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Abstract
Workpiece surface roughness measurement based on traditional machine vision technology faces numerous
problems such as complex index design, poor robustness of the lighting environment, and slow detection
speed, which make it unsuitable for industrial production. To address these problems, this paper proposes an
improved YOLOv5 method for milling surface roughness detection. This method can automatically extract
image features and possesses higher robustness in lighting environments and faster detection speed. We
have effectively improved the detection accuracy of the model for workpieces located at different positions
by introducing Coordinate Attention (CA). The experimental results demonstrate that this study’s improved
model achieves accurate surface roughness detection for moving workpieces in an environment with light
intensity ranging from 592 to 1060 lux. The average precision of the model on the test set reaches 97.3%,
and the detection speed reaches 36 frames per second.
Keywords: Surface roughness, improved Yolov5, detection speed, attentional mechanisms.

© 2023 Polish Academy of Sciences. All rights reserved

1. Introduction

Surface roughness is an important indicator to judge the surface quality of a workpiece.
It affects the service life of the workpiece and the stability of the overall equipment during
operation, especially in the field of medical and health care, aerospace, electronic equipment,
military industry and other high-precision technologies and there are strict requirements for
the surface roughness of the workpiece. The non-contact measuring is flexible and provides
a vast detection area as advantages. Electronic, optical, and machine vision techniques are the
non-contact measurement technologies most frequently utilized in industrial production [1].
Electronic and optical measurement equipment is expensive and susceptible to environmental
changes such as light intensity and air humidity. The advantages of the machine vision approach
include great efficiency and the ability to be integrated and automated. It transforms picture
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information into digital information, which is then processed and analyzed. As a result, research
on surface roughness measurement using machine vision has increased recently.

As the method of predicting the surface roughness of workpieces based on first-order texture
features ignores the position information between pixels, Gadelmawla et al. improve detection
accuracy by using the 2D and 3D plots of the grey level co-occurrence matrix [2]. However,
the grayscale image is a degraded image and the sensitivity of the designed index to the rough-
ness parameter is weakened. To improve roughness detection accuracy, Yi et al. established
a mathematical model describing the relation between the surface roughness of the grinding
workpiece and the image sharpness by constructing an RGB image sharpness evaluation algo-
rithm based on the color space difference [3]. Zhang et al. proposed a chromatic aberration index
based on the difference of brightness of the virtual image formed by the reflection of red and
green light sources from the workpiece surface, and a mathematical model covering the relation
between the workpiece surface roughness and the chromatic aberration index was established
using a support vector machine [4]. Considering the influence of illumination angles on rough-
ness detection, Somthong et al. obtained the relationship between light source irradiation angle
and surface roughness by a coordinate measuring machine and the photometric stereo method,
thereby obtaining the optimal lighting conditions for measuring surface roughness [5]. Each of
these methods uses artificially designed indexes to measure the surface roughness of a workpiece.
Although the prediction accuracy is good, this index-based machine vision method is susceptible
to the effects of the imaging environment, including light intensity, specimen position, and shoot-
ing angle. For example, the experimental procedures in the literature [3, 4] were performed in
a dark environment and kept the light source and specimen position unchanged; the literature [5]
had strict and inefficient requirements for image acquisition of the workpiece surface. Hence, the
roughness detection techniques based on index design discussed above are not appropriate for
use in industrial production settings.

Convolutional neural networks have a wide range of potential applications in image process-
ing, and the 2012 release of Alex-Net solidified their significant role in computer vision [6].
Images are stored in computers as digital matrices and convolutional neural networks are used
to automatically extract image features by convolutional operations on the digital matrices by
convolutional kernels, and then different images are classified by classifiers. To reduce the com-
plexity and prediction time of the prediction system, Rifai et al. used a 10-layer convolutional
neural network to classify the workpiece surface roughness [7]. To prevent unnecessary image
interference, such as background, on the accuracy of roughness detection, He et al. proposed an
ROI extraction method based on random wanderer (RW) image segmentation to extract target
regions and feed them into a convolutional neural network training to evaluate the roughness [8].
Deep AlexCORAL, a milling surface roughness class classification model based on deep migra-
tion learning, was proposed by Su et al. and uses deep migration learning to reduce the quantity
of data needed by the model and the difference in data distribution between the training and test
sets [9]. However, all the above methods require global feature extraction and classification of
surface roughness levels for the entire image, resulting in long processing time and slow detection
speed. Furthermore, these methods can only perform classification detection on individual work-
piece images and are unable to perform multi-workpiece detection and workpiece positioning,
which limits their practical applicability.

It should be emphasized that robustness to lighting environment and measurement speed are
essential for surface roughness detection of workpieces in industrial production. The variation
of lighting environment directly affects the quality of surface images and the accuracy of fea-
ture extraction by the model, which in turn affects the surface roughness detection results of
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unknown milling samples. Detection speed is one of the requirements in industrial production
as through fast detection, product quality information can be obtained in a timely manner, en-
suring product quality stability and consistency, improving production efficiency and reducing
production costs.

To achieve a higher detection speed and robustness to lighting environment, this paper pro-
poses a YOLOv5-based milling surface roughness detection method with the addition of the
Coordinate Attention (CA) mechanism. Compared with traditional machine vision methods that
require manual feature extraction, this model has better lighting robustness and detection speed.
During the training phase, the collected dataset of milling workpieces undergoes preprocessing
and data augmentation, and then the model is trained on the processed data to learn the im-
age features of workpieces with different surface roughness categories. In the testing phase, the
model is capable of accurately identifying the surface roughness categories of milling work-
pieces under different light intensities. In addition, after comparing with Faster RCNN (Region-
based Convolutional Neural Network), Single-Shot Multibox Detection (SSD), and the original
YOLOv5 algorithm [10–12], it was found that the improved YOLOv5 model has advantages as
it comes to both volume and detection speed, and the detection speed can reach 36 frames per
second.

2. YOLOv5 algorithm and improvement

2.1. YOLOv5 algorithm

The detection principle of the surface roughness detection model based on the improved
YOLOv5 is to divide the input surface image of the milling workpiece into a grid of cells. If the
center of the milling workpiece falls within a certain grid cell, the network predicts its roughness
level. The model consists of four parts: Input, Backbone, Neck, and Head [13]. Here is a brief
introduction to these four parts.

Figure 1 shows the Yolov5 algorithm’s overall structure, which is divided into four sections.
1. Input. In order to reduce computational complexity, increase the size of the training set, and

improve the model’s generalization ability, we preprocessed the milling workpiece images in
the training set, including operations such as size reduction, flipping, cropping, rotation, and
contrast adjustment. We set anchor for the size of the milling workpiece in the image, which
is used to generate the predicted bounding boxes and ground truth boxes, and to calculate the
difference between them. By updating the size of the predicted boxes in reverse, we further
improve the detection performance of the model.

2. Backbone. We used CSPDarknet53 as the backbone network of our model to extract features
automatically from the surface images of the milling workpiece. We used the Focus Principle in
the network to create low-resolution feature maps by slicing and concatenating high-resolution
milling images, as shown in Fig. 2. This allows the model to operate on images of varying
sizes and captures both local and global features early on, aiding the feature extraction process.
Additionally, we employed the C3 structure to address the issue of gradient information
repetition during the training of milling workpiece surface images, which accelerated the
training speed while maintaining accuracy [14].

3. Neck. To detect the surface roughness of milling workpieces of different sizes, we used the
Feature Pyramid Networks (FPN) and Path Aggregation Network (PAN) structures. These
structures can perform convolution on milling workpiece images to form feature maps of
different scales. In this structure, the low-resolution high-semantic information feature map is
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Fig. 1. Yolov5 model structure.

Fig. 2. Focus Principle diagram.

fused with the high-resolution low-semantic information feature map, enabling the model to
obtain more comprehensive semantic information [15]. In deep neural networks, the positional
information of the feature maps is continuously diminished. With the PAN structure, we can
propagate the shallow layer’s positional information to the deep layer’s feature maps, enhancing
the network’s ability to recognize milling workpieces of different scales [16].

4. Head. The model used three types of loss functions during the training phase, which were
used for the classification, localization, and confidence calculation of the milling workpieces.
Binary cross-entropy was used as the loss function for classification and confidence [17], as
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shown in equations (1) and (2). Due to the milling workpieces being rectangular in the images,
and the CIOU_Loss function taking into account the overlap area, center point distance, and
aspect ratio between the predicted bounding boxes and ground truth boxes, it can serve as
a localization loss function that helps the predicted boxes to better match the ground truth
boxes.
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LossCIOU = 1 − 𝐼𝑜𝑈 + 𝜌2 (𝑏, 𝑏𝑔𝑡 )
𝑐2 + 𝛼𝑣. (3)

In equations (1)–(2), 𝑆 × 𝑆 represents the number of grids, 𝑀 represents the number of
bounding boxes in each grid, 𝐼obj

𝑖 𝑗
represents the presence or absence of the milling workpieces

in the bounding box, �̂� 𝑗

𝑖
represents the prediction confidence of the bounding box in the grid, 𝐶 𝑗

𝑖

represents the true confidence of the bounding box in the grid, 𝑝𝑖 (𝑐) represents the probability that
the milling workpiece is predicted as the roughness class 𝑐, while 𝑝𝑖 (𝑐) represents the probability
that a milling workpiece is roughness class 𝑐. In equation (3), 𝑏𝑏𝑔𝑡 represents the Prediction box
and Ground truth box, 𝜌 represents the distance between the centroids of the two boxes, and 𝑣

represents the similarity of the aspect ratio of the two boxes.

2.2. Improved Yolov5 algorithm

In the field of image processing, neural networks learn features through large amounts of data,
while all features do not differ for neural networks and they do not pay too much attention to certain
aspects such as the temporal domain, spatial domain, channel, hybrid domain, etc. By utilizing
attention mechanisms in neural networks, the model can focus more on specific features such
as the Squeeze-and-Excitation attention mechanism that emphasizes the relationships between
channel features and allows the model to automatically learn the importance of different channel
features [18]. The Convolutional Block Attention Module mechanism combines channel and
spatial attention in a sequential manner, enabling the model to focus more on the recognition of
objects themselves [19].

In the task of milling surface roughness detection, the position of the workpiece is often dis-
tributed in local and different regions, while there may exist some noise or irrelevant information
in other regions, which can interfere with the learning of the model. Therefore, this paper uses
the CA mechanism to better adapt to this situation. The CA mechanism can learn the position
information of the milling workpiece in the image by utilizing the position encoding vector of the
workpiece, thus achieving more accurate roughness detection [20].

As shown in Fig. 3, CA was added to the bottleneck of the C3 module in the backbone network.
Firstly, an average pooling operation was performed along the height and width directions of the
milled workpiece image to obtain two feature maps. The output of the c channel at height ℎ and
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Fig. 3. Location of the added CA.

width 𝑤 can be expressed as follows:
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By cascading the two feature maps above and transforming them using a shared 1 × 1
convolution, the dimension is reduced to the original 𝐶/𝑟, the feature map 𝑓 is generated by the
Sigmoid activation function, and the feature maps are convolved 1 × 1 according to the original
dimensions to obtain the feature maps 𝑓 ℎ and 𝑓 𝑤 with the same number of channels as the
original ones. The Sigmoid activation function is used once more to acquire its attention weights
𝑔ℎ and 𝑔𝑤 in the height and width directions. Finally, the feature maps with attention weights in
the height and width directions are obtained with weighting calculations. The process is shown
in Fig. 4, and the equation for CA output is as follows:
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Fig. 4. CA structure diagram.
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𝑦𝑐 (𝑖 𝑗) = 𝑥𝑐 (𝑖 𝑗) × 𝑔ℎ𝑐 (𝑖) × 𝑔𝑤𝑐 ( 𝑗). (9)

3. Experimental design

In industrial applications of roughness detection, the first two challenges that need to be
addressed are the robustness to lighting environments and fast detection speed. The robustness to
lighting environments is verified by designing variable lighting and image acquisition positions,
and the detection speed is verified by comparison tests with the Faster RCNN model and the
SSD model, and the experimental flow is shown in Fig. 5, which is divided into five parts. The
experiments are based on the PyTorch framework and use the graphics processing unit (GPU) to
speed up the training. The training environment is shown in Table 1.

Fig. 5. Experimental flow diagram.

Table 1. Software and hardware conditions.

Name Configuration
Operating System Windows11 (×64)

CUDA 11.3.1

CPU Inter(R) Core𝑇𝑀 i5 –12400 F

Python 3.8

GPU NVIDA GeForce RTX 3050

RAM 2 × 8 GB

3.1. Preparation of the milling workpieces

Thirty milling workpieces with different surface roughness were processed using the material
equipment and processing parameters in Table 2 in the experiment.

The contact-type roughness detector obtains surface roughness information by detecting the
variation of the probe caused by sliding over the workpiece surface. As the roughness information
of the same workpiece surface at different locations fluctuates to some extent, the roughness of
six different areas on each workpiece was measured randomly using a contact-type roughness
gauge. The average value was calculated as the surface roughness of the workpiece. In the team’s
previous work [9], the following measurement results of each workpiece were obtained as shown
in Table 3.
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Table 2. Experimental materials and selected processing parameters.

Machine tool Milling cutter Cutting depth
XHS7145 TAP400R100-32-6T 0.1 mm

Spindle speed Feed rate Workpiece material

600 r/min 200–1100 mm/min 45# steel

Workpiece size surface roughness tester Workpiece roughness

60 × 40 × 10 mm TR210 1–3.6 μm

Table 3. Surface roughness of milled workpiece (unit: μm).

No. First Second Third Fourth Fifth Sixth Average
1 1.310 1.289 1.295 1.290 1.260 1.313 1.293

2 1.063 1.130 1.120 1.122 1.095 1.107 1.106

3 1.077 1.065 1.108 1.028 1.105 1.084 1.078

4 1.378 1.381 1.304 1.306 1.351 1.332 1.342

5 1.214 1.222 1.284 1.213 1.297 1.262 1.249

6 1.221 1.200 1.164 1.154 1.195 1.159 1.182

7 1.483 1.466 1.484 1.447 1.496 1.493 1.478

8 1.440 1.599 1.529 1.483 1.435 1.561 1.508

9 1.595 1.524 1.527 1.558 1.563 1.605 1.562

10 1.433 1.404 1.363 1.471 1.475 1.497 1.441

11 1.593 1.518 1.747 1.629 1.583 1.564 1.606

12 1.489 1.416 1.335 1.448 1.471 1.466 1.438

13 1.931 1.968 1.918 1.948 1.968 2.034 1.961

14 2.085 2.088 1.985 2.054 2.046 1.987 2.041

15 2.054 2.052 2.018 2.060 2.079 1.991 2.042

16 1.899 1.975 2.066 1.852 2.044 1.986 1.970

17 2.195 2.216 2.215 2.158 2.178 2.251 2.202

18 2.118 2.081 2.135 2.156 2.201 2.121 2.135

19 2.809 2.842 2.836 2.849 2.775 2.759 2.812

20 2.845 2.932 2.928 2.991 2.904 2.889 2.915

21 2.880 2.786 2.886 2.738 2.827 2.867 2.831

22 2.754 2.785 2.721 2.852 2.734 2.778 2.771

23 2.795 2.789 2.752 2.787 2.694 2.702 2.753

24 2.702 2.704 2.624 2.672 2.711 2.672 2.681

25 3.363 3.309 3.368 3.379 3.360 3.299 3.346

26 3.173 3.208 3.283 3.276 3.274 3.129 3.224

27 3.353 3.499 3.450 3.391 3.566 3.328 3.431

28 3.377 3.387 3.390 3.362 3.407 3.467 3.398

29 3.319 3.221 3.313 3.360 3.153 3.209 3.263

30 3.417 3.387 3.503 3.484 3.627 3.645 3.511
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3.2. Acquisition of the workpiece surface image

In order to simulate the variation of illumination in industrial production and evaluate the
robustness of the model in different lighting environments, we used the experimental platform
shown in Figure 6 to capture images of the milled workpiece surface.

Fig. 6. Workpiece surface image acquisition platform.

To ensure the reproducibility and repeatability of the experiments, the size of the platform
used in the experiment was 80 × 60 cm, and the camera used for the image capture was fixed
horizontally 20 cm above the platform, with the camera lens vertical to the platform and the
workpiece being captured. Two 15 cm-long strip light sources were fixed at both ends of the
camera, with an angle of 130 degrees between them. Due to surfaces with different roughness
being affected by light in different ways, with lower roughness surfaces having stronger reflection
capabilities, we set different levels of lighting intensity in the experimental setup, ranging from
592 to 1060 LUX, and randomly adjusted the position of the workpieces during taking the
photographs. The positioning of the light sources and cameras was designed to ensure that the
intensity of the light shining on the surface of the workpiece varied at different positions. The
images acquired with different illumination and at different positions are shown in Fig. 7.

The experimental equipment in Fig. 6 is a 4K pixel camera, OPTLI14030 white linear light
source, light controller, 45# steel milling workpiece, digital luxmeter, and experimental platform.

Fig. 7. Some images of the milled workpieces.
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3.3. Data pre-processing and data set partitioning

As surface roughness grading of workpieces in actual industrial production follows the stan-
dards of the International Organization for Standardization (ISO 1302), which divides roughness
grades into ranges of 0–0.4 μm, 0.4–0.8 μm, 0.8–1.6 μm, 1.6–3.2 μm, and 3.2–6.3 μm, the 30
machined workpieces listed in Table 2 were classified into five roughness grade intervals, namely
1.0–1.4 μm, 1.4–1.9 μm, 1.9–2.5 μm, 2.5–3.1 μm, and 3.1–3.7 μm, according to the ISO standard
in this experiment. These five groups were denoted as R1, R2, R3, R4, and R5, respectively. For
each roughness grade interval, six workpieces were selected, of which four were used as training
samples and the remaining two were used as validation samples.

A total of 1090 images of milled workpiece surfaces were captured in the experiment, including
664 images in the training set and 426 images in the validation set. As neural network models
typically require many image samples for training, we employed data augmentation techniques
such as random flipping, translation, and adjustments of image hue, saturation, and exposure to
expand the training dataset. This approach saves costs and improves the model’s generalization
ability. Therefore, we performed data augmentation on the training set and increased the sample
size to 3320 images. To simulate the possible uneven sample distribution, the number of images
captured for the R4 grade workpieces was relatively small compared to the other roughness levels.
The roughness class classification and the number of data sets are shown in Table 4.

Table 4. Data set partition table (5 categories).

Roughness (unit: μm) 1.0–1.4 1.4–1.9 1.9–2.5 2.5–3.1 3.1–3.7

Number of train set images 688 688 728 488 728

Number of validation set images 92 92 92 58 92

3.4. Model Training

The experiments use the YOLOv5s network with the addition of CA to train the augmented
dataset and judge its performance by evaluation metrics. Since the stochastic gradient descent
optimizer converges slowly in the training process and may fall into local minima [21], the
Adaptive Moment Estimation is used as the optimizer in this experiment.

In the training process, too large a learning rate may make the model unstable, and too small
a learning rate may make the model converge slowly and reach a local minimum, so the Warmup
learning rate is used to prevent overfitting during training. A first-order linear interpolation
algorithm is used in the Warmup phase to update the learning rate for each round [22], and
thereafter, a cosine annealing algorithm is used to update the learning rate for each round to
ensure the stability of the training process. The larger the image size of the input network,
the better the training effect, but it requires more training time and better computer hardware
configuration. Combined with the current computer configuration, the input image is adjusted
from shooting pixel size 3840 × 2160 to 800 × 800, and the initial learning rate is 0.01, the batch
size is 6, and the number of training iterations is 400. some of the training hyperparameters are
shown in Table 5.

Table 5. Partial training hyperparameters.

Initial learning rate Batch size Epoch Image size Iou_Loss Cls_Loss
0.001 6 400 800 × 800 0.05 0.5
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4. Experimental results and analysis

4.1. Evaluation indicators

In target detection algorithms, the goodness of a model is often evaluated by the average
precision (AP), mean average precision (mAP), detection speed, and model size, where AP is
related to mAP and accuracy (P), and recall (R). The specific formulas for accuracy and recall
are as follows.

R =
TP

TP + FN
, (10)

P =
TP

TP + FP
, (11)

where TP represents the amount of data in the data set that are actually positive and classified
as positive by the classifier, FP represents the amount of data in the data set that are incorrectly
predicted as positive, TN represents the amount of data that are correctly predicted as negative,
and FN represents the amount of data that are incorrectly predicted as negative. The formula
shows that accuracy represents the proportion of positive samples with correct predictions among
the predicted samples to all positive samples, and the recall represents the proportion of positive
samples with correct predictions among the predicted samples to all samples.

In this paper, accuracy indicates how many of the predicted roughness classes of milled
workpieces are correct, and recall indicates how many of all milled workpieces are correctly
predicted to have a roughness class. Therefore, accuracy and recall are inversely proportional,
and the higher the accuracy, the lower the recall. AP is the area under the Precision-Recall curve
for each category, and mAP is the average value of AP for each category. The larger the mAP
value, the better the detection effect. The formula is shown below, where N represents the total
number of categories, and in this experiment, the roughness of all milling workpieces is divided
into 5 categories, so 𝑁 = 5.

AP =

1∫
0

P(R)dR (12)

mAP =

𝑁∑︁
𝑖=1

AP𝑖

𝑁
. (13)

4.2. Experimental results

4.2.1. Analysis of training results

The evaluation results of the model after 400 iterations of training are shown in Fig. 8.
From 8c, 8d, 8e and 8f, we can see that the model tends to stabilize after the first 40 rounds of
iterative training, although with occasional fluctuations, and starts to stabilize around 200 rounds
and converges around 250 rounds. The fluctuations may be caused by two reasons: (1) it is just at
the end of the Warmup phase when the learning rate is adjusted by the cosine annealing algorithm
to make the curve slowly stabilize. (2) The data set is unbalanced in all types of samples. Although
the data set is expanded by data enhancement, the percentage of samples with the 4th level of
roughness is still too small compared to other samples due to the limited experimental conditions.
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(a) Iou Loss (b) Obj Loss (c) Cls Loss

(d) Accuracy Curve (e) Recall Curve (f) mAP

Fig. 8. Losses on the training set and mAP on the validation set.

After testing the model with the validation set images, the overall accuracy of the model can
reach 96.2% and the recall rate can also reach 95.1%. The model has a better detection effect for
static milling workpiece images, and some of the static milling workpiece image detection results
are shown in Fig. 9. Different roughness workpieces can be correctly identified by the model with
a high confidence level.

(a) R1 confidence of 0.98 (b) R2 confidence of 0.93 (c) R5 confidence of 0.95

Fig. 9. Static workpiece image detection results.

4.2.2. Model comparison

We created a comparative test with the Faster RCNN model and the SSD model to verify the
effectiveness of the method in this study for real-time recognition of surface roughness of milled
workpieces.
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1. Faster RCNN was proposed in 2016 on the basis of RCNN and Fast RCNN as a repre-
sentative of two-stage target detection models which are still used in various aspects of
target detection today. From the paper [9], it is known that the standard ResNet50 backbone
network in the COCO (Common Objects in Context) target detection dataset can produce
higher detection accuracy, so in this paper, the backbone network VGG16 of Faster RCNN
is replaced with ResNet50. To make the model converge faster and better, this experiment
utilizes the official PyTorch Faster RCNN pre-training weights for migration learning. The
learning rate is 0.01, the number of epochs is 100, and the batch size is 6.

2. SSD is a one-stage target detection method, which has the advantages of fast detection speed
and high detection accuracy, and its backbone network is based on VGG16 with added
multiple convolutional layers and an average pooling layer. As in the experiments above,
the backbone network is replaced with ResNet50, and migration learning is performed
using pre-trained weights. The learning rate is 0.005, the number of epochs is 100 rounds,
and the batch size is 6.

The experiments above were conducted under the same hardware configuration and data set
conditions, and the parameters were adjusted by training several times until the model achieved
better results. The experimental results are evaluated in terms of mAP, model size, and FPS
metrics for comparison The specific experimental evaluation results are shown in Table 6.

Table 6. Performance comparison of different object detection networks.

Networks mAP/% Model size/M FPS
Faster RCNN 97.1 315 7

SSD 92.2 104 34

Yolov5 96.1 13.7 36

Yolov5+CA 97.3 13.2 36

It is obvious from the above table that (1) the Faster RCNN model with migration learning
by using pre-trained weights has an mAP close to the improved Yolov5 with added CA, but the
detection speed is only 7 frames per second, which is far from the standard of real-time detection.
In addition, the model size of 315M makes the Faster RCNN unable to be deployed for use on
mobile devices. (2) The SSD model can detect up to 34 frames per second, but its mAP is lower
than the rest of the models, and the model size is one-third of Faster RCNN, but still not up to what
is needed for mobile deployment. (3) The mAP of the improved Yolov5 model reached 97.3%,
which is a 5.2% and 1.2% improvement compared to SSD and Yolov5. The detection speed has
improved by 80.6% over Faster RCNN to 36 frames per second, which satisfies the demand for
real-time detection. In addition, the model size of 13.2 M is also 95.8% and 87.3% less than that
of Faster RCNN and SSD, demonstrating its suitability for mobile deployment.

5. Discussion

5.1. Impact of the lighting environment on the model

As surface roughness measurement based on machine vision relies on optical imaging princi-
ples, it involves capturing images of the workpiece surface with a camera, followed by manual or
algorithmic extraction of features in the image that are related to surface roughness parameters.
The predicted roughness values of the unknown workpiece surfaces are then obtained based on
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these features. However, different lighting intensities and environments can directly affect the
distribution of the features in the workpiece surface images, thus influencing the detection results.

To test the detection speed and robustness of the model under different lighting conditions,
we used a high-definition camera with a resolution of 3840 × 2160 and a frame rate of 30FPS to
capture videos of milling workpieces with different roughness moving at a constant speed in an
environment with a light intensity of 592-1060LUX. During the movement, the light intensity on
the surface of the workpiece gradually decreased and then increased again, as shown in Fig. 10. The
detection results under different lighting conditions were used to evaluate the model’s robustness
to changes in light sources.

(a) 1057 lux (b) 592 lux (c) 1060 lux

Fig. 10. Process of light intensity change.

The results show that when the confidence threshold is set to 0.25, the roughness levels of
R1, R2, and R3 milling workpieces can be accurately recognized in the experiment. Some real-
time detection processes are shown in Fig. 11. However, during the training process, there were
relatively few milling workpieces with roughness level R4, resulting in an imbalanced distribution
of the dataset. When the confidence threshold was set low, there was a phenomenon of multiple
labels for a single sample when detecting workpieces with higher roughness, as shown in Fig. 12.
When the confidence threshold is readjusted to 0.7, the model can accurately recognize workpieces
with various levels of roughness. The model can also accurately recognize the roughness levels of
workpieces when the surface light intensity changes, indicating that the model has good imaging
environment robustness.

(a) R1 confidence of 0.78 (b) R1 confidence of 0.81 (c) R1 confidence of 0.95

(d) R2 confidence of 0.88 (e) R2 confidence of 0.52 (f) R2 confidence of 0.8

Fig. 11. Real-time detection process diagram.
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Fig. 12. Multiple labeling phenomenon in real-time detection.

5.2. Impact of model detection speed on industrial production

Real-time detection can help identify problems on the production line in a timely manner and
improve production efficiency and product quality. To achieve real-time detection, the detection
speed of the model is very important, but it should be emphasized that the required detection speed
for different industrial production lines may vary, and there are no standardized specifications.
Generally speaking, real-time detection requires a detection speed of at least several dozen frames
per second. The detection speed is affected by various factors, such as hardware equipment and
model algorithms.

In the hardware environment shown in Table 1, the detection speed of the model is 36FPS
when detecting the video data captured in Section 5.1, which is higher than the detection speed of
Faster RCNN with higher detection accuracy, indicating its potential for industrial production. As
the index-based machine vision method requires a high demand for the light source environment,
it is unsuitable for industrial production and thus not compared.

6. Conclusions

The paper proposes a method that can provide visual detection of the surface roughness of
milled workpieces, which is based on the Yolov5 model improved by adding the coordinate atten-
tion mechanism (CA). In the 5-class roughness level target detection, the following achievements
have been made:

1. Average accuracy improved from 96.1% to 97.3%, which is a 5.2% improvement compared
to the SSD algorithm.

2. The detection speed is improved by 80.6% compared to Faster RCNN, reaching 36 frames
per second.

3. The detection of uniformly moving workpieces in an environment with a light intensity of
592-1060 LUX proves the model’s better robustness to light environments.

In future work, we will further optimize the algorithm model to address various challenges
existing in real production environments, aiming to enhance its generalization and environmental
robustness. We will focus on detection of finishing workpieces with weak surface feature in-
formation, such as the detection of grinding workpieces, so that the algorithm can have higher
detection accuracy and higher detection speed.
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Appendix I. Nomenclature

Abbreviations Definition
YOLO You Only Look Once Network
CA Coordinate Attention
SVM support vector machine
CIOU Complete-IoU
SE Squeeze-and-Excitation
CBAM Convolutional Block Attention Module
FPN Feature Pyramid Networks
PAN Path Aggregation Network
Ra Roughness parameters

Symbol Definition
S number of grids
M number of bounding boxes in each grid
𝐼
obj
𝑖 𝑗

presence or absence of objects in the bounding box
�̂�

𝑗

𝑖
prediction confidence of the bounding box in the grid

𝐶
𝑗

𝑖
true confidence of the bounding box in the grid

𝑝𝑖 (𝑐) probability of predicting the detected object as class 𝑐
𝑝𝑖 (𝑐) enhancement node group
𝑐 Objective Category
𝑏 Prediction box
𝑏𝑔𝑡 Ground truth box
𝜌 Euclidean Distance between the centroids of the two boxes
𝑣 the similarity of the aspect ratio of the two boxes
𝑓 feature map
AP average precision
mAP mean average precision
TP Ture Positives
FP False Positives
TN Ture Negatives
FN False Negatives

Parameter Name Setting
Initial learning rate 0.001
Image size 800 × 800
Iou_Loss 0.05
Cls_Loss 0.5
Batch size 6
Epoch 400
Optimizers Adam
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