
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 71(6), 2023, Article number: e147340
DOI: 10.24425/bpasts.2023.147340

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

A deep learning method for hard-hat-wearing
detection based on head center localization
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Abstract. In recent years, a lot of attention has been paid to deep learning methods in the context of vision-based construction site safety
systems. However, there is still more to be done to establish the relationship between supervised construction workers and their essential
personal protective equipment, like hard hats. A deep learning method combining object detection, head center localization, and simple rule-
based reasoning is proposed in this article. In tests, this solution surpassed the previous methods based on the relative bounding box position
of different instances and direct detection of hard hat wearers and non-wearers. Achieving MS COCO style overall AP of 67.5% compared to
66.4% and 66.3% achieved by the approaches mentioned above, with class-specific AP for hard hat non-wearers of 64.1% compared to 63.0%
and 60.3%. The results show that using deep learning methods with a humanly interpretable rule-based algorithm is better suited for detecting
hard hat non-wearers.
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1. INTRODUCTION

Construction is one of the most dangerous industries. Together
with manufacturing, it leads in the number of non-fatal and fatal
accidents [1, 2]. Among accidents occurring on a construction
site, particularly dangerous are those in which the head is in-
jured. While in non-fatal incidents, the share of head injuries
is only about 7%, in fatal ones, they account for over 30% of
all occurrences [1]. This makes them a significant problem that
has a crucial impact on the safety of construction workers. The
most common head injury occurring is TBI – traumatic brain
injury [3]. The injury itself can be fatal [4, 5] and occurs when
the rapid acceleration or deceleration of the head causes the
brain to move and collide with the skull. It has been identified
that the most common causes of TBIs on construction sites are
falls and being struck by or against an object [3, 6, 7].

Recognition of head injuries as a significant factor influenc-
ing the safety of the construction site has led to the legal regu-
lation of the approach to Personal Protective Equipment (PPE)
around the world [8, 9]. These regulations oblige the employer
to provide personal protection measures for employees. To help
ensure the appropriate usage of PPE, various methods are based
on wearable sensors and vision monitoring. Vision-based meth-
ods use the on-site CCTV systems [10] or UAVs [11] for ob-
taining the image data from the construction site and pair it with
shallow [12] or deep learning algorithms [13] for real-time hard
hats detection.
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The vision-based methods appear to be straightforward.
However, this problem is more complex than it might seem.
Simply finding hard hats and workers in the image is not
enough. The relationship between these instances has to be es-
tablished. The real problem is not to find people who correctly
wear PPE but to find people who do not comply with the safety
rules by not using it.

The currently used solutions are based on direct detection
of hard hat non-wearers or separate detection of workers and
hard hats. According to a study performed in [14], the second
approach achieves worse results in direct comparison. This is
likely caused by the fact that reasoning based on the relative
position of instances on the image is too simple to capture the
relationship between people and their head protection. On the
other hand, the first approach still suffers from high inter-class
similarity, as instances of hard hat non-wearers differ from hard
hat wearers only by fine detail, presence of the hard hat. Some
custom approaches are based on face detection [15] or human
pose estimation [16–18]. However, these work only in some
situations, as additional features have to be visible.

In this article, a novel approach to hard-hat-wearing detec-
tion is proposed. It couples object detection with human joint
localization and rule-based reasoning. However, rather than us-
ing known models for human pose estimation, the model was
trained to locate the person’s head while finding instances of
people and hard hats simultaneously. This unique problem for-
mulation provides a way to determine the correct relationship
between workers and their head protection. At the same time, it
achieves this with simple human–interpretable rules. Addition-
ally, it overcomes the drawbacks of currently used approaches
as direct hard-hat-wearing detection suffers from high inter-
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class similarity, whereas solutions based on bounding box rela-
tive position lack information to reliably establish worker–hard
hat relationship. This results in better performance, especially
regarding the detection of hard hat non-wearers. The latter is
critical from a construction safety point of view, as detecting
people who do not wear hard hats is the actual task. We believe
that this kind of work is crucial to developing reliable construc-
tion sites safety systems based on deep learning.

The rest of this paper is organized as follows. In Section 2
literature review regarding deep learning in the context of con-
struction safety and hard-hat-wearing detection is presented.
Section 3 describes the research methodology. Dataset, training
and model tuning is described in Section 4, and solution eval-
uation is presented in Section 5, and in Section 6, comparisons
with other methods have been made. Finally, all the results are
discussed in Section 7, and conclusions drawn with suggestions
for future work are presented in Section 8.

2. RELATED WORK
Machine learning has found applications in many fields related
to Civil Engineering. The methods used vary from simple arti-
ficial neural networks [19] to complex, image-based deep neu-
ral networks [20, 21]. Additionally, such an approach as trans-
fer learning makes the network even easier to train and de-
ploy [22, 23].

It is no different in construction safety, as deep learning finds
application in a variety of its aspects. In [24] authors presented
a framework enabling safety monitoring with computer vision,
review of computer vision applications for behaviour–based
safety was performed in [25]. A comprehensive review of com-
puter vision in construction safety and management was carried
out in [26].

2.1. Vision-based detection in construction safety
In [27] a deep learning-based framework to detect work per-
formed by unauthorized workers was proposed. The frame-
work, composed of three modules: key video clips extraction,
trade recognition and worker competency judgment can ex-
tract and identify activities performed on the construction site,
identify workers, and check in the predefined database whether
they are authorized to carry out this work. In [28] authors de-
veloped a method for safety harness wearing detection. They
paired Faster R-CNN [29] with custom-developed CNN to de-
tect workers and verify if the safety harness is worn. In [30]
Mask R-CNN [31] combined with developed overlapping de-
tection module (ODM) to recognize workers traversing struc-
tural supports to prevent falls was used. The presented ODM
can determine the relationship between workers and structural
supports based on mask relative positions. Authors of [32] pro-
posed an approach for safety officer trajectory tracking on the
construction site. In this work, the authors use YOLOv3 [33]
for safety officer detection and Kalman filter with Hungarian
matching algorithm for tracking. Another research [34] pre-
sented an approach utilizing a spatial and temporal attention
pooling network that enables worker identification. On the other
hand, [35] used human-object interaction recognition to claim

whether workers wear the correct PPE during tool usage. In
[36] authors developed a real-time system capable of detect-
ing if workers enter hazardous areas, and in [37] Mask R-CNN
based object correlation detection for mobile scaffolding safety
checks was developed.

2.2. Hard-hat-wearing detection
Detection of hard hat wearers and non-wearers also has been
addressed recently. In [13] Faster R- CNN framework for this
task was used and the impact of different visual conditions on
the detection performance specific to construction sites was an-
alyzed. A multi-staged method composed of a histogram of the
orientated gradients and colors was presented in [38]. In the
first stage, workers are detected in a video feed. Head protec-
tion presence in the upper body part is established by an object
detector coupled with color-based classifier. Authors in [39] de-
scribed a model based on the single shot detector framework
[40] and provided a benchmark dataset containing 3174 im-
ages. In [14] three different approaches to detecting PPE based
on YOLOv3: detecting PPE and people to then establish work-
ers – PPE relationship based on bounding box relative position,
detecting PPE wearers and non-wearers directly and finally de-
tecting only people to determine if they are wearing PPE with
a different model was compared. In [41] researchers focused
on real-time processing with MobileNet [42] architecture and
in [43] tested YOLOv5 for this application.

2.3. Shortcomings of existing hard-hat-wearing solutions
Most of the solutions used to detect the wearing of the hard
hats presented in this section fall into one of the two general
categories:
• detection of people or people and hard hats, wearing head

protection is determined in different steps according to rules
or another model,

• detecting hard-hat-wearers and non-wearers as separate
classes.

Both categories suffer their problems. The main problem of
the first one is to establish the correct relationship between the
person and the hard hat. Reasoning based on the bounding box
relative position seems too simple to capture it and the solutions
human pose estimation and geometrical dependencies [16–18]
fail to set it properly for all cases.

The second category suffers from a significant inter-class
similarity problem. The person wearing a hard hat and the
person not wearing it are a subclass of a person’s class. This
problem is well known in subcategory classification [44–46] as
it is harder to develop a model that can correctly distinguish
fine details between subcategories. For this reason, the best-
performing models in this group look for the human head in-
stead of the whole person [27, 39, 41, 43], making them less
suitable for direct transfer learning from well-trained person de-
tection models.

Additionally, in both cases, researchers tend to disregard sit-
uations where a person is partially detected, or the head is ob-
structed, and it is not possible to tell if a person is wearing head
protection. In the majority, that person is incorrectly classified
as a worker without a hard hat. A good example could be the
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Pictor-v3 dataset provided by [14], in which even a person vis-
ible from waist down is annotated as hard hat non-wearer when
in reality it cannot be determined. This is a severe oversight
and makes it impossible to apply such a solution in practice.
The real problem is finding people who are not following the
safety rules reliably.

3. METHODOLOGY
3.1. Head center based hard-hat-wearing detection
To address the challenges of solutions based on a hard hat and
person detection, we are introducing a new approach to detect-
ing hard hat wearers based on workflow focusing on skeleton
head joint localization (Fig. 1).

In our proposed solution, models perform two tasks in par-
allel – the first one is responsible for hardhat detection, while
the second one detects the human silhouette and marks the head
center. Then, the proposed algorithm checks whether the head
center and the hardhat bounding box coincide. Accordingly, the
detected person is classified as hardhat wearer or non wearer.
The algorithm simplicity allows checking if the helmet is in
most likely the proper position with respect to the head, while
keeping computational complexity to a minimum.

In the context of deep learning, keypoints are understood as
points of interest in the image. Their strongest advantage is that
they are invariant for transformations, so scaling will not affect
them.

The most common keypoint application is human pose esti-
mation, where they represent human joints. However, instead
of using an existing human pose estimation model like [16, 17]
or [18], as stated before, we define only one joint representing
the localization of the human head. This model formulation en-
ables us to correctly establish the relationship between a hard
hat and a hard hat wearer, with a simple rule-based algorithm
presented in Algorithm 1.

Algorithm 1 Head center-based hard-hat-wearing detection al-
gorithm

input: inst – list containing person (p) and hard hat (hh)
instances
output: newInst – list containing person (p), hard hat
wearer (hhw) and hard hat non-wearer (hhnw)
instances

for each p ∈ inst do
p.copyTo(newInst)
if p.hasHeadK p then

p← hhnw
for each hh ∈ inst do

if p.headK p ∈ hh.bBox then
p← hhw
break loop

end if
end for

end if
end for
return newInst

3.2. Architecture
The proposed solution was implemented based on the Gen-
eralized Region-based Convolutional Neural Network (Fig. 2)
framework described for the first time in the Mask R-CNN [31].
This natural and flexible extension to Faster R-CNN [29] en-
ables the creation of models capable of performing a variety
of tasks simultaneously. In this case, we dropped the part of the
network responsible for mask prediction leaving only object de-
tection and joint localization (making it Keypoint R-CNN).

Three models were implemented, each with a different back-
bone network featuring Feature Pyramid Network [47], al-
though they were all ResNet [48] variants (The ResNet part of
Fig. 2). The ResNet model was used because of its deep ar-
chitecture, made trainable through the use of residual blocks,
which allows for high obtainable metrics. Two of the backbones
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head

person
head

person
head

hard hat
hard hat

no hard hat

hard hat on
no hard hat

hard hat on

Input image

Detected hard hats

Detected people with 
localized head keypoint
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No hard hat in place of 
head keypoint

Rule based hard hat wearing classification

Fig. 1. Workflow of the proposed solution, showing the parallel operation of the two algorithm models and the final hardhat wearer classification
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Fig. 2. Generalized Region-based Convolutional Neural Network with ResNet based FPN backbone

were built using ResNet architecture with layers depth of 50 and
101 (denoted as R50 and R101). Except for the use of residual
blocks, these architectures are similar to sequential CNNs. The
last one was built with ResNeXt [49] architecture with layers
depth of 101, block cardinality of 32 and depth of 8 (denoted as
X101). This model is distinguished by its use of a deep microar-
chitecture, so that operations in the network are performed in
fewer, parallel blocks, albeit containing similar number of lay-
ers. At the same time, this design does not significantly increase
the complexity of the computations performed by the network.

A network head (far right part of Fig. 2) was built combin-
ing standard Faster R-CNN with FPN classification and box re-
gression branch, as proposed in [47]. Additional keypoint conv-
deconv upscaling branch described in [31] was also added. De-
tailed architecture of Keypoint R-CNN head used (as opposed
to general Mask R-CNN in Fig. 2), containing both FPN and
keypoint branches is shown in Fig. 3.
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Fig. 3. Keypoint R-CNN head derived from standard Mask R-CNN
composed of standard Faster R-CNN with FPN [47] classification/box

regression branch and keypoint conv-deconv upsample branch [31]

3.3. Loss function

The Generalized R-CNN defines multi-task loss as the sum of
losses of each task. For our network – Keypoint R-CNN (with
two-part head Fig. 3) it can be expressed by the following for-
mula

L = Lcls,RPN +Lbbox,RPN +Lcls,head

+ Lbbox,head +Lkp,head . (1)

The loss function components were adopted from [29] and [31]
and then slightly modified. Lcls,RPN and Lbbox,RPN are standard
classification and bounding box losses of region proposal net-
work for detecting objects in the foreground and background.
Classification loss provides information on whether the pro-
posed region contains an object or not, and bounding box loss
checks the bounding box actual alignment with the ground truth
object. Lcls,head, Lbbox,head, and Lkp,head are losses computed for
each sampled proposed region. The first two are computed sim-
ilarly to RPN losses, but for true regression targets and their
actual class and position prediction. Lastly, keypoint branch
loss was set as adjusted for head center detection mask loss as
in [31].

3.4. Evaluation metrics

Average precision (AP) and mean average precision (mAP) are
the most commonly used metrics for evaluating object detec-
tors. Both metrics were developed to address a need to quan-
tify both classification and localization performance simultane-
ously. AP averages precision (p) values across recall (r) range
for a specific class, whereas mAP provides an overall metric by
averaging APs for the collection of classes. Where precision

p =
true positives

true positives+ false positives
(2)
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measures percentage of correct predictions out of all predictions
and recall

r =
true positives

true positives+ false negatives
(3)

percentage of instances found.
AP has a value from 0 to 1 as both precision and recall fall

in the same range and can be interpreted as an area under a
precision-recall curve. Thus, AP can be defined by the follow-
ing formula

AP =

1∫
0

p(r)dr. (4)

Therefore, mAP also ranges from 0 to 1 and can be calculated
accordingly

mAP =
1
n

n

∑
i=1

APi , (5)

where APi is AP calculated for is i–th element of n element
collection of classes.

The theoretical formula for AP calculation presented in
Equation 4 is impractical as it requires the precision-recall
relationship to be a known continuous function. Instead, the
precision-recall curve is approximated by sampling precision
values for defined recall thresholds, and AP is calculated by
numerical integration. Additionally, precision values are inter-
polated to reduce the influence of minor variations in instance
rankings. This interpolated AP (APint) can be expressed by the
following formula

APint =
1
m

m

∑
i=1

pint(rthr,i), (6)

where, rthr,i is i–th recall threshold out of m element recall
threshold collection and interpolated precision

pint(rthr) = max
r̃thr≥rthr

p(r̃thr) (7)

is the maximal precision value out of precision values achieved
at recall thresholds equal or greater than rthr.

However, for the detection performance measurements in
this article, MS COCO style AP metrics were used. These are
stricter and thus provide more insight into the detector perfor-
mance. Traditionally, AP and mAP metrics are computed at the
intersection over union (IoU) of 50%. That means that detec-
tion is treated as positive if the ratio between a common part
of its bounding box and ground truth (intersection) and the area
encompassed by both (union) is greater than or equal to 0.5.
Whereas MS COCO style AP (APCOCO) averages 101- point
APint over ten IoU thresholds, from 50% to 95% with the step
of 5%. This cloud is expressed by the following formula

APCOCO =
1
j

j

∑
i=1

APint,i , (8)

where, APint,i is interpolated AP defined in Equation 6 com-
puted for i–th IoU threshold out of j element collection of IoU

thresholds. Additionally, MS COCO enables the usage of simi-
lar metrics for head center evaluation. However, one fundamen-
tal distinction as opposed to bounding boxes – IoU cannot be
computed for point representations. Therefore, positive detec-
tion is determined with the use of the object keypoint similarity
(OKS) metric.

OKS computes the Euclidean distance between the detected
keypoint and its ground truth, normalized by the scale of the
bounding box. The exact formula can be expressed in the fol-
lowing manner

OKS =

∑
i

exp{−d2
i /2s2k2

i }δ (ϑi > 0)

∑
i

δ (ϑi > 0)
, (9)

where s is an object scale computed from the bounding box, di
is keypoint-ground truth distance for the i–th keypoint, ϑi is vis-
ibility flat that takes positive values if i–th keypoint is indicated.
A value ki is a constant specific to the i–th keypoint, according
to the following formula

ki = 2σi . (10)

The value σi is the i-th keypoint standard deviation com-
puted relative to the object scale over a set of redundantly an-
notated images. In our case, the head center σ value was set to
0.026 according to the value provided for AI Challenge Key-
point Dataset [50]. There were not enough redundantly anno-
tated images in our dataset to compute k constant. This value
aligns well with MS COCO values form on head features.

MS COCO style metrics also include AP computed at
IoU/OKS of 50% and 75%, denoted as AP50 and AP75, and
AP computed for objects at different scales, denoted as APS,
APM and APL. Moreover, creators of these metrics abandoned
the distinction between AP and mAP as both are, in fact, a mean
value but computed over different collections. Instead, the dif-
ference between these should be well stated in the context.

4. IMPLEMENTATION
4.1. Dataset
A publicly available dataset [51] was used for the training and
testing of our solution. This dataset contains 7035 images of
different sizes, split into a train (5269 images) and test (1766
images) part. The average image size is 358× 476 px for the
train and 360× 480 px for the test part, with images of size
332×499 px being the largest group in both parts. A full break-
down of image size distribution in both parts of the dataset is
presented in Fig. 4.

As available annotations were incompatible with our solu-
tion, it has been labelled as a hard hat and person with head
center detection, which resulted in over 55 thousand object in-
stances in MS COCO format [52]. A detailed breakdown for
the training and testing dataset, broken down by category, sub-
category, and according to the bounding box area, is presented
in Table 1.
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Fig. 4. Image size distribution in training and testing part
of dataset [51]

Table 1
Breakdown of object instances in training and testing part of dataset

Instances all small medium large

Train:

hard hat 17,741 11,340 5,922 479

person 23,882 2,805 9,729 11,348

- w/head center 22,983 2,602 9,232 11,149

- w/head center and hard hat 16,700 1,715 6,459 8,526

Test:

hard hat 5746 3727 1841 178

person 7992 1077 3200 3715

- w/head center 7775 1036 3065 3674

- w/head center and hard hat 5353 509 2071 2773

Where:
all – sum of all available instances in dataset
small – instances with bounding box area smaller than 1024 px
medium – instances with bounding box area between 1024 and
9216 px
large – instances with bounding box area greater than 9216 px

Compared to original annotations, ours contained almost 4
thousand more person instances in training and over 1.3 thou-
sand more person instances in the testing part. This difference
probably comes from the number of small instances, as the
dataset originally contained annotations of people heads that
are smaller than the silhouette of a whole person.

4.2. Training
Transfer learning, which is a popular technique in deep learn-
ing, was used to accelerate training. All backbones were initi-
ated from model weights trained in human pose estimation for
around 37 epochs on MS COCO 2017 dataset [53], on which
they achieved scores close to state-of-the-art models. Addition-
ally, the first two layers of the backbone were frozen, as they
extract general features that do not have to be retrained.

Each model was then trained on the annotated train part of
[49] dataset for 50 thousand steps with a batch size of 4, result-
ing in almost 38 training epochs. Following data augmentation
was used: images could be randomly flipped horizontally, ver-
tically, or in both axes simultaneously. Furthermore, the shorter
edge was randomly resized to 640, 672, 704, 736, 768 or 800
pixels. At the same time, the dimension of the longer edge could
not exceed 1333 pixels. The value of loss function and classi-
fication accuracy measured for each model throughout training
steps is shown in Fig. 5.

The hyperparameters were set according to [53]. Thus the
original data set divided into training and testing was kept.
Instead of monitoring loss function value on the validation
dataset, models were evaluated each 5 thousand training iter-
ations on both training and testing datasets to ensure lack of
overfitting in the final model. MS COCO style AP for all mod-
els computed on train and test datasets are shown in Fig. 6.

A series of experiments were performed using the test part
of the dataset to evaluate trained models. Additionally, due to
significant size variations of the dataset and already used aug-
mentation in training, the shorter edge of the test images was
resized to 800 pixels. At the same time, the dimension of the
longer edge could not exceed 1333 pixels during inference on
the test dataset.

4.3. Detection threshold moving
The algorithm presented in Algorithm 1 does not take the de-
tection probability score into account. It makes it vulnerable
to the detection confidence threshold, as low-scoring hard hat
instances would be treated in the same manner as instances de-
tected with nearly 100% confidence. This means that the de-
tector used for hard-hat-wearing evaluation has to be properly
tuned.

The confidence threshold below which objects are not treated
as positive detection is called the decision threshold. The pro-
cess of finding the optimal threshold is referred to as detection
threshold moving. There are a few strategies for this task de-
pending on the preferences. In this case, the detection threshold
for each model was selected by maximization of the F1 score.
This was done to balance precision and recall as F1 is a har-
monic mean of these metrics and can be expressed by the fol-
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lowing formula

F1 =
2(p · r)
p+ r

. (11)

The F1 scores were calculated for each class over the set of
decision thresholds starting from 5% to 99% with the step of
1%. The scores obtained this way were then averaged to get
the overall F1 metric, and a threshold value with the highest
F1 score value was selected. The resulting decision thresholds
and corresponding overall F1 scores achieved by each model
are summarized in Table 2.

Table 2
Detection threshold with corresponding overall F1 score for each

model

Model Detection threshold [%] Overall F1 score [%]

R50 79 88.7

R101 82 89.2

X101 81 91.8

5. RESULTS

5.1. Bounding box detection

Detection results show that models were trained correctly, as all
three perform well, achieving AP50 over 90% and AP over 60%.
The model denoted as R50 performed worst, with R101 slightly
ahead and the X101 being the best of the considered ones. This
came with no surprise, as in the benchmarks performed [54],
ResNeXt outperformed even much deeper, but sequential archi-
tectures. At the same time, it is clear that ResNet-50 being the
shallowest network performs worst. The trend observed here is
present in all the experiments described in the paper – thus, it
can be assumed that with further development of CNN archi-
tectures, our solution can perform even better, if the backbone
is swapped again. The full breakdown of the results contain-
ing overall and class-specific MS COCO style metrics for each
model is summarized in Table 3.

Examining class-specific results, it can be noticed that mod-
els achieve worse AP for hard hat class, as seen in Table 3.
Better performance in person detection is no surprise, as the
training part of the dataset contains more person instances. Ad-
ditionally, these models were derived from models trained only
for person detection. Considering the above, this bias would be
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Table 3
Bounding box detection results

Model AP AP50 AP75 APS APM APL

Overall:

R50 0.633 0.909 0.727 0.402 0.699 0.774

R101 0.637 0.912 0.721 0.401 0.706 0.778

X101 0.686 0.940 0.782 0.466 0.756 0.820

Hard hat:

R50 0.599 0.900 0.700 0.511 0.756 0.771

R101 0.591 0.901 0.679 0.499 0.752 0.765

X101 0.626 0.927 0.731 0.536 0.776 0.801

Person:

R50 0.667 0.918 0.753 0.294 0.643 0.777

R101 0.682 0.923 0.763 0.303 0.661 0.792

X101 0.746 0.953 0.833 0.395 0.736 0.839

Where:
AP – MS COCO style AP computed at different IoUs (from 50% to
95% with a step of 5%)
AP50, AP75 – AP computed at IoU of 50% and 75%
APS, APM, APL – AP computed for small, medium and large objects
(see Table 1)

expected. However, it should also be pointed out that the dif-
ference in AP50 is not that significant and hard hats, as smaller
objects compared to people, achieved better scores in APS and
APM metrics.

5.2. Head center localization
Head center localization results
All models performed very well in the person head center lo-
calization, achieving AP over 70% and AP50 over 80%. The
results are even more impressive, considering that head center
localization is perceived as harder than bounding box detection.
The full breakdown of the head center localization for the per-
son class is summarized in Table 4.

Table 4
Person head center localization results

Model AP AP50 AP75 APM APL

R50 0.704 0.814 0.736 0.697 0.854

R101 0.707 0.819 0.740 0.705 0.856

X101 0.747 0.838 0.767 0.748 0.884

Where:
AP – MS COCO style mean AP computed at different OKSs (from
50% to 95% with a step of 5%)
AP50, AP75 – AP computed at OKS of 50% and 75%
APM, APL – AP computed for medium and large objects (see Table 1)

Head and head with hard hat
Apart from the above, head center localization evaluation was
performed on person sub-classes that represented hard hat

wearers and non-wearers. This was done to check if our solution
can generalize head center between both groups, thus localizing
head center whether the hard hat is worn. The full results of this
evaluation are summarized in Table 5.

Table 5
Comparison of person head center localization results for person with

and without hard hat

Model AP AP50 AP75 APM APL

Person w/hard hat:

R50 0.727 0.809 0.756 0.697 0.847

R101 0.732 0.816 0.763 0.700 0.852

X101 0.774 0.841 0.799 0.751 0.883

Person w/o hard hat:

R50 0.536 0.646 0.567 0.573 0.742

R101 0.555 0.671 0.582 0.590 0.766

X101 0.609 0.713 0.628 0.650 0.817

For definition of AP, AP50, AP75, APM and APL see Table 4

As seen in the results, all models display a bias towards a
more prominent person sub-class representing hard hat non-
wearers which is in line with instance imbalance written in Ta-
ble 1.

However, head center heatmaps were inspected to assure that
the solution performs well. Some of these joints heatmaps over-
laid on instances of both hard hat wearers and non-wearers are
presented in Fig. 7. From these heatmaps, joints are selected as
points with the highest score. It can be seen that the head cen-
ter is correctly localized for both groups considering different
poses and scales and partial visibility.

m
in

m
ax

(a) hard hat wearers

m
in

m
ax

(b) hard hat non-wearers

Fig. 7. Comparison of head center heatmaps between hard hat wear-
ers (a) and non-wearers (b), overlaid on object instances from test dat-

set [51] detected by best performing model (X101)
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5.3. Hard-hat-wearing
Once again the model denoted as X101 performed best, which
was expected as classification is based on previously evaluated
detection and head center localization. The detailed breakdown
of results of hard-hat-wearing detection is presented in Table 6.

Table 6
Results of hard-hat-wearing detection

Model AP AP50 AP75 APS APM APL

Overall:

R50 0.575 0.752 0.663 0.124 0.572 0.728

R101 0.595 0.765 0.681 0.140 0.587 0.757

X101 0.675 0.826 0.759 0.211 0.682 0.817

Hard hat wearer:

R50 0.620 0.823 0.719 0.167 0.586 0.723

R101 0.637 0.827 0.736 0.186 0.600 0.746

X101 0.710 0.871 0.805 0.247 0.693 0.805

Hard hat non-wearer:

R50 0.531 0.682 0.606 0.082 0.559 0.733

R101 0.553 0.704 0.626 0.094 0.574 0.768

X101 0.641 0.780 0.714 0.175 0.671 0.828

For definition of AP, AP50, AP75, APS, APM and APL see Table 3

As seen in the results, only the above model achieved AP50

over 80% and AP over 60%, with other models closer to AP50

value of 75% and AP below 60%. However, to fully assess the
performance of the proposed approach, it is necessary to put
it into perspective by comparing it with different already pre-
sented ones.

Moreover, by examining class-specific scores, it can be seen
that again all models show bias towards hard hat wearer class.
As stated before, it is not surprising because hard-hat-non-
wearers account for about 30% of people instances in both the
train and test part of the dataset. However, a troubling fact is
small-scale performance as APS for all models did not exceed
25% and mostly scored well below 20%.

6. COMPARATIVE STUDIES
Authors in [14] compared three different approaches to PPE de-
tection: direct detection of PPE wearers, separate detection of
workers and PEE equipment coupled with a decision tree (DT),
and a two-staged approach where the first stage localizes peo-
ple and the second one classifies if PPE is worn. Out of these,
the first one archived the best results for hard hats, with an AP50

value of 73.97%, and class-specific values of 79.81% for hard
hat wearers and 63.12% for non-wearers. Whereas, solution
based on bounding box relative position performed the worst
with AP50 value of 69.09% and class-specific values of 74.29%
and 63.84%. However, direct comparison with this work is not
feasible as our solution is based on different detectors that, op-
posed to YOLOv3, are focused on accuracy instead of real-time
performance. Moreover, the dataset used in [14] in their study
was smaller. Therefore, to provide a fair comparison, all the

models were compared using the same testing dataset and a new
model for direct detection and a new DT were developed with
our training dataset. Additionally, for the comparison to be en-
tirely unbiased, the DT developed in [14] was also tested, as it
can be used with our detector.

For the direct detection (naming consistent with Table 7
and 8), another model based on the ResNeXt backbone has
been trained. Excluding the keypoint branch, it was identical
to the model previously denoted as X101 and was trained to
start from the same weights, with the same parameters and for
the same number of training steps. However, instead of detect-
ing hard hat and person instances, it was trained to detect hard-
hat-wearers and non-wearers directly. Additionally, detection
threshold moving was also performed for this model. The over-
all F1 score achieved the highest value of 87.6% at a decision
threshold of 83%. This newly trained network was the Faster
R-CNN previously used for this task [13].

The architecture of our DT was selected using the grid search
technique with 5-fold cross-validation on the training set. The
optimized parameters were as follows:
• a split criterion: Gini impurity or entropy information gain,
• the maximum depth of the tree md to prevent overfitting:
{2,3, ...,15} or no limit,

• the minimum samples ms necessary to split.
Results of experiments indicate that the best set of hyperparam-
eters is: Gini impurity criterion, md = 10 and ms = 14.

The developed DT and original [14] were paired with X101
model as a sole detector for this comparison, as it performed
best among all trained ones.

The full breakdown of the comparison is summarized in Ta-
ble 7. It could be seen that our solution achieved the highest

Table 7
Comparison of our head center based approach with proposed in [14]
decision tree based on the bounding box relative position and direct

detection of hard hat wearers/non-wearers

Classifier AP AP50 AP75 APS APM APL

Overall:

Our solution 0.675 0.826 0.759 0.211 0.682 0.817
Our DT 0.664 0.815 0.746 0.222 0.668 0.799

[14] DT 0.654 0.806 0.736 0.222 0.662 0.775

Direct detection 0.663 0.826 0.757 0.248 0.670 0.809

Hard hat wearer:

Our solution 0.710 0.871 0.805 0.247 0.693 0.805

Our DT 0.698 0.860 0.794 0.248 0.681 0.789

[14] DT 0.696 0.860 0.795 0.250 0.682 0.788

Direct detection 0.723 0.905 0.824 0.331 0.700 0.809

Hard hat non-wearer:

Our solution 0.641 0.780 0.714 0.175 0.671 0.828
Our DT 0.630 0.769 0.698 0.197 0.655 0.808

[14] DT 0.611 0.751 0.677 0.194 0.642 0.762

Direct detection 0.603 0.747 0.690 0.165 0.639 0.810

For definition of AP, AP50, AP75, APS, APM and APL see Table 3
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overall AP out of all tested models. It was followed by DT fit-
ted to our dataset, direct detection and finally original [14] DT.

Regarding class-specific performance, our solution per-
forms slightly worse than direct detection in the detection of
hard hat wearers, with an AP difference of 71.0% to 72.3%.
However, this situation is reversed in the detection of hard hat
non-wearers, where our solution achieves an AP of 64.1% com-
pared to 60.3% for direct detection. Additionally, in the latter,
direct detection was also outperformed by both DTs. The above
is true for almost all metrics, excluding APS. While the gain
may seem to be insignificant, our solution shows its advantage
in more complicated cases, as seen in Figs. 8 and 9. Further-
more, even small percentage of metric gain is significant in the
task of object detection and image recognition.

(a) Most common direct approach failure – duplicated labels

(b) Direct approach missclassification in crowded environment

(c) Misclassification of shadow as a separate person

(d) Misclassification due to inter-class similarity

Fig. 8. Comparison of our solution (each image right) with direct ap-
proach (each image left), hard hat wearers with their head protection
marked in green, non-wearers in red, people without head joint in ma-

genta and not worn hard hats in blue

(a) Misclassification in crowded environment

(b) Misclassification due to proximity of hardhat bounding

(c) Misclassification due to hardhat bounding box within person bounding box

(d) Misclassification due to inter-class similarity

Fig. 9. Comparison of our solution (each image right) with [14] DT
(each image left), for legend of instanceses see Fig. 8

The class-specific breakdown shows that the difference in
performance comes solely from hard hat non-wearer detection.
It seems that our solution delivers a more balanced performance
at the cost of hard-hat-wearing detection.

Also, it has to be mentioned that [14] DT achieved higher
overall and class-specific AP50 values on our dataset with our
detector. That only underlines the inability to direct the compar-
ison of methods developed in different conditions. The relative
performance of both decision trees is also worth addressing. As
seen in Table 7, overall AP is only slightly better for DT devel-
oped from scratch, and regarding hard hat wearers, [14] DT is
on par. The main difference comes from hard hat non-wearers.
However, our DT is significantly more complex. It has a depth
of 10 layers and is composed of 485 nodes, compared to 3 layers
and 10 nodes of [14] DT. This means that it lost one of the main
advantages of the DTs – human interpretability. Whereas sim-
pler trees can be acquired, a decrease in depth and node number
leads to performance degradation. Given the interpretability as-
pect, it can be concluded that [14] has already reached the limits
of the decision trees.
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Person detection comparison
Additionally, Table 8 shows a comparison of person detec-
tion evaluation between the model trained for direct detection
of hard-hat-wearing (denoted as Direct detection, described
above, and one trained in detecting hard hat and person in-
stances (denoted as Our solution). As seen in the table, our so-
lution slightly outperforms direct detection in person detection
when all instances detected by the latter are treated as one class.
The difference in performance is not very significant. However,
it should be noted that, in general, adding a keypoint branch, as
opposed to a mask branch, hinders object detection [31]. There-
fore, direct detection should perform better than our solution.

Table 8
Comparison of person detection results as separate category

(Our solution) and super-category (Direct detection)

Model AP AP50 AP75 APS APM APL

Our solution 0.746 0.953 0.833 0.395 0.736 0.839
Direct detection 0.729 0.940 0.827 0.369 0.714 0.830

For definition of AP, AP50, AP75, APS, APM and APL see Table 3.

This difference in performance could be linked to the prob-
lem mentioned earlier – high inter-class similarity. In this case,
the detector focuses on learning specific image features linked
to the hardhat (its shape, color and position in the bounding
box) and loses the ability to recognize more general features of
a person. This is even more evident at higher IoU thresholds
(Fig. 10) as precision values drop faster as recall rises.

7. DISCUSSION
There are many advantages of using computer vision in safety
monitoring and PPE detection, and some of them are high-
lighted by our solution. Vision-based methods are not worker-
focused and can supervise multiple workers simultaneously,
while other systems (e.g. RFID technology) rely heavily on
workers’ cooperation in the process. They also do not require
a separate system specific to safety monitoring, as they can use
existing CCTV cameras already present on-site.

The solution proposed in this paper addresses the main is-
sues observed in the vision-based hard hat detection approaches
currently presented in the literature. It is based on the sepa-
rate detection of people and hard hats, which means it does
not suffer from the intraclass similarity problem found in hard
hat wearer/non–wearer detection. Moreover, this allows direct
transfer learning from well-trained person detection models,
making it easier to train and deploy. The addition of head cen-
ter enables the hard-hat-wearing to be determined with a sim-
ple, human-interpretable rule-based algorithm. Moreover, no
distance threshold [16, 17, 55] or additional features like neck,
hips [16,17], ears, nose [18] or face [15] are needed to establish
a worker – hard hat relationship. This alone makes our solution
more flexible, as it will work in more situations where addi-
tional information will not be available for others.

In tests, it surpassed the previous solution based on the
relative bounding box position of people and hard hats and
the direct detection of hard hat wearers and non-wearers. The
MS COCO style overall AP of 67.5% compared to 66.4%
and 66.3% achieved by the approaches mentioned above, with
class-specific AP for hard hat non-wearers of 64.1% compared
to 63.0% and 60.3%. The performance gain in the latter task
should be highlighted, as detecting workers that do not comply
with the rules is the real problem.

Additionally, to fully understand the performance and limita-
tions of our solution, raw detection results were also examined.
Some examples of images with marked object instances are pre-
sented in Fig. 11.

Most observed errors came from hard hat or person detec-
tion failures (Fig. 11 b, c and e). Another problem found in the
results was related to the head center detection. It turned out
that the solution detects them even for instances where the head
is not visible (Fig. 11 f), which is caused by a minimal num-
ber of such cases in the dataset. However, the main surprise is
that head joints can be localized correctly even at a small scale
(Fig. 11 c and e). Causing other errors for small-scale worker
instances, matching hard hats are even smaller, making them
impossible to detect. This hinders hard-hat-wearing detection
at a small scale, and whilst it would explain the worse APS
achieved by our approach in Section 6. It cannot fully explain
the difference in performance to DTs, as these also suffer for
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Fig. 10. Person class Precision-Recall curves for Our solution (a) and Direct detection (b)
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(a) perfect detection (b) failure to detect one of the hard hats

(c) failure to detect both person and hard hat due to occlusion (d) failure in head center localization

(e) detection failure at small scale (f) failure in head center detection for partially visible person

Fig. 11. Results of inference on test part of the dataset [51] achieved by best performing model (X101), for legend of instanceses see Fig. 8

the same reason. It seems that the difference in performance is
also influenced by joint localization errors at a small scale.

Moreover, it has to be mentioned that due to Algorithm 1
simplicity, it cannot handle significant scale difference between
people and hard hats, leading to a situation where a small-scale

worker instance can be classified as a hard-hat-wearer with a
hard hat at a much larger scale, worn by someone else. How-
ever, this was not observed in the results.

Apart from the above, some problems with currently avail-
able datasets also have to be acknowledged. In general, these
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datasets are significantly imbalanced. In the dataset used in this
study, the ratio between people not wearing and wearing hard
hats is close to 7:3. This is clearly visible in the results pre-
sented in Sections 5 and 6. However, more worrying is the fact
that most of the hard hat non-wearers are not workers. In the
majority of cases, people instances in this group are wearing
civilian clothes and the cases in which they are workers per-
forming some tasks are rare. This should be avoided, partic-
ularly in the case of direct detection of hard hat wearers and
non-wearers. It may lead to a situation where the model will
learn to distinguish workers from civilians instead.

Finally, there is no benchmark dataset with multiple different
labels available. Researchers tend to develop and test their so-
lutions on custom datasets, making fair comparison impossible.

8. CONCLUSIONS AND FUTURE WORK
This article proposed a novel approach to hard-hat-wearing de-
tection based on the detection of people and hard hats com-
bined with person head center localization. This unique com-
bination allows one to determine the correct relationship be-
tween these instances and differentiate hard-hat-wearers and
non-wearers. Results show that it surpassed both the solution
based on the relative bounding box position of people and hard
hats and direct detection of hard hat wearers and non-wearers.
Achieving MS COCO style overall AP of 67.5% compared
to 66.4% and 66.3% achieved by the approaches mentioned
above. Even more important, the main gains come from de-
tecting hard-hat-non-wearers, with class-specific AP of 64.1%
compared to 63.0% and 60.3%. This aspect matters the most, as
this kind of solution should focus on detecting safety breaches.
Additionally, in-depth comparisons proved that our approach
does not suffer from the problem of intraclass similarity. More-
over, the addition of the person head center enables the solution
to be reduced to simple human-interpretable rules, rather than
an overly complex decision tree that cannot provide such re-
sults.

However, reliable detection of hard hat non-wearers is only
the first step in developing a deep learning supported safety
system for construction site monitoring purposes. For such a
system to be effective, workers who break the rules have to be
identified so that they can be reprimanded, fined or sent to addi-
tional OHS training. Hard-hat-wearing detection based on face
detection, like the one described in [15], is not an answer to
that problem as it will not work in situations when worker’s
face is not visible. Instead, a solution similar to one described
in [32] should be considered. Face detection and identification
should be made simultaneously with safety rule checking as
each worker is tracked, ideally in multiple views at once. More-
over, all these tasks should be done in real-time as the construc-
tion site is a dynamic environment.

This brings us to a hardware problem, as little attention is
paid to the infrastructure needed on the construction site to de-
ploy these models in real-time. This is an essential aspect, es-
pecially considering the recent surge in GPUs. Simply mov-
ing processing to cloud services will not be enough. Real-
time streaming of multiple high-quality video feeds still needs

a lightning-fast internet connection while providing an awful
amount of data to analyze.

An answer to this problem could be the usage of solu-
tions aiming at efficient computation on edge devices. Recently,
some methods delivering lightened deep learning architectures
were proposed [56], along with ones tailored explicitly for em-
bedded applications [42, 57]. These are slowly used in recent
studies. An excellent example of the application of the latter
in the construction safety context is [41]. The use of such al-
gorithms and appropriate devices would allow the creation of a
distributed computing system in which each node, starting from
the input, would gradually analyze the data. Therefore, decreas-
ing data throughput needed and lowering hardware demand.
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