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Abstract 
 

Compacted Graphite Iron (CGI) is a unique casting material characterized by its graphite form and extensive matrix contact surface. This 

type of cast iron has a tendency towards direct ferritization and possesses a complex set of intriguing properties. The use of data mining 

methods in modern foundry material development facilitates the achievement of improved product quality parameters. When designing a 

new product, it is always necessary to have a comprehensive understanding of the influence of alloying elements on the microstructure and 

consequently on the properties of the analyzed material. Empirical studies allow for a qualitative assessment of the above-mentioned 

relationships, but it is the use of intelligent computational techniques that allows for the construction of an approximate model of the 

microstructure and, consequently, precise predictions. The formulated prognostic model supports technological decisions during the casting 

design phase and is considered as the first step in the selection of the appropriate material type. 
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1. Introduction 
 

Materials engineering is a multidisciplinary field that applies 

knowledge from physics, chemistry, and biology to improve 

engineering materials. The development of new materials is critical 

to the creation of innovative solutions and designs. With advances 

in materials engineering, we now have materials that can withstand 

extreme conditions, enabling the design of machines that can 

withstand such environments. The properties of objects and devices 

depend on the materials used, which in turn are influenced by the 

manufacturing process and the resulting structure. 

Predictive models of microstructure can improve and automate 

the design process for materials with desired properties. 

Understanding the rules, laws, and relationships within the field is 

essential, and data mining tools can support experimental research. 

Alloying additives affect the structure of compacted graphite iron, 

but these relationships are not linear and traditional regression 

methods may not be effective. 

In cases where statistical tools fall short, artificial intelligence 

models have proven to be applicable. Data mining and machine 

learning techniques based on similar principles have gained 

popularity. These models use historical empirical data for 

calibration and capture the relationships between variables. 

Predictive models are used for quantitative dependent variables, 

while classification models handle discrete or categorical 

dependent variables. In this case, the focus is on determining the 

content of phase constituents in the microstructure based on 

chemical composition and wall thickness. Limited publications 
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exist on the influence of alloying elements on compacted graphite 

iron.  

Compacted Graphite Iron (CGI) is a remarkable casting 

material due to its specific form of graphite and large contact area 

with the matrix. It tends to ferrite and has a number of interesting 

properties. Compared to gray cast iron, CGI has higher mechanical 

properties, improved ductility, and a less thickness sensitive matrix 

microstructure. Compared to ductile iron, it has a lower coefficient 

of thermal expansion, higher thermal conductivity, greater 

resistance to temperature changes, better vibration damping 

capacity, and improved castability. These advantages make it 

suitable for various applications, including brake discs, engine 

blocks and automotive parts. Extensive research has been 

conducted on the properties of CGI [1-14]. 

By adjusting the chemical composition, it is possible to modify 

the microstructure and properties of cast iron. Ausferrite, a mixture 

of bainitic ferrite and carbon-supersaturated austenite, is a desirable 

constituent with potential for strengthening through twinning-

induced martensitic transformation. Heat treatment, including 

isothermal quenching within the austenite-bainite transformation 

range, is required to produce ausferrite. Alternatively, modification 

of the chemical composition with elements such as molybdenum, 

copper, or nickel can also produce ausferrite. 

The authors have already addressed this issue by building 

models using machine learning methods such as rosette logic, 

neural networks, or decision trees. Although good results were 

obtained, the implemented models did not cope well with the 

extrapolation of results as well as with interpolation beyond the 

areas covered by experimental results. The aim of this paper is to 

present new research results using modern techniques such as 

kriging and XGBoost trees. 

  

 

2. Research methodology 
 

 

2.1. Material experiment 
 

Cast iron was smelted in a medium-frequency induction 

furnace (Elkon, Poland) with a capacity of 30 kg. The charge 

consisted of special pig iron (with reduced sulfur content), 

ferrosilicon and ferromanganese. After superheating the cast iron 

to 1480C, the slag was drawn off. In the case of alloyed cast iron, 

technically pure Sn, Ni, Cu, Mo and/or Cr were added. The 

concentration of magnesium depended on the content of elements 

hindering the formation of compacted graphite (e.g. Mo). 

Schematic layout of elements in the mold is shown in Figure 1. 

 

 

 
Fig. 1. Schematic layout of elements in the mold: 1 – pouring 

basin, 2 – sprue, 3 – reaction chamber, 4 – mixing chamber,  

5 – control chamber, 6 – test casting, 7 – flow-off 

 

The gating system incorporates the spherically-shaped reaction 

chamber (2) with 85 mm diameter. where Lamet® 5504 

magnesium master alloy (Elkem, Norway) was placed. It contains 

nodulizers (5 – 6% wt.% Mg, 0.25 – 0.40 wt.% La) inoculants (0.25 

– 0.40 wt.% Al, 0.25 – 0.40 wt.% Ca) as well as graphite-forming 

element (44 – 48 wt.% Si). The mixing chamber (4) allowed the 

rest of the master alloy to dissolve and prevented it from flowing 

into the rest of the gating system. An S-type thermocouple 

(PtRh10-Pt) was placed in the thermal center of the control 

chamber (5) to record the temperature of the cast iron. It was 

connected via a compensation cable to a voltage-frequency 

transducer and a computer where thermal and derivation analysis 

curves were recorded. The test casting (5) has a stepped 

configuration with the wall thickness of 3, 6, 12 and 24 mm. For 

the study presented in this paper, 51 CGI melts were taken; the 

range of chemical composition is shown in Table 1. 

 

Table 1.  

The chemical composition of CGI tested 
Chemical composition, wt.% 

C Si Mn Mg Mo Cu Ni Cr 

2.91–

3.82 

2.28– 

2.71 

0.03– 

1.31 

0.015– 

0.023 

0– 

2.44 

0– 

3.80 

0– 

21.04 

0– 

2,81 

 

Such a wide range of chemical compositions made it possible 

to obtain a ferritic-pearlitic, pearlitic, austenitic, martensitic as well 

as ausferritic matrix. 

Specimens for metallographic studies were cut from the central 

parts of the stepped casting. They were then ground on abrasive 

papers of grain sizes 180, 600 and 1200. Polishing was carried out 

using diamond slurries of gradations 3 and 1 m. The 

metallographic sections were etched with a 4% solution of nitric 

acid in ethanol. Microstructure images were taken on a Nikon 

MA200 microscope at 500 magnification. Phase contribution 

studies were carried out using NIS Elements BR software. 
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2.2. Machine learning 
 

The authors' analysis is concerned with predicting the 

volumetric fraction of phases in the microstructure of compacted 

graphite iron. This problem builds on their previous research [15-

17], but with an increased emphasis on regression models. Previous 

work has already made progress in predicting phases within a 

microstructure, including the identification of constituents such as 

ausferrite. The application of machine learning (ML) methods in 

metals engineering is gaining popularity [18]. Numerous studies 

have explored the use of supervised learning techniques such as 

Artificial Neural Networks (ANN) [19], Decision Trees (DTs) [20], 

and other methods such as XGBoost and Ridge Regression [21] to 

predict metal properties. Predicting material properties using ML 

methods is an interesting area of research. Some studies [22, 23] 

have used ML techniques to establish relationships between defects 

and mechanical properties. In many cases, ML tools have been used 

to improve the control of the manufacturing process [24]. However, 

it is more difficult to find examples of research using ML tools 

specifically to analyze the properties of compacted graphite iron 

(CGI). Existing publications on CGI either rely on qualitative 

analysis [25,26] or use traditional statistical approaches to identify 

dependencies and construct linear regression models [27, 28]. 

This manuscript presents an approach to modeling properties 

based on microstructure with the use of such methods as kriging or 

XGBoost, but also with the use of neural networks and traditional 

linear regression. The level of interpretability varies among the 

individual algorithms used in intelligent data analysis. Decision 

trees [29-31], once very popular, have given way to more precise 

techniques such as artificial neural networks and support vector 

machines [32]. These newer methods offer greater accuracy at the 

expense of ease of interpretation. However, there is currently a 

resurgence of simpler (more transparent) methods that have been 

adapted to increase efficiency for human comprehension [33-35].  

 

 

2.2. XGBoost 
 

XGBoost (eXtreme Gradient Boosting) is an advanced 

implementation of the Gradient Boosted Trees algorithm. The idea 

behind this algorithm is to create a series of trees that successively 

increase the accuracy of the prediction results. Each successive tree 

tries to correct the errors of the previous trees using the so-called 

"gradient boosting" technique. The generalized XGBoost 

algorithm can be represented as follows: 

1. Initialize the model with constant values: 

 

𝑓(0)(𝑥) = argmin
𝜃

∑ 𝐿(𝑦𝑖, 𝜃)𝑁
𝑖=1           (1) 

 

Where: {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁

 – train dataset, 𝐿(𝑦, 𝐹(𝑥)) – 

differentiable loss function, 𝑀 – number of iterations (number of 

weak students - trees), 𝛼 – learning rate. 

2. For 𝑚 = 1 to 𝑀: 

2.1. Calculate the so-called pseudo-residues (𝑔̂𝑚 – gradients and 

ℎ̂𝑚hessians): 

𝑔̂𝑚(𝑥𝑖) = [
𝜕(𝑦𝑖,𝐹(𝑥𝑖)) 

𝜕𝑓(𝑥𝑖)
]
𝑓(𝑥)=𝑓̂(𝑚−1)(𝑥)

         (2) 

 

ℎ̂𝑚(𝑥𝑖) = [
𝜕2(𝑦𝑖,𝐹(𝑥𝑖)) 

𝜕𝑓(𝑥𝑖)
2 ]

𝑓(𝑥)=𝑓̂(𝑚−1)(𝑥)
         (3) 

 

2.2. Matching the "weak student" using the training set in the form 

{𝑥𝑖 , −
𝑔̂𝑚(𝑥𝑖)

ℎ̂𝑚(𝑥𝑖)
}
𝑖=1

𝑁

, by solving the optimization problem: 

𝜙̂𝑚 = argmin
𝜙𝜖Φ

∑
1

2

𝑁
𝑖=1 ℎ̂𝑚(𝑥𝑖) [−

𝑔̂𝑚(𝑥𝑖)

ℎ̂𝑚(𝑥𝑖)
− 𝜙(𝑥𝑖)]

2

 

             (4) 

 

𝑓(𝑚)(𝑥) = 𝛼𝜙̂𝑚(𝑥)            (5) 

 

2.3. Model upgrade: 

𝑓(𝑚)(𝑥) = 𝑓(𝑚−1)(𝑥) + 𝑓(𝑚)(𝑥)           (6) 

 

3. Output: 

𝑓(𝑥) = 𝑓(𝑀)(𝑥) = ∑ 𝑓(𝑚)(𝑥)𝑀
𝑖=0            (7) 

 

The operation diagram of the XGBoost algorithm is shown in 

Fig. 2. 

The main hyperparameters of this model include [36]: 

‒ learning_rate / eta – parameter telling after each calculated 

iteration what step we want to take forward. The bigger the 

step, the faster we get to the goal, but if it is too big, we may 

not reach the best result. 

‒ max_depth – maximum depth of simple trees. The deeper the 

trees, the stronger the model is, but it also has a greater 

tendency to overfitting. 

‒ n_estimators – the number of simple trees we want to build. 

‒ min_child_weight – indicates the minimum number of 

observations in each leaf of the tree. The higher the weight, 

the more conservative the model - we need more weight to 

make a given division. 

‒ gamma – is responsible for reducing the losses required to 

create another leaf node. 

‒ seed – a seed that is used to generate random numbers. 
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Fig. 2. Flow chart of XGBoost 

 

 

2.3. Kriging method 
 

The Kriging method, having its origins in geostatics, can be 

defined as modelling of unknown function through the 

implementation of a random process [20]. Kriging is based on the 

idea that the value in a given point can be estimated on the basis of 

an average of known values in the neighbouring points, assuming 

that the influences of these points are proportional to the distance 

to the considered point. In other words, the approximation 

procedure has to follow the trends of the experimental data and the 

surrogate function should increase when such increase is expected 

for an increment of the variables. 

Suppose there is a dataset contains 𝑚 pairs of points {𝐱𝑖 , 𝑦𝑖}, 
where 𝐱𝑖 ∈ ℝ𝑛 and 𝑦𝑖 ∈ ℝ for 𝑖 = 1, . . . , 𝑚. Let the matrix 𝐗 =
[𝐱1 , … , 𝐱𝑚]T and the vector 𝐲 = [𝑦1, … , 𝑦𝑚]T. The data should 

satisfy the normalization conditions, i.e.: 

 

𝜇(𝐗:,𝑗) = 0, cov(𝐗:,𝑗, 𝐗:,𝑗) = 1 for 𝑗 = 1, . . . , 𝑛        (8) 

and 

𝜇(𝐗:,𝑗) = 0, cov(𝐗:,𝑗, 𝐗:,𝑗) = 1           (9) 

 

where X_(:,j) refers to the jth column of matrix X, μ and cov 

are mean and covariance, respectively. 

Before the Kriging model can be train using dataset, the 

regression and correlation models must be defined. 

As regression functions zero, first and second order 

polynomials are usually used. In case of zero order polynomial the 

number of regression functions is equal to p=1 and 

 

𝑟1(𝐱) = 1          (10) 

 

The number of regression functions for first order polynomial 

is equal to p=n+1 and they are defined by: 

 

𝑟1(𝐱) = 1

𝑟2(𝐱) = 𝑥1, … , 𝑟𝑛+1(𝐱) = 𝑥𝑛
        (11) 

 

When the second order polynomial is chosen the number of 

regression functions is p=(n+1)(n+2)⁄2 and they are given by 

equations: 

 

𝑟1(𝐱) = 1

𝑟2(𝐱) = 𝑥1, … , 𝑟𝑛+1(𝐱) = 𝑥𝑛

𝑟𝑛+2(𝐱) = 𝑥1
2, … , 𝑟2𝑛+1(𝐱) = 𝑥1𝑥𝑛

𝑟2𝑛+2(𝐱) = 𝑥2
2, … , 𝑟3𝑛(𝐱) = 𝑥2𝑥𝑛

… , 𝑟𝑝(𝐱) = 𝑥𝑛
2

  

           (12) 

For further purposes, let the vector r(x) and the matrix R be 

defined as follows: 

𝐫(𝐱) = [𝑟1(𝐱), 𝑟2(𝐱),… , 𝑟𝑝(𝐱)]
T

       (13) 

 

𝐑 = [𝐫(𝐱1), 𝐫(𝐱2),… , 𝐫(𝐱𝑚)]T        (14) 

 

The correlation function is defined by the equation: 

 

𝑐(𝛉, 𝐚, 𝐛) = ∏ 𝑐𝑖(𝜃𝑖, 𝑎𝑖 , 𝑏𝑖)
𝑛
𝑖=1         (15) 

 

where the one-dimensional correlation 𝑐𝑖(𝜃𝑖, 𝑎𝑖 , 𝑏𝑖) usually 

takes one of the following form: 

• exponential function 𝑐𝑖(𝜃𝑖, 𝑎𝑖, 𝑏𝑖) = exp(−𝜃𝑖|𝑎𝑖 −
𝑏𝑖|)           (16) 

• general exponential function 

𝑐𝑖(𝜃𝑖, 𝑎𝑖 , 𝑏𝑖) = exp(−𝜃𝑖|𝑎𝑖 − 𝑏𝑖|
𝜂), where 0<η≤2,

           (17) 

• Gauss function 

𝑐𝑖(𝜃𝑖, 𝑎𝑖 , 𝑏𝑖) = exp(−𝜃𝑖(𝑎𝑖 − 𝑏𝑖)
2)       (18) 

• linear function 

𝑐𝑖(𝜃𝑖, 𝑎𝑖 , 𝑏𝑖) = max{0, 1 − 𝜃𝑖|𝑎𝑖 − 𝑏𝑖|}      (19) 

• spherical function 

𝑐𝑖(𝜃𝑖, 𝑎𝑖 , 𝑏𝑖) = 1 − 1.5𝜉𝑖 + 0.5𝜉𝑖
3

, where 𝜉𝑖 =
min{1, 𝜃𝑖|𝑎𝑖 − 𝑏𝑖|},         (20) 

• spline function 
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𝑐𝑖(𝜃𝑖, 𝑎𝑖 , 𝑏𝑖) =

{

1 − 15𝜉𝑖
2 + 30𝜉𝑖

3 𝑓𝑜𝑟 0 ≤ 𝜉𝑖 ≤ 0.2

1.25(1 − 𝜉𝑖)
3 𝑓𝑜𝑟 0.2 < 𝜉𝑖 < 1

0 𝑓𝑜𝑟 𝜉𝑖 ≥ 1

 where 𝜉𝑖 =

𝜃𝑖|𝑎𝑖 − 𝑏𝑖|.           (21) 

 

Vector θ, which occurs in equations (16) – (21), is responsible 

for the rate of correlation descent. The higher value leads to faster 

decrease.  

Base on the correlation function (15) the vector c(x) and the 

matrix C are defined as follows 

𝐜(𝐱) = [𝑐(𝛉, 𝐱1, 𝐱), … , 𝑐(𝛉, 𝐱𝑚, 𝐱)]T,      (22) 

 

𝐂 = [𝑐𝑖,𝑗] = 𝑐(𝛉, 𝐱𝑖, 𝐱𝑗) for 𝑖, 𝑗 = 1,… ,𝑚.      (23) 

The Kriging model is created using a function g in the form: 

 

𝑦̂ = 𝑔(𝐱) = 𝐫(𝐱)T𝛃 + 𝐜(𝐱)T𝛄,        (24) 

 

where vectors r(x) and c(x) are given by equations (6) and (15), 

respectively, whereas vectors β and γ are established during the 

model training using the equations: 

 

𝛃 = (𝐑T𝐂−1𝐑)T𝐑T𝐂−1𝐲,        (25) 

 

𝐂𝛄 = 𝐲 − 𝐑𝛃,         (26) 
 

where matrixes R and C are defined by (13) and (23), 

respectively. 

Typically, Kriging models are fitted to the data that are 

obtained for larger experimental areas than the areas used in low-

order polynomial regression. 

Comparison of effectiveness of Kriging modelling technique 

with e.g. Artificial Neural Networks can be found in [19]. 

 

 

3. Results 
 

 

3.1. Classification 
 

As part of the research, the XGBoost algorithm was used to 

classify individual phases and predict the volume fraction of 

individual microstructure components. Calculations were made in 

Python using the following libraries: numpy, pandas, matplotlib, 

sklearn. 

The data set was divided into a training set and a test set using 

the train_test_split function in a ratio of 80 to 20. Chemical 

composition and casting wall thickness were assumed as 

explanatory variables. 

In the case of classification, the model was used with the 

default settings of hyperparameters. The only parameter that was 

set is the number of trees (n_estimators), which took the value of 

20. 

The results of the classification, in the form of a confusion 

matrix for the training and test sets, are shown in Fig. 3 and Fig. 4, 

respectively. 

 

 
Fig. 3. XGBoost – confusion matrix, training set 

 

 
Fig. 4. XGBoost – confusion matrix, testing set 

 

Analyzing the obtained results, it can be seen that in the case of 

the training set, the classifier classified correctly in most cases, only 

in the case of martensite there were two incorrect markings. In the 

case of the test set, however, the classifier achieved 100% accuracy. 

The importance of the predictors for the analyzed model is 

shown in Figure 5. Analyzing the graph shown in Figure 5, it can 

be seen that molybdenum and nickel have the greatest influence on 

the type of microstructure. The remaining elements and the wall 

thickness of the casting have only a small influence on the 

dependent variable. 

 

 

3.2. Prediction 
 

The research conducted consisted in the development of 

models to predict the volume fraction of each phase (ferrite, 

pearlite, carbides, martensite, ausferrite, austenite) based on the 

chemical composition and wall thickness of the casting. 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  2 3 ,  I s s u e  4 / 2 0 2 3 ,  2 2 - 3 3   27 

A total of 6 models were developed, one for each phase. The 

basic hyperparameters of the model (learning_rate, max_depth, 

n_estimators) were selected using the GridSearchCV function from 

the sklearn library. For each model, the hyperparameter search 

range was the same, as shown in Tab. 2. 

 

 
Fig. 5. Predictor importance (XGBoost) 

 

Table 2.  

Hyperparameter search range 
Hiperparameter Min Max Step 

learning_rate 0.01 0.11 0.02 

max_depth 3 10 1 

n_estimators 20 300 1 

 

The results of searching for hyperparameters with the use of 

GridSearchCV for each model are presented in Tab. 3. 

Table 3.  

Values of selected hyperparameters for individual models 
Hiperpara
meter 

model
_F 

model
_P 

model
_C 

model
_M 

model_
AF 

model
_A 

learning_r

ate 

0.09 0.09 0.09 0.05 0.9 0.7 

max_dept
h 

3 8 3 3 9 5 

n_estimato

rs 

298 140 290 240 160 260 

 

As part of the research, the evaluation of the tree learning was 

also analyzed for the selected learning_rate and max_deph 

parameters. Mean Absolute Error (MAE) was chosen as the quality 

of fit metric. The calculation results for ferrite, pearlite, carbides, 

martensite, ausferrite and atenite are shown in Fig. 6-11, 

respectively. In the plots, the results for the training set are marked 

in blue and the results for the test set are marked in orange. The 

gray line marks the optimal number of trees that was ultimately 

used in the model. 

The coefficient of determination (R2) was used to assess the 

quality of the models. The values of the R2 coefficient for the 

trained models for the test and training set are presented in Tab. 4. 

Analyzing the obtained results (Tab. 4), it can be seen that both 

for the training and test sets, very high determination coefficients 

were obtained. For most models, R2   was obtained at the level of 

0.99 for the training set, only the model predicting the share of 

ferrite obtained a slightly lower value. For the training set, most 

models predicted with an accuracy exceeding 0.95, only for the 

model predicting the share of carbides R^2=0.88 was obtained. 

 
Fig. 6. Change of the MAE error for successive trees for models 

predicting the volume fraction of ferrite 

 

 
Fig. 7. Change of the MAE error for successive trees for models 

predicting the volume fraction of perlite 
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Fig. 8. Change of the MAE error for successive trees for models 

predicting the volume fraction of carbides 

 

 
Fig. 9. Change of the MAE error for successive trees for models 

predicting the volume fraction of martensite 

 

 
Fig. 10. Change of the MAE error for successive trees for 

models predicting the volume fraction of ausferrite 

 

 
Fig. 11. Change of the MAE error for successive trees for 

models predicting the volume fraction of austenite. 

 

 

Table 4.  

Coefficients of determination of the developed models for the 

training and test sets 
Model 𝑹𝟐 train dataset 𝑹𝟐 test dataset 

model_F 0.99 0.95 

model_P 0.99 0.98 

model_C 0.99 0.98 

model_M 0.99 0.99 

model_AF 0.99 0.99 

model_A 0.99 0.98 

 

Table 5.  

Mean absolute error (MAE) of the developed models for the 

training and test sets  
Model MAE train dataset MAE test dataset 

model_F 0.64 1.89 

model_P 0.06 2.50 

model_C 1.87 3.63 

model_M 0.16 0.70 

model_AF 0.12 1.62 

model_A 0.01 0.57 

 

As part of the research, an attempt was also made to use one hot 

encoding to encode the CLASS variable and check the impact of 

this information on the quality of the models. The results of the 

coefficient of determination after this modification are presented in 

table 6. 

 

Table 6.  

Coefficients of determination of the developed models for the 

training and test sets after one hot encoding the CLASS variable 
Model 𝑹𝟐 train dataset 𝑹𝟐 test dataset 

model_F 0.999 0.969 

model_P 0.999 0.988 

model_C 0.996 0.831 

model_M 0.999 0.997 

model_AF 0.999 0.992 

model_A 0.999 0.993 
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3.3. Linear regression 
 

The linear regression model is the simplest one among the 

models which was built within the scope of this paper. The 

predicted value is the inner product of two vectors: 

 

ℎ𝜃(𝐱) = 𝛉𝑇𝐱           (27) 

where: 𝛉 – vector of model parameters, 𝐱 – vector of features 

(input of the model with added element 𝑥0 = 1). 

 

Due to the simplicity of equation 27 it is important to select the 

appropriate features from all accessible inputs. The modelled 

process has 9 inputs and 6 outputs. Five sets of the linear correlation 

coefficient was computed for all combination of inputs and outputs.  

 

 
Fig. 12. The correlation between inputs and outputs. 

 

The difference between the sets consisted in transforming the 

input values with a nonlinear function: 

• 𝑐𝑖,𝑗 = 𝑐𝑜𝑟(𝑦𝑖 , 𝑥𝑗), 𝑖 = 1,… ,6, 𝑗 = 1,… ,9 

• 𝑐𝑖,𝑗 = 𝑐𝑜𝑟(𝑦𝑖 , 𝑥𝑗
2), 𝑖 = 1,… ,6, 𝑗 = 1,… ,9, 

• 𝑐𝑖,𝑗 = 𝑐𝑜𝑟 (𝑦𝑖 , 𝑙𝑜𝑔(𝑥𝑗)) , 𝑖 = 1,… ,6, 𝑗 = 1,… ,9, 

• 𝑐𝑖,𝑗 = 𝑐𝑜𝑟 (𝑦𝑖 , 𝑒𝑥𝑝(𝑥𝑗)) , 𝑖 = 1,… ,6, 𝑗 = 1,… ,9, 

• 𝑐𝑖,𝑗 = 𝑐𝑜𝑟 (𝑦𝑖 , 𝑒𝑥𝑝(−𝑥𝑗)) , 𝑖 = 1,… ,6, 𝑗 = 1,… ,9. 

 

The values of coefficients 𝑐𝑖,𝑗  from sets were compared and, 

for each combination of 𝑖 = 1,… ,6, 𝑗 = 1,… ,9 the one with the 

higher absolute value was selected as the feature for linear 

regression model. The results are presented in the figure 12. 

After analyzing the first column in the figure 12, the feature 

vector for the first model (for prediction of the volume fraction of 

ferrite) was selected as follows: 

𝐱 =

[
 
 
 
 
 
 
 
 
 

𝑙𝑜𝑔(𝑥1)

𝑒𝑥𝑝(𝑥2)

𝑙𝑜𝑔(𝑥3)

𝑒𝑥𝑝(−𝑥4)

𝑒𝑥𝑝(−𝑥5)

𝑒𝑥𝑝(−𝑥6)
𝑥7

𝑒𝑥𝑝(−𝑥8)

𝑙𝑜𝑔(𝑥9) ]
 
 
 
 
 
 
 
 
 

          (28) 

 

The features vectors for the rest of the models were selected in 

the similar way. 

To take into account the bias and the interaction between values 

in vector 𝐱 (28) it was enlarged by value 𝑥0 = 1 and all 

combination of its elements, i.e. 𝑙𝑜𝑔(𝑥1) ∙ 𝑒𝑥𝑝(𝑥2), 𝑙𝑜𝑔(𝑥1) ∙
𝑙𝑜𝑔(𝑥3), … and to This results in the vector length equals to 46. 

To avoid overfitting problem, the regularization term was 

added to cost function which was used during the models training: 

 

𝐽(𝛉) =
1

2𝑚
∑ (ℎ𝜃(𝐱𝑖) − 𝑦𝑖)

2𝑚
𝑖=1 +

𝜆

2𝑚
∑ 𝜃𝑖

2𝑛
𝑖=1        (29) 
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where: 𝑚 is number of training data, 𝑛 is the length of feature 

vector, 𝜆 is regularization coefficient. 

The training was performed for different values of the 

regularization parameter 𝜆. The obtained learning curves are 

presented in the figures 13-18.  

 

 
Fig. 13. Learning curves obtained for the model_F. 

 

 
Fig. 14. Learning curves obtained for the model_P. 

 

 
Fig. 15. Learning curves obtained for the model_C. 

 

 
Fig. 16. Learning curves obtained for the model_M. 

 

 
Fig. 17. Learning curves obtained for the model_AF. 

 

 
Fig. 18. Learning curves obtained for the model_A. 

 

The obtained errors and coefficients of determination for all 

linear regression models are presented in tables 7 and 8. 

 

Table 7. 

Mean absolute error (MAE) of the developed linear regression 

models for the training and test sets  
Model MAE train dataset MAE test dataset 

model_F 3.13 4.13 

model_P 6.41 7.87 

model_C 3.83 4.95 

model_M 6.56 7.68 

model_AF 4.26 5.37 

model_A 1.59 2.08 
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Table 8. 

Coefficients of determination of the developed linear regression 

models for the training and test sets 
Model 𝑹𝟐 train dataset 𝑹𝟐 test dataset 

model_F 0.916 0.855 

model_P 0.931 0.903 

model_C 0.824 0.640 

model_M 0.684 0.537 

model_AF 0.975 0.957 

model_A 0.979 0.962 

 

 

3.4. Kriging model 
 

The Kriging model is a combination of linear regression 

functions and correlation functions (equation 23). Therefore, the 

input vector for this model was in the form presented by equation 

(28). It took into account the linear correlation analysis described 

in section 3.3, but was not enlarged by combination of its elements. 

Before training the set of regression and correlation function must 

be chosen. In case of regression function the decision was made to 

use the first order polynomials (equation 11). Selecting the zero 

order polynomials resulted in higher approximation error, while 

choosing the second order polynomials caused model to be too 

complicated to train using 200 training records (calculation became 

too ill conditioned). The training was performed using all 

correlation functions (equations 16-21). Tables 9 and 10 present the 

chosen correlation functions as well as mean absolute error and 

coefficient of determination. The error was calculated only for the 

test set, because kriging is an interpolation algorithm. 

 

Table 9.  

Mean absolute error (MAE) of the developed Kriging models for 

the test set  
Model Correlation function MAE test dataset 

model_F spherical function (20) 1.31 

model_P linear function (19) 3.84 

model_C spherical function (20) 4.63 

model_M general exponential 

function (17) 

0.97 

model_AF general exponential 

function (17) 

4.67 

model_A spline function (21) 0.24 

 

Table 10.  

Coefficients of determination of the developed Kriging models for 

test set 
Model Correlation function 𝑹𝟐 test dataset 

model_F spherical function (20) 0.99 

model_P linear function (19) 0.988 

model_C spherical function (20) 0.839 

model_M general exponential 

function (17) 

0.997 

model_AF general exponential 

function (17) 

0.984 

model_A spline function (21) 0.999 

 

 

 

 

3.5. Artificial neural networks 
 

The last model was built using the artificial neural networks 

(ANN). ANNs are built with a given number of artificial neurons 

which are arranged in three layers: input, hidden and output layers. 

The number of layers and number of neurons define the network 

topology. The number of hidden layers is usually not higher than 2. 

The number of neurons in input and output layer depends on the 

dimension of training data, while the number of neurons in hidden 

layer(s) is chosen before training. There is no method which would 

be able to determine the best networks topology. Therefore, the 

training of each network was performed 200 times. Each time the 

numbed of hidden layers (1 or 2) and the number of neurons (5-20) 

was selected randomly. The activation function in all neurons in 

input and hidden layers was sigmoid, while the activation function 

in neuron in output layer was linear. 

Due to nonlinearity of an activation functions of neurons in 

input and hidden layers, ANNs are able to learn any nonlinear 

relation. Therefore, there is no need to perform any correlation 

analysis (like it was done in case of linear regression model). The 

input values for all ANN models was original vector x (composed 

of chemical composition of the alloy and the casting wall thickness. 

The best topology of each network is presented in table 11, while 

the mean absolute error and coefficient of determination in tables 

12 and 13.  

 

Table 11.  

Topologies of the best networks  
Model Number of neurons is 

each layer 

Number of weight 

elements 

model_F 9-14-6-1 237 

model_P 9-11-1 122 

model_C 9-7-10-1 161 

model_M 9-14-10-1 301 

model_AF 9-13-12-1 311 

model_A 9-9-14-1 245 

 

Table 12.  

Mean absolute error (MAE) of the developed ANN models for the 

training and test sets  
Model MAE train dataset MAE test dataset 

model_F 1.09 1.86 

model_P 2.48 4.04 

model_C 1.65 2.11 

model_M 0.21 0.28 

model_AF 2.71 2.69 

model_A 0.08 0.09 

 

Table 13.  

Coefficients of determination of the developed ANN models for 

the training and test sets 
Model 𝑹𝟐 train dataset 𝑹𝟐 test dataset 

model_F 0.985 0.956 

model_P 0.986 0.959 

model_C 0.944 0.923 

model_M 0.998 0.999 

model_AF 0.972 0.995 

model_A 1 1 
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4. Discussion and summary 
 

The discussion focuses on the prediction of phase volume 

fractions in the microstructure of compacted graphite iron (CGI). 

Previous studies by the authors [15-18] have developed prediction 

models, particularly for ausferrite. In this study, the authors 

proposed a solution based on kirging and boosted trees to solve the 

problem of overfitting and extrapolation error in property 

modeling. In the second phase, the appropriate model of an 

Artificial Neural Network and linear regression has been developed 

to compare the results. This approach allows the use of relatively 

simple and interpretable models, resulting in an efficient 

architecture that allows fast and accurate assessment (especially the 

classification tree with XGBoost) of the future phase composition 

in the CGI microstructure. Figure 19 presents the comparison of the 

MEA (mean absolute error).  As expected, linear regression 

produced the worst results. The other algorithms oscillated around 

the error rate. None of the algorithms outperformed the others in 

any of the phases. While XGBoost was the most accurate in 

predicting pearlite and ausferrite, neural networks were the best at 

predicting carbides, martensite, and austenite. Kriging, on the other 

hand, was best for ferrite and very good for austenite. This 

juxtaposition shows another feature of the presented models, each 

of them has different advantages and their combined performance 

provides the analyst with the most new knowledge about the 

behavior and dependencies in the studied phenomena. 

 

 
Fig. 19. Compilation of the mean absolute error size for test sets 

for developed models for each phase (F- ferrite, P - pearlite, C - 

carbides, M - martensite, AF - ausferrite, A - austenite). 

 

The proposed solution combines the advantages of all those 

techniques, allowing easy interpretation of dependencies and 

accurate prediction. The presented methodology of data-driven 

modeling for the prediction of compacted graphite iron 

microstructure proved to be highly effective for the experimental 

data set. It improved the overall prediction of microstructure 

composition and facilitated chemical composition selection. The 

authors believe that as the training database grows with subsequent 

material experiments, this approach can be successfully applied to 

the design of new chemical compositions, potentially including 

other alloying additives.  
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