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As risk is an inevitable part 
of all human activity, we naturally 
seek to be able to better measure it, 
estimate it, and even reduce it 

Harry Markowitz's proposed method for 
measuring the risk of financial investments 
in terms of portfolio value variance (i.e. the 
standard deviation of a portfolio's value from 
its expected value) stirred mixed feelings at 
first. For economists it represented a work of 
theoretical mathematics, while mathemati 
cians saw it as concerning a linear program 
ming problem with quadratic limits, a sort 
that was then already standard. Yet although 
Markowitz's method did not contribute any 
thing new mathematically, it has became a 
fundamental tool for the financial world. 

Breaking the standard financial canons 
then in force, the genius of Markowitz's idea 
was to take risk into account by defining it as 
the standard (or "root-mean-square") deviation 
of a portfolio from its expected value. While 
this was a simple idea, simple ideas only be 
come so once someone discovers them. 

Without a doubt, financial institutions have 
indeed "risen to the challenge" of coping with 
risk since then, as the pursuit of ever-greater 
profits frequently led to undesirable situations. 
That is why, despite the initial reluctance, 
Markowitz's methodology has dominated fi 
nancial markets ever since the 1950s. 

Modeling risk 
The notion of "risk" carries connotations of 

chaos, the unexpected and undesired behav 
ior of an observed phenomenon. It is difficult 
to anticipate how a chaotic model will behave, 
since - as the name itself indicates - such 
a model does not have predictable dynam 
ics. But while it is hard to say how a chaotic 
process will behave at any specific moment, 
things are quite different if we take a longer- 
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term perspective, chiefly looking at the mean 
value of certain functions that hinge on the 
process. For example, the investors of a bank 
or insurance company are much more inter 
ested in overall market performance than in 
individual transactions they might stand to 
lose on. The point is to be sure they "come out 
on top" in the appropriate long-term perspec 
tive, regardless of short-term fluctuations. 

Calculating risk requires a certain lan 
guage (or mathematical model) to describe the 
observed phenomena. Random fluctuations 
in continuous time are described using the 
concept of Brownian motion. Such motion is 
characterized by continuous trajectories and 
independent increments, which have normal 
distribution, zero expected value and variance 
equal to the time increment being considered. 
If we give up continuous trajectories and as 
sume independent and stationary increments 
(the latter dependent only upon the difference 
between the moments measured) we arrive at 
the definition of more general class, called 
Levy processes. 

Mathematical modeling may employ two 
different approaches: static and dynamic. The 
static approach rests upon the postulate that 
the model does not change quickly (if it chang 
es at all). We assume that based on historical 
data we can predict its behavior at the next 
moment. That is an important limitation which 
considerably simplifies the model's use. 

Seeking an optimal portfolio 
The classic Markowitz approach seeks to 

identify an investment portfolio, i.e. a propor 
tion for investing capital into certain shares, 
that maximizes the rate of return in the next 
moment while assuming a set level of risk 
(or variance value). The "optimal return vs. 
risk" pair forms what is called an "effective 

frontier," on which we would like our port 
folio to fall. 

This mathematical problem can be solved 
by estimating - such as by using historical 
data - the matrix of covariances between 
shares and the expected rate of return on 
each individual share, i.e. a quite standard 
mathematical task. The problem, however, 
lies in the practical application of this method. 
Insofar as the covariance matrix can be esti 
mated well, expected rates of return are very 
unstable and difficult to estimate. This can be 
aided by a certain modification introduced 
by Black and Litterman in the 1990s, which 
forecasts expected rates of return based on 
expert opinions. This has become the funda 
mental mathematical tool used in the analysis 
of financial investments. 

We should consider, however, whether 
variance is in fact the "right" way to measure 
risk. It assigns the same significance to fluc 
tuations which are positive for the investor as 
to negative ones, where the portfolio drops 
below the expected value. This observation 
suggested a different approach, which meas 
ures the negative effects only, in the form of 
semivariance - although this is more difficult 
to study from the mathematical standpoint. 

Bankers predominantly employ the concept 
of "value at risk" (VaR), i.e. using the value ex 
posed to risk as a measure of risk itself. This 
means the greatest loss that might be suffered 
assuming a set probability, called the "confi 
dence level." The value-at-risk approach has a 
range of shortcomings, not only in view of the 
difficulties inherent in its calculation. Above 
all it gauges not the value of losses in a port 
folio, but rather their likelihood. This short 
coming is avoided by a modification known 
as the "conditional value at risk" method, 
which gauges the conditional expected value 
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of losses to the portfolio on condition that this
loss is smaller than the VaR.

What requirements should the "right"
measure of risk meet? First and foremost, it
should be monotonic - meaning that larger
investments involve smaller risk. Increasing
an investment by a deterministic constant
will decrease the risk by the same constant.
The risk of a sum of investments is less than
the sum of the risks of the investments con
sidered separately. The value of a portfolio, in
turn, does not have any impact on risk esti
mation. A portfolio which consists of multiple
sets of the same instruments will be a multi
ple of the risk of the set of instruments.

These and similar requirements are used in
defining various risk measures considered to
be model. ot all measures of risk meet such
requirements. Variance and semivariance,
for instance, are more measures of deviation.

evertheless, they do gauge unfavorable situ
ations with better or worse success, encourag
ing investors to behave less riskily.

Optimal investing
The goal of investing optimally, with risk

as a limit, faces us with a two-criterion prob
lem: on the one hand we want to maximize

In 1827, the English
botanist Robert Brown

observed the chaotic
motion of flower pollen

particles in a liquid.
This stochastic process

was given a mathematical
description by Norbert

Wiener in 1923,
now used to describe

financial market
behavior, for example

Investors are more
interested in overall
market performance

than in Individual
transactions they might

stand to lose on.
The point ls to make sure

they "come out on top"
in the long-term

perspect ive. That is why
they keep close tabs

on stock exchange Indexes
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the rate of return on a portfolio, while at
the same time we want to keep risk at the
lowest possible level. Problems of this sort,
i.e. striving to maximize one function while
minimizing another, are known as "minimax"
problems and are inherently difficult to solve.
A sort of alternative approach can be found in
risk-sensitive functions, which can measure
the rate of return on a portfolio while at the
same time assigning risk a certain weight.

In such cases, the optimization problem
reduces to a single function, which is a
significant simplification, although it is usu
ally difficult to find an optimal solution to
the problem in analytical form. In practice,
this difficulty can be overcome using the
Monte Carlo method, introduced in 1949 by
the Hungarian-American mathematician John
von eumann and the Polish mathematician
Stanislaw Marcin Ulam, working on the first
computing machines in Los Alamos (and, in
cidentally, also involved there in work on the
US nuclear program).

Modeling fluctuations in continuous time
using Brownian motion, or more generally
as a Levy process, forms the basis for ana
lyzing complex time-variable phenomena,
enabling us to develop a dynamic rather than
static model. Dynamic modeling allows us to

I describe fluctuating share prices, by assum-
"ł ing that they are the solution to a certain

stochastic differential equation. However,
finding the proper coefficients for the equa
tion, known as calibrating the model, poses a
serious problem.
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Eliminating risk?
So far we have concentrated on how to

measure risk. But human activity naturally
strives to eliminate risk, even when its esti
mation poses a problem.

The financial instrument known as options
I offers one way of doing so. Let's assume that.ł we are planning to travel from Poland to the
- United States five months from now. We need

$3000 for the trip, but it is still too early to pur
chase so many dollars. On the other hand, we
are afraid that the exchange rate (which now
stands at 1 USD= 2.75 PLN) could shift in our
disfavor. How can we guard against that risk?

We can simply purchase an option to buy
$3,000 five months from now at a set price
per dollar, say 1 USD = 2.8 PLN. Such an
option will cost a certain amount, say 100
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PLN, but it will guarantee us the ability to 
purchase dollars just before departure at the 
agreed rate of 1 USD= 2.8 PLN. If at that time 
the current rate in fact stands lower than 2.8 
PLN, we can decide not to use the option and 
simply buy at the current rate. But we have 
the certainty that if the rate does go higher 
than 2.8, we can still buy the dollars at 2.8 
PLN using the option. Thus by spending 100 
PLN five months in advance, we guarantee 
ourselves the ability to purchase the currency 
we need just before departure without worry 
ing about the exchange rate risk. 

This raises the question of how the option 
should be properly valuated, in other words 
whether 100 PL is in fact the right price 
for such a service. That question is even 
more crucial for companies which sell op 
tions. They need to identify what minimum 
price would be economically viable for them 
- called the "fair price." Calculating such a 
fair price is one of the fundamental problems 
of financial mathematics. The analytical 
formula for calculating the fair price of an 
option, derived by Black and Scholes in 1973 
(with certain simplified assumptions, assum 
ing for example logarithmically normal rates 
of return), has become one of the basic tools 
used by financial institutions. Although it was 
later noted that this model of share prices or 
currency rates is in fact too broad a simplifica 
tion of reality, the fact that everyone uses this 
method (in view of its simplicity) has made it 
more "grounded in reality." 

Types of risk 
While the above examples of risk illustrate 

market-related financial risks, there are also 
many other sorts of risk. If a certain party 
to a loan agreement might not meet their 
repayment obligations, we speak of credit 
risk. Liquidity risk entails losing the ability 
to make payments due on time, while opera 
tional risk describes the risk of errors made 
in the operations of a company. We can talk 
about the risk of legal changes or political 
shifts, the risk of natural catastrophe, etc. A 
considerable share of such risks can be mod 
eled and gauged using mathematical methods 
based upon statistics and the broad field of 
probability calculus. State-of-the-art computer 
techniques are also now bringing many mod 
els once considered purely theoretical into 
practical application. 
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Bankers predominantly 
employ the concept 
of "value at risk" (VaR), 
i.e. using the value 
exposed to risk 
as a measure of risk 
itself. This means 
the largest loss that 
might be suffered 
assuming a set 
probability, called 
the "confidence level" 

We often try to model 
the behavior of daily 
stock exchange indexes 
or currency exchange 
rates by comparing 
them to the known 
distributions 
of the random variable: 
normal or Student's t 

Of course, the quantitative methods I am 
now describing must be approached with a 
certain amount of reserve. They can sup 
ply significant data, on condition that we 
choose the right model and estimate its 
parameters well. That is why the language 
of mathematics and quantitative methods 
is helpful, but cannot fully take the place 
of experts able to make correct qualitative 
decisions based on calculations plus their 
own knowledge. 

Nevertheless, there is no doubt that risk is 
a factor that can and should be gauged in vari 
ous situations. Researchers who study risk in 
the broad range of quantitative sciences have 
a lot of work still in store for them. ■
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