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Discrete-time Takagi-Sugeno singular systems
with unmeasurable decision variables:
state and fault fuzzy observer design

Khaoula AITDARAOU, Mohamed ESSABRE, Abdellatif EL ASSOUDI
and El Hassane EL YAAGOUBI

The studied problem in this paper, treat the issue of state and fault estimation using a fuzzy
observer in the case of unmeasurable decision variable for Discrete-Time Takagi-Sugeno Sin-
gular Sytems (DTSSS). First, an augmented system is introduced to gather state and fault into a
single vector, then on the basis of Singular Value Decomposition (SVD) approach, this observer
is designed in explicit form to estimate both of state and fault of a nonlinear singular system.
The exponential stability of this observer is studied using Lyapunov theory and the convergence
conditions are solved with Linear Matrix Inequalities (LMIs). Finally a numerical example is
simulated, and results are given to validate the offered approach.
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1. Introduction

Modern engineering systems are increasingly more complex which leads to
sensor and actuator degradation. To overcome this catastrophic situation, the
integration of faults detection and estimation (FDE) and fault tolerant control
(FTC) tools [1–6], are very appreciated and required to assur the safety and
stability of system against faults, and to maintain the desired performance of the
whole system in various areas of applications over a long period of time.
Singular models (see [7–9] and references therein), known also as, descriptor

systems or implicit systems, is a powerful and accurate way to model various
industrial processes, like biological systems, chemical processes, robotics, circuit
systems and so on [10]. Such systems include static and dynamic equations, are
more popular than standards systems, and can interpret the behaviour of various
types of processes. Recently, the issue of detecting and estimating faults for
singular systems has attracted a lot of attention in different field of research see
e.g. [11–13].
To build a powerful diagnosis mechanism and estimating faults, all informa-

tions about states of systems should be known andmeasured, but for an economics
and technical constraints, is not possible for the most cases. As an alternative,
the use of an observer see e.g. [14, 15], who has the ability to give the estimated
state is very demanded. Moreover, designing an observer for a purely nonlinear
system is still a very difficult task, instead transforming the nonlinear system into
Takagi-Sugeno (T-S) models will make the design of observer more easier.
The T-S structure, is a modern approach which has been inspired from the

pure fuzzy modeling [16]. Nowadays the fuzzy model of type T-S, became a
very interesting model, due to the fact that it combines between the complexity
of the real non linear system, as well as the simplicity and smotheness of the
fuzzy representation. Thanks to the sector non linear approch (see e.g. [17–20]
for more details), the non linear system translated into the T-S model, without
losing informations about the original system. The T-S model is constituted of the
overall T-S fuzzy system and the local system, or sub-system, each sub-system
contributes in the construction of the overall T-S fuzzy system with a different
degree of appartenance. The activation of these sub-system is reinforced via
the intervention of the nonlinear membership function, which makes a blending
of all sub-systems. In addition, the T-S models makes easier the integration of
Lyapunov quadratic theory and the analysis of exponential stability conditions,
which is converted to the resolution of a feasible set of linear matrix inequalities
(LMIs) problems. T-S approach has won a great reputation as an effective gadget
to analyze and control nonlinear systems, for the reason that such models allow
finding a compromise between the good accuracy of the nonlinear behavior of the
system under study, and the use of strategies that are adapted to linear systems,
using the convex sum property of their nonlinear activation functions which
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are connected to all local sub-systems, and represents an aspect of the sector
nonlinearity approach.
Various studies has investigated the issues related to state and unknown input

estimation [21–23], as well as state and faults estimation [24, 25] and many
approaches has been the objective of fuzzy observer design as in [21, 24] when
authors use the Lipschitz constraints. In other side other approach has been
applied by authors in [23, 25] based on the separation between dynamic and
static relations in T-S singular model. A study has been treated in [26], aiming
at the estimation of states, actuator, and sensor faults in nonlinear systems with
a polytopic linear parameter varying representation. The proportional multiple
integral sliding mode observer constructed in this study. A further work on the
same issue has been proposed in [27]. In [28] the authors has introduced a new
strategy of the trajectory tracking in T-S Lipschitz nonlinearities systems, in the
basis of a proportional integral observer devoted to the control strategy, with
more improvement.
This work deals with the problem of simultaneous state, actuator and sensor

faults for a class of DTSSS for the case of unmeasurable decision variables. The
decision variables of the singular system are not the same for the observer, and
since its not mesurable like the case of the measurable decision variables, then
the synthesised observer must use its own activation function, which is different
from the activation function of the singular system. The decision variables which
are state variables are unmeasurables and therefore unknowns, and the observer
must estimate them accurately, even in the absence of measurement. Another
difficulty encountered than the previous ones, is related to the passage from the
theoretical quadratic Lyapunov function to the numerical resolution in the form
of LMIs, and the LMIs in their first form are not linear, as the name indicates
but are in the form of bilinear matrix inequalities (BMIs). These BMIs are
constraints that represent more difficulty in the study, to reduce this difficulty,
the BMIs are transformed into LMIs, and this passage is done by the change
of variables and the Schur compliment. Feasibility and realisability is thus a
problem encountered in the calculation of LMIs. Therefore, it is necessary to
prepare and verify the LMIs theoretically before integrating them into existing
numerical solvers. All these difficulties will be treated and verified, to improve
the proposed work.
Motivated by the above, the main contribution of this paper reside in the

study of a new fuzzy observer design, aiming at state and fault estimation issue
resolution for a class of DTSSS in unmeasurable decision variable case. This
observer are designed on the basis of SVD approach, and an augmented system
aggregates state and fault as a one state vector. To prove the stability of the
proposed observer, the exponential stability of Lyapunov function is studied, and
the resolution of the convergence conditions are specified as a feasible set of
Linear Matrix Inequalities.
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The simulation part is devoted to the study of a singular fuzzy model which
represent a physical system of electronic circuit, this physical system, is chosen
to be modeled in the singular stucture due to the fact that this process is by
nature singular, and the necessity to deal with the algebraic part which represents
a constraint for the studied system imposes the choice of the singular structure,
which cannot be traitedwith the explicit structure. The synthesised fuzzy observer
will be applied on this non linear singular electronic circuit, to validate the
accuracy of the proposed approach of state and fauls estimation.
The rest of this work is divided as follows, Section 2 present the mathematical

formulation of DTSSS in presence of actuator and sensor fault, Section 3 debate
the main result acquired on the new observer to estimate state and fault, Section 4
explicate the attainment of the coveted result in numerical application of fuzzy
model, Section 5 is a epilogue of the paper.
Notation
Let the superscript 𝑋 = 𝑋𝑇 be a symmetric matrix 𝑋 > 0 and 𝑋 < 0, ∗ designates
for positive and negative definiteness and the transpose of 𝑋 , I gestures the identity
matrix, 0 is the zero matrix of appropriates dimensions. R𝑛 and R𝑛×𝑚 marks the
𝑛-dimensional real vectors and the set of all 𝑛 × 𝑚 real matrices.

2. Problem formulation of discrete-time Takagi-Sugeno singular systems

Using T-S approach, the considere DTSSS is:
𝐸𝜌𝑘+1 =

𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) (𝐴𝑖𝜌𝑘 + 𝐵𝑖𝑢𝑘 + 𝐹𝑎𝑖 𝑓𝑎𝑘 ) ,

𝑦𝑘 = 𝐶𝜌𝑘 + 𝐷𝑎 𝑓𝑎𝑘 + 𝐹𝑠 𝑓𝑠𝑘 ,
(1)

where 𝜌𝑘 ∈ R𝑛 is the state vector, 𝑢𝑘 ∈ R𝑚 is the control input, 𝑦𝑘 ∈ R𝑝 is the
measured output vector. 𝑓𝑎𝑘 ∈ R𝑛𝑎 is the actuator fault and 𝑓𝑠𝑘 ∈ R𝑛𝑠 is the sensor
fault. 𝐴𝑖 ∈ R𝑛×𝑛, 𝐵𝑖 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑝×𝑛, 𝐷𝑎 ∈ R𝑝×𝑛𝑎 , 𝐸 ∈ R𝑛×𝑛 where 𝐸 (𝜌)
is the singular matrix, has not full rank, such that rank(𝐸) < 𝑛, 𝐹𝑎𝑖 ∈ R𝑛×𝑛𝑎 ,
𝐹𝑠 ∈ R𝑝×𝑛𝑠 , are real known constant matrices. The nonlinear system can be
decomposed into the following so-called T-S sub-model:{

𝐸𝜌𝑘+1 = 𝐴𝑖𝜌𝑘 + 𝐵𝑖𝑢𝑘 + 𝐹𝑎𝑖 𝑓𝑎𝑘 ,
𝑦𝑘 = 𝐶𝜌𝑘 + 𝐷𝑎 𝑓𝑎𝑘 + 𝐹𝑠 𝑓𝑠𝑘

(2)

with 𝑖 = {1, · · · , 𝑞}, 𝑞 is the number of sub-model. The activation functions
𝜙𝑖 (𝛾𝑘 ) are associated to (2) and confirm the convex sum properties:

0 ¬ 𝜙𝑖 (𝛾𝑘 ) ¬ 1,
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) = 1. (3)
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The system (1), the fault and matrix expression 𝑓𝑘 , 𝐿𝑎𝑖, 𝐺 can be rewritten as:
𝐸𝜌𝑘+1 =

𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) (𝐴𝑖𝜌𝑘 + 𝐵𝑖𝑢𝑘 + 𝐿𝑎𝑖 𝑓𝑘 ) ,

𝑦𝑘 = 𝐶𝜌𝑘 + 𝐺 𝑓𝑘 ,
(4)

𝑓𝑘 =
[
𝑓 𝑇𝑎𝑘 𝑓 𝑇𝑠𝑘

]𝑇
, 𝐿𝑎𝑖 =

(
𝐹𝑎𝑖 0

)
, 𝐺 =

(
𝐷𝑎 𝐹𝑠

)
. (5)

Assumption 1 Suppose that the 𝑓𝑘 is a constant, unknown fault signal per time
interval i.e:

𝑓𝑘+1 = 𝑓𝑘 , 𝑘 ∈ [T1 T2], ∀ T1, T2 ∈ R+. (6)

Using (5), the augmented DTSSS (1) with 𝑓𝑘 and matrix expressions can be
written as: 

𝐸𝜛𝑘+1 =
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 )
(
𝐴𝑖𝜛𝑘 + 𝐵𝑖𝑢𝑘

)
,

𝑦𝑘 = 𝐶𝜛𝑘 ;

(7)


𝜛𝑘 =

(
𝜌𝑇𝑘 𝑓 𝑇𝑘

)𝑇
, 𝐵𝑇𝑖 =

(
𝐵𝑇𝑖 0), 𝐶 =

(
𝐶 𝐺

)
,

𝐴𝑖 =

(
𝐴𝑖 𝐿𝑎𝑖
0 𝐼

)
, 𝐸 =

(
𝐸 0
0 𝐼

)
.

(8)

The studied problem is considered under the following conditions of regularity,
impulsive observability and detectability which represents the conditions of ex-
istence of the synthsised observer:

𝐻1) The pair
(
𝐸, 𝐴𝑖

)
are said to be regular, if: 𝑖 ∈ [1, . . . , 𝑞]

det(𝑠𝐸 − 𝐴𝑖) ≠ 0 ∀𝑠 ∈ C. (9)

𝐻2) All sub-models (7) are said to be impulses observables if:

rank

𝐸 𝐴𝑖

0 𝐸

0 𝐶

 = 𝑛1 + rank𝐸. (10)

𝐻3) All sub-models (7) are said to be detectable if:

rank
[
𝑠𝐸 − 𝐴𝑖
𝐶

]
= 𝑛1, ∀𝑠 ∈ C. (11)
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𝐻4) All sub-models (7) are equivalent to be observable, i.e:

rank
( [
𝐸

𝐶

] )
= 𝑛1 = 𝑛 + 𝑛𝑎 + 𝑛𝑠 . (12)

Since (12), there exist a nonsingular matrix
(
𝜈1 𝜈2
𝜈3 𝜈4

)
such that:{

𝜈1𝐸 + 𝜈2𝐶 = 𝐼,

𝜈3𝐸 + 𝜈4𝐶 = 0
(13)

with
𝜈1 ∈ R𝑛1×𝑛1 , 𝜈2 ∈ R𝑛1×𝑝, 𝜈3 ∈ R𝑝×𝑛1 , 𝜈4 ∈ R𝑝×𝑝 .

The result obtained by the SVD approach, allows the resolution of the constant
matrices, 𝜈1, 𝜈2, 𝜈3, 𝜈4, which will be incorporated in the construction phase of
the fuzzy observer, in order to simplify certain complexities of synthesis, and
facilitate the calculation of the gains.

3. Main result

The proposed fuzzy regular observer is presented as follows:
𝛿𝑘+1 =

𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾̂𝑘 ) (𝑀𝑖𝛿𝑘 + 𝐽1𝑖𝑦𝑘 + 𝐽2𝑖𝑦𝑘 + 𝐻𝑖𝑢𝑘 ) ,

𝜛̂𝑘 = 𝛿𝑘 + 𝜈2𝑦𝑘 + 𝑅𝜈4𝑦𝑘 ,
(14)

where 𝜛̂𝑘 denote the estimated augmented state vector. The problem of this
observer is reduced to seek the matrix 𝑀𝑖, 𝐽1𝑖, 𝐽2𝑖, 𝐻𝑖 and 𝑅 that allow 𝜛̂𝑘 to
converge exponentially to 𝜛𝑘 . Then let us define the state estimation error of the
observer it is equal to:

𝜀𝑘 = 𝜛𝑘 − 𝜛̂𝑘 . (15)
By taking into account (7), (13), gathered with (15), static and dynamic error
becomes:

𝜀𝑘 = (𝜈1 + 𝑅𝜈3) 𝐸𝜛𝑘 − 𝛿𝑘 , 𝜀𝑘+1 = (𝜈1 + 𝑅𝜈3) 𝐸𝜛𝑘+1 − 𝛿𝑘+1 . (16)
According with (7), (13), (14) equation of dynamic error is represented by:

𝜀𝑘+1 =
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) (𝜈1 + 𝑅𝜈3) (𝐴𝑖𝜛𝑘 + 𝐵𝑖𝑢𝑘 )

−
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾̂𝑘 ) (𝑀𝑖𝛿𝑘 + 𝐽1𝑖𝑦𝑘 + 𝐽2𝑖𝑦𝑘 + 𝐻𝑖𝑢𝑘 ) . (17)
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By applying (7), equation (17) and the expression of 𝜂𝑖, can be integrated as:

𝜀𝑘+1 =
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) (𝜈1 + 𝑅𝜈3)
(
𝐴𝑖𝜛𝑘 + 𝐵𝑖𝑢𝑘

)
+

𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾̂𝑘 ) (𝑀𝑖𝜀𝑘 − 𝜂𝑖𝜛𝑘 − 𝐻𝑖𝑢𝑘 ) , (18)

𝜂𝑖 = 𝑀𝑖 (𝜈1 + 𝑅𝜈3)𝐸 + 𝐽1𝑖𝐶 + 𝐽2𝑖𝐶. (19)

Provided the matrices 𝑀𝑖, 𝐽1𝑖, 𝐽2𝑖, 𝐻𝑖 and 𝑅 satisfy:

𝜂𝑖 = (𝜈1 + 𝑅𝜈3)𝐴𝑖, 𝐻𝑖 = (𝜈1 + 𝑅𝜈3)𝐵𝑖 . (20)

Then the above equation (18), is well defined and taking the new relation:

𝜀𝑘+1 =
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) (𝜈1 + 𝑅𝜈3)
(
𝐴𝑖𝜛𝑘 + 𝐵𝑖𝑢𝑘

)
+

𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 )
(
𝑀𝑖𝜀𝑘 − (𝜈1 + 𝑅𝜈3)

(
𝐴𝑖𝜛 + 𝐵𝑖𝑢𝑘

))
. (21)

Moreover, from (13), (19) and (20), that yields:

𝑀𝑖 = (𝜈1 + 𝑅𝜈3)𝐴𝑖 − 𝐽2𝑖𝐶 + (𝑀𝑖 (𝜈2 + 𝑅𝜈4) − 𝐽1𝑖) 𝐶. (22)

So, taking 𝐽1𝑖, the constraint (22) leads to:

𝐽1𝑖 = 𝑀𝑖 (𝜈2 + 𝑅𝜈4), 𝑀𝑖 = (𝜈1 + 𝑅𝜈3)𝐴𝑖 − 𝐽2𝑖𝐶. (23)

In what follows, the dynamic of state estimation error will be treated as:

𝜀𝑘+1 =

(
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) −
𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾̂𝑘 )
) (

(𝜈1 + 𝑅𝜈3)
(
𝐴𝑖𝜛𝑘 + 𝐵𝑖𝑢𝑘

))
+

𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾̂𝑘 ) (𝑀𝑖𝜀𝑘 ) (24)

with: 

𝑞∑︁
𝑖=1

(𝜙𝑖 (𝛾𝑘 ) − 𝜙𝑖 (𝛾̂𝑘 ))𝐴𝑖 =
𝑞∑︁

𝑖, 𝑗=1
𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 )

(
𝐴𝑖 − 𝐴 𝑗

)
,

𝑞∑︁
𝑖=1

(𝜙𝑖 (𝛾𝑘 ) − 𝜙𝑖 (𝛾̂𝑘 ))𝐵𝑖 =
𝑞∑︁

𝑖, 𝑗=1
𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 )

(
𝐵𝑖 − 𝐵 𝑗

)
.

(25)
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Then substituting the formulation (25) in (24) produce:

𝜀𝑘+1 =
𝑞∑︁

𝑖, 𝑗=1
𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 ) (𝜈1 + 𝑅𝜈3)

(
Δ𝐴𝑖 𝑗𝜛𝑘 + Δ𝐵𝑖 𝑗𝑢𝑘

)
+

𝑞∑︁
𝑖=1

𝜙𝑖 (𝛾̂𝑘 ) (𝑀𝑖𝜀𝑘 ) (26)

with the notations:

Δ𝐴𝑖 𝑗 = 𝐴𝑖 − 𝐴 𝑗 , Δ𝐵𝑖 𝑗 = 𝐵𝑖 − 𝐵 𝑗 . (27)

Multiplying by
𝑞∑︁
𝑗=1

𝜙 𝑗 (𝛾̂𝑘 ) = 1, the statement (26) is handled as:

𝜀𝑘+1 =
𝑞∑︁

𝑖, 𝑗=1
𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 ) (𝜈1 + 𝑅𝜈3)

(
Δ𝐴𝑖 𝑗𝜛𝑘 + Δ𝐵𝑖 𝑗𝑢𝑘

)
+

𝑞∑︁
𝑖, 𝑗=1

𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 ) (𝑀 𝑗𝜀𝑘 ). (28)

It has been assigned that:

𝜗𝑖 𝑗 = (𝜈1 + 𝑅𝜈3)Δ𝐴𝑖 𝑗 , 𝜏𝑖 𝑗 = (𝜈1 + 𝑅𝜈3)Δ𝐵𝑖 𝑗 , 𝑖, 𝑗 ∈ {1, . . . , 𝑞}. (29)
So the equation (28), reduces to:

𝜀𝑘+1 =
𝑞∑︁

𝑖, 𝑗=1
𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 )

(
𝜗𝑖 𝑗𝜛𝑘 + 𝜏𝑖 𝑗𝑢𝑘 + 𝑀 𝑗𝜀𝑘

)
. (30)

Thus, let us introduce 𝜀̃𝑘 =
[
𝜀𝑇
𝑘
𝜛𝑇
𝑘

]𝑇 , that implies:
Θ𝜀̃𝑘+1 =

𝑞∑︁
𝑖, 𝑗=1

𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 )Ξ𝑖 𝑗 𝜀̃𝑘 + Λ𝑖 𝑗𝑢𝑘 ,

𝜀𝑘 = Γ𝜀̃𝑘

(31)

with (7) and (28) the following terms are consider:
Γ =

(
𝐼 0

)
, Λ𝑇𝑖 𝑗 =

(
𝜏𝑇
𝑖 𝑗
𝐵𝑇
𝑖

)
,

Θ =

(
𝐼 0
0 𝐸

)
, Ξ𝑖 𝑗 =

(
𝑀 𝑗 𝜗𝑖 𝑗

0 𝐴𝑖

)
.

(32)

Then, the convergence condition of (14), can be outlined by the following theorem.
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Theorem 1 Using Assumptions 1 and hypotheses 𝐻1), 𝐻2), 𝐻3), 𝐻4), the state
estimation error between the DTSSS (1) and its fuzzy observer (14), converges
exponentially towards zero, if given 0 < 𝜎 < 1 and there exist matrices 𝑃1 > 0,
𝑃2 > 0, while parameter matrices are 𝑉 , 𝐺2 𝑗 , 𝑌 , 𝐾2 𝑗 and 𝑆2 𝑗 , 𝑗 = {1, . . . , 𝑞}
such that the following LMIs are satisfied:

𝜅𝑖 𝑗 =

(
𝜅11 ∗ ∗
𝜅21 𝜅22 ∗
𝜅31 𝜅32 𝜅33

)
< 0, ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑞}. (33)

As a consequences, applying some simplifications that gives a finite numbers of
checked LMIs:

𝜅11 = 𝐴
𝑇
𝑗 𝜈
𝑇
1𝑃1𝜈1𝐴 𝑗 + 𝐴

𝑇
𝑗 𝜈
𝑇
1𝑉𝜈3𝐴 𝑗 − 𝐴

𝑇
𝑗 𝜈
𝑇
1𝐺2 𝑗𝐶

+ 𝐴𝑇𝑗 𝜈𝑇3𝑉
𝑇𝜈1𝐴 𝑗 + 𝐴𝑇𝑗 𝜈𝑇3𝑌𝜈3𝐴 𝑗 − 𝐴

𝑇
𝑗 𝜈
𝑇
3 𝑆

𝑇
2 𝑗𝐶

+ 𝐶𝑇𝐾2 𝑗𝐶 − 𝐶𝑇𝐺𝑇2 𝑗𝜈1𝐴 𝑗 − 𝐶
𝑇𝑆2 𝑗𝜈3𝐴 𝑗 − 𝜎2𝑃1 ,

𝜅21 = Δ𝐴𝑇𝑖 𝑗𝜈
𝑇
1𝑃1𝜈1𝐴 𝑗 + Δ𝐴𝑇𝑖 𝑗𝜈

𝑇
1𝑉𝜈3𝐴 𝑗 − Δ𝐴𝑇𝑖 𝑗𝜈

𝑇
1𝐺2 𝑗𝐶

+ Δ𝐴𝑇𝑖 𝑗𝜈
𝑇
3𝑉

𝑇𝜈1𝐴 𝑗 + Δ𝐴𝑇𝑖 𝑗𝜈
𝑇
3𝑌𝜈3𝐴 𝑗 − Δ𝐴𝑇𝑖 𝑗𝜈

𝑇
3 𝑆

𝑇
2 𝑗𝐶,

𝜅31 = Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
1𝑃1𝜈1𝐴 𝑗 + Δ𝐵𝑇𝑖 𝑗𝜈

𝑇
1𝑉𝜈3𝐴 𝑗 + Δ𝐵𝑇𝑖 𝑗𝜈

𝑇
3𝑉

𝑇𝜈1𝐴 𝑗

+ Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
3𝑌𝜈3𝐴 𝑗 − Δ𝐵𝑇𝑖 𝑗𝜈

𝑇
1𝐺2 𝑗𝐶 − Δ𝐵𝑇𝑖 𝑗𝜈

𝑇
3 𝑆

𝑇
2 𝑗𝐶,

𝜅22 = Δ𝐴𝑇𝑖 𝑗𝜈
𝑇
1𝑃1𝜈1Δ𝐴𝑖 𝑗 + Δ𝐴𝑇𝑖 𝑗𝜈

𝑇
1𝑉𝜈3Δ𝐴𝑖 𝑗 − 𝜎

2𝐸𝑇𝑃2𝐸

+ Δ𝐴𝑇𝑖 𝑗𝜈
𝑇
3𝑉

𝑇𝜈1Δ𝐴𝑖 𝑗 + Δ𝐴𝑇𝑖 𝑗𝜈
𝑇
3𝑌𝜈3Δ𝐴𝑖 𝑗 + 𝐴

𝑇
𝑖 𝑃2𝐴𝑖 ,

𝜅32 = Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
1𝑃1𝜈1Δ𝐴𝑖 𝑗 + Δ𝐵𝑇𝑖 𝑗𝜈

𝑇
1𝑉𝜈3Δ𝐴𝑖 𝑗 + 𝐵

𝑇
𝑖 𝑃2𝐴𝑖

+ Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
3𝑉

𝑇𝜈1Δ𝐴𝑖 𝑗 + Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
3𝑌𝜈3Δ𝐴𝑖 𝑗

𝜅33 = Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
1𝑃1𝜈1Δ𝐵𝑖 𝑗 + Δ𝐵𝑇𝑖 𝑗𝜈

𝑇
1𝑉𝜈3Δ𝐵𝑖 𝑗 + 𝐵

𝑇
𝑖 𝑃2𝐵𝑖

+ Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
3𝑉

𝑇𝜈1Δ𝐵𝑖 𝑗 + Δ𝐵𝑇𝑖 𝑗𝜈
𝑇
3𝑌𝜈3Δ𝐵𝑖 𝑗 .

(34)

The currently available software packages for handling with the LMIs problems
is the LMI Toolbox of Matlab, it accepts problem statements in a high level
mathematical form and solves the problem with interior point methode. In fact
a more computationally efficient algorithm for solving LMIs problems is the
interior point method which represent an optimisation technique, and as said
above, for the resolution of these LMIs, we used LMI Toolbox of Matlab. It is
based on theory of interior-point polynomial-time methods described in [29–32].
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Therefore, the observer gains 𝑀 𝑗 , 𝐽1 𝑗 , 𝐽2 𝑗 , 𝐻 𝑗 , and 𝑅 are respectively recov-
ered and given by:{

𝑀 𝑗 = (𝜈1 + 𝑅𝜈3)𝐴 𝑗 − 𝐽2 𝑗𝐶, 𝑅 = 𝑃−1
1 𝑉, 𝐽2 𝑗 = 𝑃

−1
1 𝐺2 𝑗 ,

𝐽1 𝑗 = 𝑀 𝑗 (𝜈2 + 𝑅𝜈4), 𝐻 𝑗 = (𝜈1 + 𝑅𝜈3)𝐵 𝑗 ,
(35)

where 𝜈1, 𝜈2, 𝜈3, 𝜈4 are such that (13) is satisfied.
Proof. (of Theorem1)Let us consider the candidate quadratic Lyapunov function:

𝑉𝑘 = (Θ𝜀̃𝑘 )𝑇𝑃(Θ𝜀̃𝑘 ), 𝑃 > 0, 𝑃 = 𝑃𝑇 , 𝑃 =

(
𝑃1 0
0 𝑃2

)
. (36)

𝑉𝑘+1 − 𝑉𝑘 denotes the time derivative along the trajectory of (30), it can be
described as:

𝑉𝑘+1 −𝑉𝑘 < (𝜎2 − 1)𝑉𝑘 , 0 < 𝜎 < 1,

𝑉𝑘+1 − 𝜎2𝑉𝑘 = (Θ𝜀̃𝑘+1)𝑇𝑃(Θ𝜀̃𝑘+1) − 𝜎2(Θ𝜀̃𝑘 )𝑇𝑃(Θ𝜀̃𝑘 ) < 0.
(37)

Then the property (36), is developed as:

𝑉𝑘+1 − 𝜎2𝑉𝑘 =
𝑞∑︁

𝑖, 𝑗=1
𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 )

(
𝜀̃𝑇𝑘Ξ

𝑇
𝑖 𝑗 + 𝑢𝑇𝑘Λ

𝑇
𝑖 𝑗

)
𝑃(Ξ𝑖 𝑗 𝜀̃𝑘 + Λ𝑖 𝑗𝑢𝑘 )

− 𝜎2𝜀̃𝑇𝑘 (Θ
𝑇𝑃Θ)𝜀̃𝑘 . (38)

Considering (35) and (37) that inequality (33) appear under the compact form as:
𝑞∑︁

𝑖, 𝑗=1
𝜙𝑖 (𝛾𝑘 )𝜙 𝑗 (𝛾̂𝑘 )

(
𝜀̃𝑇𝑘 𝑢𝑇𝑘

)
𝜅𝑖 𝑗

(
𝜀̃𝑘
𝑢𝑘

)
< 0. (39)

With the expression of 𝜅𝑖 𝑗 is:

𝜅𝑖 𝑗 =

(
Ξ𝑇
𝑖 𝑗
𝑃Ξ𝑖 𝑗 − 𝜎2Θ𝑇𝑃Θ Ξ𝑇

𝑖 𝑗
𝑃Λ𝑖 𝑗

Λ𝑇
𝑖 𝑗
𝑃Ξ𝑖 𝑗 Λ𝑇

𝑖 𝑗
𝑃Λ𝑖 𝑗

)
.

Employing (29), (32) and (38), it directly yields the desired results:

𝑉 = 𝑃1𝑅, 𝐺2 𝑗 = 𝑃1𝐽2 𝑗 , 𝑌 = 𝑅𝑇𝑉, 𝑆2 𝑗 = 𝐽
𝑇
2 𝑗𝑉, 𝐾2 𝑗 = 𝐽

𝑇
2 𝑗𝐺2 𝑗 . (40)

The interest is to finding the above set of LMIs, but 𝜅𝑖 𝑗 < 0 are not linear, thanks
to the changes of variables 𝑉 , 𝐺2 𝑗 , this problem can be remedy.
For end of the proof, we found the LMIs conditions (33). 2
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4. Simulation and results

In this section, the propounded approach of the new synthesised fuzzy ob-
server (14) is applied on a numerical example of electronic circuit, in order to
have a good and reliable estimation of state and sudden faults. This electronic
circuit described by a Direct Current (DC) power source with voltage connected
in series with a nonlinear capacitor, a linear inductor and a linear resistor. To
understand more the structure of this model, each component of this electonic
circuit is introduced:
The electrical energy, is produced and stored into a device called capacitor, the

role attributed to capacitor is to store electric energy in an electric field and restore
this energy to the electronic circuit when it is demanded. Resistor is considered
like one of the most basic part of electrical components circuit. The principal
mission of resistor in Alternating Current (AC) or even in Direct Current (DC),
is to control the tansit of flow of current or voltage to other components. It resist
the higher flow of electrons, that may destroy the function of other components
of electrical circuit. An indutor is an electromagnet. The aim of an inductor is to
store energy in a magnetic filed when a flows of electrons accros this magnetic
filed, the passage of current into magnetic filed, induces an electromotive force
or voltage.
In the squel, the studied DTSSS which describe the real behavior of the

system, is considered to be vulnerable by sensor fault as well as actuator fault and
posed as: 

𝐸𝜌𝑘+1 =
2∑︁
𝑖=1

𝜙𝑖 (𝛾𝑘 ) (𝐴𝑖𝜌𝑘 + 𝐵𝑖𝑢𝑘 + 𝐹𝑎𝑖 𝑓𝑎𝑘 ) ,

𝑦𝑘 = 𝐶𝜌𝑘 + 𝐷𝑎 𝑓𝑎𝑘 + 𝐹𝑠 𝑓𝑠𝑘 .
(41)

𝜌𝑘 = (𝜌1𝑘 , 𝜌2𝑘 , 𝜌3𝑘 )𝑇 is the state vector, with 𝜌1𝑘 = 𝑞(𝑘) is the charge across
the capacitor, 𝜌2𝑘 = 𝜙(𝑘)inductor is the electromagnetic field of the inductor,
𝜌3𝑘 = 𝑣(𝑘) is the voltage of the resistor. The (DC) source of voltage is 𝑢𝑘 , 𝑦𝑘 is
the output measurement vector, whereas 𝑓𝑎𝑘 is the actuator fault and 𝑓𝑠𝑘 is the
sensor fault. The data sources of this model are from the paper [33].
Subsequently, the two sub-systems of the studied model are given as:

𝐴1 =

( 0 2 0
0 −2 −1

−𝛾𝑘 min 0 1

)
, 𝐴2 =

( 0 2 0
0 −2 −1

−𝛾𝑘 max 0 1

)
, 𝐹𝑠 =

(0
0
1

)
,

𝐶 =

(1 0 1
0 1 0
0 0 1

)
, 𝐸 =

(1 0 0
0 1 0
0 0 0

)
, 𝐵𝑖 = 𝐹𝑎𝑖 =

(0
1
0

)
, 𝐷𝑎 =

(0
0
0

)
.
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The activation functions 𝜙𝑖 (𝛾̂𝑘 ), and the decision variable 𝛾𝑘 having for
expressions:

𝜙1(𝛾̂𝑘 ) =
𝛾𝑘 − 𝛾𝑘 min

𝛾𝑘 max − 𝛾𝑘 min
, 𝜙2(𝛾̂𝑘 ) = 1 − 𝜙1(𝛾̂𝑘 ),

𝛾𝑘 = 𝜌
2
1𝑘 − 3𝜌1𝑘𝑞0 + 3𝑞

3
0 , 𝛾𝑘 ∈ [𝛾𝑘 min, 𝛾𝑘 max] .

The proposed observer which is applied on two sub-models of the nonlinear
electronic circuit system, is decomposed into two locale observers:

𝛿𝑘+1 =
2∑︁
𝑖=1

𝜙𝑖 (𝛾̂𝑘 ) (𝑀𝑖𝛿𝑘 + 𝐽1𝑖𝑦𝑘 + 𝐽2𝑖𝑦𝑘 + 𝐻𝑖𝑢𝑘 ) ,

𝜛̂𝑘 = 𝛿𝑘 + 𝜈2𝑦𝑘 + 𝑅𝜈4𝑦𝑘 ,
(42)

We test the propounded observer on a nonlinear electronic circuit system, as a
result the gains of the proposed observer 𝑅, 𝐻𝑖, 𝐽2𝑖, 𝐽1𝑖, 𝑀𝑖, are generated with
the resolution of LMIs (33), and numerically given as:

𝑅 =

©­­­­­«
2.2434 −1.8253 0.6599
0.4417 0.7685 0.6199
−2.0097 1.8156 −0.8044
27.1573 52.9106 41.2931
1.9575 −1.9620 1.0206

ª®®®®®¬
, 𝐻1 =

©­­­­­«
−0.0000
−0.0026
0.0000
−0.5115
−0.0000

ª®®®®®¬
, 𝐻2 =

©­­­­­«
−0.0000
−0.0026
0.0000
−0.5115
−0.0000

ª®®®®®¬
,

𝐽21 =

©­­­­­«
0.1178 0.0249 0.1557
0.0013 −0.2118 −0.0079
−0.0021 −0.0174 −0.2679
0.6146 −49.4474 −0.1739
−0.1120 0.0111 0.4022

ª®®®®®¬
, 𝐽22 =

©­­­­­«
0.1178 0.0249 0.1557
0.0013 −0.2118 −0.0079
−0.0021 −0.0174 −0.2679
0.6146 −49.4474 −0.1739
−0.1120 0.0111 0.4022

ª®®®®®¬
,

𝐽11 =

©­­­­­«
−0.0472 −0.0168 −0.1966
−0.0002 −0.1960 0.0094
0.0624 0.0044 0.1794
−0.1758 24.1241 0.2168
−0.0731 0.0004 −0.1880

ª®®®®®¬
, 𝐽12 =

©­­­­­«
−0.2547 −0.0207 0.0110
0.0000 −0.1960 0.0092
0.2592 0.0081 −0.0174
0.0331 24.1280 0.0079
−0.2766 −0.0034 0.0154

ª®®®®®¬
,

𝑀1=

©­­­­­«
0.6287 −0.0138 −0.2437 −0.0000 0.0756
−0.0038 −0.0478 0.0092 −0.0026 0.0104
−0.6096 0.0055 0.2418 0.0000 −0.0994
−0.4919 −0.6803 0.0410 0.4885 0.0737
0.5973 −0.0017 −0.2611 −0.0000 0.0907

ª®®®®®¬
,
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𝑀2 =

©­­­­­«
−0.2686 −0.0138 −0.2437 −0.0000 0.0756
−0.0028 −0.0478 0.0092 −0.0026 0.0104
0.2413 0.0055 0.2418 0.0000 −0.0994
0.4114 −0.6803 0.0410 0.4885 0.0737
−0.2825 −0.0017 −0.2611 −0.0000 0.0907

ª®®®®®¬
.

The principle aim of this work, is to synthesis a fuzzy observer to estimates
simultaneously state and faults, for that, the exponential stability of the studied
observer are analyzed and validated, this conducts us to study the temporal
evolution of faults, which act on the output and the input of the system respectively.
The time evolution of states and faults trajectories are decomposed in three time
interval. For the nature and the type of the arising faults, it is a constant, unknown
actuator fault 𝑓𝑎𝑘 and sensor fault 𝑓𝑠𝑘 signal per time interval. In fact, fault are
characterized by unpredictable changes in the dynamics of system, which leads
to undesirable behaviour of this later, then observer gives the possibility to the
system to operate reliably in the presence of faults. Thus when fault occurs, that
mean once it has been detected, it will be estimated. The fault estimation must
specify the type of fault, its amplitude, its duration and eventually its probable
evolution. Purposely to identify the sensor fault we consider that, the actuator
are faultless 𝑓𝑎𝑘 = 0, after we found the appearance of actuator fault, then sensor
becomes faultless 𝑓𝑠𝑘 = 0. The first fault has been applied to sensor during the
time interval [0; 2], [4; 6], the second fault has been added to actuator during the
time interval [2; 4], the detection of 𝑓𝑎𝑘 and 𝑓𝑠𝑘 are very fast. A better convergence
is verified with a less state estimation error, represented by the closeness of the
estimated states and faults to the real ones, they demonstrates that the fuzzy
observer move in the desired direction. We conclude that this observer is well
synthesised and gives a good results, since both of real and estimated states as
well as faults are identicals, that confirmes the achieved aim of the proposed
method. The obtained results of states and faults estimation are conspicuously
depicted in figures below.
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(b) Electromagnetic field of the inductor
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(c) Voltage of the resistor

Figure 1: States 𝜌1𝑘 , 𝜌2𝑘 , 𝜌3𝑘 with their estimates
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(a) Actuator fault
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(b) Sensor fault

Figure 2: Faults 𝑓𝑎𝑘 , 𝑓𝑠𝑘 with their estimates

5. Conclusion

The improved strategy is suggested in the aim of designing a new fuzzy
observer to estimate state and fault for DTSSS, the basis to construct this observer
is the SVD approach and an augmented system. Both of exponential stability
and convergence conditions of the observer which represents estimation error
are studied by Lyapunov function and solved via LMIs technique. To this end,
a numerical example of non linear singular electronic circuit is applicable in
term of simulation to assert the competence of this method. The synthesised
fuzzy observer has been applied on this non linear singular electronic circuit, to
validate the accuracy of the proposed approach of state and fauls estimation. The
suggested observer is synthesised in the aim of estimating the augmented state
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vector which includes simultaneously the state of T-S system and the occurred
faults in actuator and sensor. The studied observer are well synthesised since the
trajectries of the estimated states and faults are identical to the real ones. All
performances of this observer are verified, in term of speed convergence with
a very weak augmented state estimation error and quadratic stability validated
by a feasible set of realisable LMIs. This good result will be a motivation to
extend the study to a further works on the fault tolerant control (FTC) of this
Takagi-Sugeno singular system, and for the uncertainty systems as well as a time
delay systems.
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