural analysis of (14). A MATLAB code was prepared using an iterative
procedure for the sparse matrices. The equation parameters were determined using the geometrical
and material data of the magnetic circuit, stator winding, and rotor cages.

Two tests were provided, described as follows:
Test 1
The stator current spectra with symmetrical supply were calculated for the near-rated load.

Three faults were assumed to be representative.
– One broken bar in the outer cage,
– One broken bar in the inner cage in the same slot,
– Two broken bars: one in outer and one in inner cages in the same slot.
Test 2
The stator current spectra with one-phase supply were calculated for an almost idle running

motor. The type of rotor fault was the same as that in Test 1.
– One broken bar in the outer cage,
– One broken bar in the inner cage in the same slot,
– Two broken bars: one in outer and one in inner cages in the same slot.
Calculations were performed for a motor with rated data: 𝑃𝑁 = 160 kW, 𝑈𝑁 = 1.0 kV,

𝐼𝑁 = 114 A, and 𝑛𝑁 = 1 485 rpm, connected in star without neutral. Table 2 presents the
geometric and design data. Table 3 presents the parameters of the rotor bars in the outer and inner
cages. The damage to the rotor bars was modelled by growing its resistance by 20 times. The
braking of the stator phase was simulated by increasing the phase resistance to 106 Ω.

Table 2. Geometrical and design data

Parameter name Symbol Value Unit

Yoke axial length 𝐿𝐹𝑒 0.31 m

Air gap thickness 𝛿 0.0025 m

Stator inner diameter 𝑑𝑠 0.16 m

Number of stator/rotor slots 𝑁𝑠/𝑁𝑟 48/38 –

Average stator winding pitch 𝑌 11 –

Number of turns per phase 𝑍𝑠 168 –
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Table 3. Parameters of rotor cages

Parameter name Symbol Value Unit

Upper/lower cage bar resistance 𝑅𝑜
𝑏
/𝑅𝑖

𝑏
0.42/0.05 mΩ

Upper/lower cage bar inductance 𝐿𝑜
𝑏
/𝐿𝑖

𝑏
0.7/2.5 μH

Upper/lower cage segment res. 𝑅𝑜
𝑠𝑐/𝑅𝑖

𝑠𝑐 1.1/0.6 μΩ

Upper/lower cage segment res. 𝐿𝑜𝑠𝑐/𝐿𝑖𝑠𝑐 0.03/0.025 μH

Figures 1(a), (b), and (c) show the results of Test 1. The Fourier spectra of the stator current
symmetrical components 𝑖1,1𝑠 and 𝑖1,2𝑠 versus pulsations for all three faults are shown with a 10−5 A
reference level.

(a)

(b)

(c)

Fig. 1. Spectra of stator current symmetrical components 𝑖1,1𝑠 and 𝑖
1,12
𝑠 with a symmetrical supply and faults

in rotor cages: (a) one broken bar in outer cage; (b) one broken bar in inner cage; (c) broken bars in the same
slot in upper and inner cages
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The harmonics in these spectra have pulsations, as listed in Table 3. Individual components
maintain the distance 6𝑝Ω, symmetrically with respect to the basic component with pulsation Ω𝑠

for the current 𝑖1,1𝑠 and with respect to the component with pulsation −𝑝Ω for the current 𝑖1,2𝑠 .
Figures 2(a), (b) and (c) show the Fourier spectra of the stator phase current versus frequency up
to 1 kHz.

(a)

(b)

(c)

Fig. 2. Spectra of a stator phase current with a symmetrical supply and faults in rotor cages: (a) one broken
bar in outer cage; (b) one broken bar in inner cage; (c) broken bars in the same slot in upper and inner cages

From a diagnostic point of view, the most promising component is frequency (1 − 2𝑠) 𝑓𝑠
with frequency (𝑠 is a rotor slip), which is characteristic of cage asymmetry. This component is
20 dB greater when one bar is broken in the inner cage (i.e., working cage) than when one bar
is broken in the outer (starting) cage, with the same supply under load conditions. Therefore, the
appearance of the component with frequency at normal steady state operation indicates a fault in
the inner cage. The spectra presented in Fig. 1 do not contain components typically observed with
frequency (1 + 2𝑠) 𝑓𝑠 . This is because of a constant rotor speed assumed for the spectral analysis
of currents. However, this component is strictly related to component (1 − 2𝑠) 𝑓𝑠 depends on the
moment of inertia of the drive, and can be neglected or summed with that first.
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Figures 3(a), (b), and (c) show the results of Test 2. The Fourier spectra of the stator current
symmetrical components 𝑖

1,1
𝑠 and 𝑖

1,2
𝑠 versus the pulsations for all three faults are shown with

a 10−5 A reference level.

(a)

(b)

(c)

Fig. 3. Spectra of stator current symmetrical components 𝑖1,1𝑠 and 𝑖1,2𝑠 at one broken phase and faults in rotor
cages: (a) one broken bar in outer cage; (b) one broken bar in inner cage; (c) broken bars in the same slot in

upper and inner cages

The harmonics in these spectra have pulsations, as listed in Table 3. The spectra qualitatively
have the same harmonics for the symmetrical components of 𝑖1,1𝑠 and 𝑖

1,2
𝑠 . Individual components

maintain a distance of 2𝑝Ω with respect to Ω𝑠 , both for currents 𝑖1,1𝑠 and 𝑖
1,2
𝑠 .

Figures 4(a), (b), and (c) show the Fourier spectra of the stator phase current versus frequency
up to 1 kHz. The asymmetry on the stator side generates new components in the stator current, as
shown in Fig. 4. Moreover, diagnostic components with frequencies near 3 𝑓𝑠 , (i.e., (3−2𝑠) 𝑓𝑠 and
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(3 − 4𝑠) 𝑓𝑠), are the greater number of new components when a fault in the outer cage appears.
Stotor asymmetry generates the backward component of the rotating magnetic field in a motor,
activating the outer cage. Its asymmetry is much more apparent in the stator current spectrum
than that of faults in the inner cage. The spectra in Figs. 4(a), (b), and (c) confirm these findings.
Therefore, the appearance of the components with frequencies near in the stator current spectrum
with the broken one phase and non-load state indicates a fault in the outer cage.

(a)

(b)

(c)

Fig. 4. Spectra of a stator phase current with one-phase supply and faults in rotor cages: (a) one broken bar
in outer cage; (b) one broken bar in inner cage; (c) broken bars in the same slot in upper cage and inner cages

These two tests show and explain the basic effects which can be applied to the diagnosis of
double-cage rotors using motor current signature analysis.

5. Conclusions

This study presents the stator phase current spectral analysis method for double-cage induction
motors to diagnose faults in rotor cages. It is based on a mathematical model that considers the
details of the rotor design used to describe the symmetrical components of the stator and rotor
values. Spectral analysis was performed using the harmonic balance method to algebraize the
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problem. Two tests were proposed, which suggested diagnostic signals based on the stator current
spectra at steady states for normal operation and at one broken stator phase for the idle run.
Numerical tests quantitatively confirmed the possibility of distinguishing between faults in the
outer (starting) and inner (working) cages.

The stator current spectra, obtained from the approach presented in this study, can be a basis
for more advanced motor current signature analysis often applied to diagnose induction motors.
Moreover, the spectra can create a data basis for diagnostics using artificial intelligence algorithms.
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