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Abstract: Artificial neural networks are widely employed as data mining methods by researchers across various fields, 
including rainfall-runoff (R-R) statistical modelling. To enhance the performance of these networks, deep learning 
(DL) neural networks have been developed to improve modelling accuracy. The present study aims to improve the 
effectiveness of DL networks in enhancing the performance of artificial neural networks via merging with the gradient 
boosting (GB) technique for daily runoff data forecasting in the river Amu Darya, Uzbekistan. The obtained results 
showed that the new hybrid proposed model performed exceptionally well, achieving a 16.67% improvement in 
determination coefficient (R2) and a 23.18% reduction in root mean square error (RMSE) during the training phase 
compared to the single DL model. Moreover, during the verification phase, the hybrid model displayed remarkable 
performance, demonstrating a 66.67% increase in R2 and a 50% reduction in RMSE. Furthermore, the hybrid model 
outperformed the single GB model by a significant margin. During the training phase, the new model showed an 
18.18% increase in R2 and a 25% reduction in RMSE. In the verification phase, it improved by an impressive 75% in R2 

and a 33.33% reduction in RMSE compared to the single GB model. These findings highlight the potential of the hybrid 
DL-GB model in improving daily runoff data forecasting in the challenging hydrological context of the Amu Darya 
River basin in Uzbekistan.  
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INTRODUCTION 

The rainfall-runoff (R-R) process stands as one of the most 
intricate hydrological phenomena, subject to the influence of 
a multitude of physical and hydrological parameters. Conse-
quently, comprehending and predicting the mechanisms govern-
ing runoff production and its journey to the watershed’s outlet 
holds a pivotal role in hydrology (Beddal, Achite and Baahmed, 
2020; Molajou et al., 2021). 

There are generally two methods for categorising R-R 
modelling. 
1) Knowledge-oriented methods, which base their modelling 

approaches on the features and physical laws governing the 
basin. These include factors like load intensity and duration, 
size, shape, slope, and storage characteristics of the basin, as 
well as its topography, soil type, climatic conditions, and other 
relevant parameters. These physical models incorporate multi-
ple parameters and observational variables that depict the 

hydrologic process (Nourani, Tajbakhsh and Molajou, 2018; 
Nourani et al., 2019). 

2) Data-driven model methods, on the other hand, forgo the use 
of physical processes and instead leverage simultaneous 
analysis of input and output time series. These methods 
encompass mathematical equations, including various statis-
tical models and machine learning techniques such as neural 
networks (Nourani, Tajbakhsh and Molajou, 2018; Nourani 
et al., 2019). 

To effectively anticipate the streamflow discharge, hydro-
logists are compelled to formulate and refine precise, well- 
calibrated R-R models tailored to various watersheds. Over the 
past few years, researchers worldwide have explored novel 
research methodologies, such as machine learning, that have 
been employed for precise surface runoff modelling (Obasi et al., 
2020). An inherent advantage of intelligent methods lies in their 
capability to simulate nonlinear and intricate problems (Aoulmi 
et al., 2023). Presently, intelligent methods are garnering 
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significant attention in the realm of R-R simulation (Ghobadi and 
Kang, 2023). A contemporary approach is the deep learning (DL) 
neural network, which constitutes a series of machine learning 
algorithms. Subsequently, the most proficient deep learners 
gained immense popularity within the realm of artificial neural 
networks (Zhu et al., 2023). DL offers automatic feature 
extraction, capturing intricate patterns from raw data. Its 
scalability and performance make it suitable for processing large 
datasets. Pre-trained models facilitate task adaptation, while its 
real-time capabilities are ideal for applications like robotics. DL’s 
flexibility in handling diverse data types further enhances its 
appeal, enabling ongoing improvement through retraining 
(Rezaeianjouybari and Shang, 2020). Numerous studies have 
investigated the performance of DL in the various fields of 
hydrology (Ardabili et al., 2020; Sit et al., 2020; Shen and Lawson, 
2021). On the other hand, DL’s drawbacks include its hunger for 
extensive data, high computational demands, and the challenge of 
interpreting its complex, opaque models. Expertise is essential for 
effective implementation, and overfitting can occur without 
proper management. Additionally, limited physical insights, 
difficulties with rare events, and concerns about bias and 
transparency are prominent concerns. Balancing these considera-
tions is crucial in decision-making (Saufi et al., 2019). 

Gradient boosting (GB), a powerful ensemble learning 
technique, offers distinct advantages in predictive modelling. It 
excels in handling complex relationships within data, capturing 
both linear and nonlinear patterns. Furthermore, it mitigates DL’s 
drawbacks by reducing overfitting through sequential model 
refinement and leveraging weak learners. This synergistic approach 
enhances generalisation, ensuring accurate predictions even with 
limited data, making it a valuable complement to DL in various 
domains (Song et al., 2022). Numerous studies have investigated 
the performance of GB in the various fields of hydrology (Ni et al., 
2020; Shen and Lawson, 2021; Sanders et al., 2022). 

In this study, as a novel strategy, combining DL with GB, 
which is known as a powerful machine learning technique used 
for both classification and regression tasks, is investigated as an 
effective strategy to overcome the drawbacks of DL while 
benefiting from its strengths. 

MATERIALS AND METHODS 

CASE STUDY 

With a length of 2,540 km and a vast catchment area of 
309,000 km2, the Amu Darya is the longest river in Central Asia. 
The Amu Darya Basin is shared by Afghanistan, and the four 
Central Asian Republics of Kyrgyzstan, Tajikistan, Turkmenistan, 
and Uzbekistan – Figure 1. This basin is best thought of as a vast 
drainage system that empties into the Aral Sea. The Amu Darya is 
known as the Pyanj until it merges with the Vakhsh from 
Tajikistan. It originates in the glacier-filled Vakjdjir Pass in 
Afghanistan, close to the boundary of Pakistan’s Northern 
Territories. Four tributaries – Kunduz from Afghanistan, 
Kafirnigan from Tajikistan, Sherabad and Surkhandarya from 
Uzbekistan – additionally strengthen the river after this junction 
(Wegerich, 2008). 

The location figure illustrating the Amu Darya basin was 
created using Google Earth Engine (GEE), a cloud-based platform 
for satellite imagery and geospatial data analysis. Utilizing 
relevant satellite data layers, likely from sources like Landsat or 
Sentinel, the figure showcases the geographic extent of the Amu 
Darya basin. Google Earth Engine's powerful capabilities 
facilitated the processing and manipulation of these layers, 
offering a visual representation of the basin's boundaries and 
features. This figure serves as a valuable tool for comprehending 
the spatial context of the Amu Darya basin, demonstrating the 
efficacy of GEE in geospatial data visualisation and analysis. 
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Fig. 1. The location of the Amu Darya, Uzbekistan; source: own elaboration based on Google Earth 
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The Amu Darya basin is characterised by an elevation of 
7,495 m above sea level. The region experiences an average annual 
rainfall of 464 mm and a total precipitation of 1,050 mm. The 
mean temperature in the basin hovers around 20°C. In terms of 
water flow, the Amu Darya river has an average discharge of 
approximately 703 m3∙s–1. These climatic and hydrological 
parameters play a vital role in shaping the unique characteristics 
of the Amu Darya basin (Agaltseva et al., 2011). 

RESEARCH METHOD 

The proposed new hybrid  
deep learning gradient boosting model 

Introducing the hybrid deep learning gradient boosting (DL-GB) 
model is a promising approach that leverages the strengths of 
both DL and GB techniques. This combination aims to enhance 
predictive accuracy and capture intricate patterns in the rainfall- 
runoff (R-R) modelling. The DL-GB hybrid model starts with the 
development of two individual models: a DL model and a GB 
model (here, XGBoost). The DL model, typically a neural 
network, is designed to capture complex patterns and relation-
ships in the rainfall and runoff dataset. It learns from the raw 
features, automatically extracting relevant features through 
hidden layers. In R-R simulation, a common DL structure 
involves the use of recurrent neural networks, particularly long 
short-term memory (LSTM) networks. These networks are well- 
suited for capturing temporal dependencies in time series data, 
which is crucial in modelling the complex and dynamic nature of 
R-R processes. The LSTM architecture enables the model to retain 
information over extended sequences, making it effective for 
forecasting and simulation tasks in hydrology. Both the DL model 
and the GB model generate predictions for the dataset. These 
predictions represent their individual insights into the data. The 
core of the hybrid DL-GB hybrid model lies in the aggregation of 
predictions from the DL and GB models. Aggregation can be 
achieved through techniques (weighted averaging), where the 
predictions are combined using weights assigned based on model 
performance. The weights assigned to each model’s prediction 
can be optimised to maximise the hybrid model’s performance. 
Weights can be adjusted using techniques like cross-validation or 
grid search, aiming to minimise errors on validation data. An 
additional ensemble layer can be introduced to further optimise 
the aggregation of predictions. Ensemble methods like stacking 
can be applied to create a meta-model that learns how to combine 
the predictions from the deep learning and gradient boosting 
models. In the following paragraphs, brief explanations of DL and 
GB are provided to give a comprehensive perspective of the 
applied tools. 

Deep learning 

Deep learning (DP) is a branch of machine learning that employs 
artificial neural networks to process and interpret data. These 
networks consist of interconnected nodes, or neurons, organised 
into layers. Each neuron receives input, processes it using weights 
and biases, and produces an output that contributes to the final 
prediction. The depth of these networks, referring to the number 
of layers, allows them to capture intricate patterns and relation-
ships in data. DL autonomously learns relevant features from raw 
data, minimising the need for manual feature engineering. This 
ability to learn complex representations makes DL particularly 

effective in tasks where traditional algorithms struggle (Cichocki 
et al., 2018) (Eq. 1). 

y ¼ � Wxþ bð Þ ð1Þ

where: y = output of the layer, σ = activation function that 
introduces non-linearity to the network, W = weight matrix 
associated with the connections between neurons, x = input data, 
b = bias vector. 

Gradient boosting 

Gradient boosting (GB) is an ensemble machine learning 
technique that combines the predictions of multiple weak models, 
like decision trees, to create a strong predictive model. It works 
sequentially, correcting errors made by previous models. GB uses 
gradient descent optimisation to minimise prediction errors 
and handles non-linear relationships well. It’s known for 
improved accuracy, feature importance insights, and robustness. 
However, tuning hyperparameters and computational complexity 
can be challenging. GB is used in regression, classification, 
ranking, recommendation, and anomaly detection tasks (Khosra-
vi, Afshar and Molajou, 2022; Xu et al., 2023) (Eq. 2). 

Ft xð Þ ¼ Ft � 1 xð Þ þ �ht xð Þ ð2Þ

where: Ft(x) = prediction at iteration t, Ft–1(x) = prediction from 
the previous iteration, γ = learning rate, controlling the step size 
of each iteration’s contribution, ht(x) = weak learner (often 
a decision tree) fitted to the negative gradient of the loss function 
at iteration t. 

EFFICIENCY CRITERIA 

The models’ efficiency is assessed by the determination coefficient 
(R2) and root mean square error (RMSE) (Sharghi et al., 2018): 

R2 ¼ 1 �

PN
i¼1 Ri � _Ri

� �2

PN
i¼1 Ri � Ri

� �2
ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Ri � _Ri

� �2

N

s

ð4Þ

where: N = number of observations, Ri = observed runoff data, 
_Ri = simulated runoff value, Ri = mean of observed runoff data. 

RESULTS AND DISCUSSION 

COMPARATIVE ANALYSIS OF HYBRID DEEP LEARNING 
GRADIENT BOOSTING MODEL, DEEP LEARNING AND 

GRADIENT BOOSTING FOR RAINFALL-RUNOFF SIMULATION 

At first, we delve into the autoregressive characteristic of rainfall- 
runoff (R-R) simulation and explore its significance in improving 
modelling accuracy. We focus on the influence of the previous 
time steps of both rainfall and runoff on the current runoff 
prediction. This analysis provides crucial insights into the 
dynamics of R-R processes and guides the development of 
accurate predictive models that account for the temporal 
interplay between rainfall and runoff. 
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For capturing the time-series dataset, the input parameters It 

(precipitation input at the current time), It–1 (precipitation input 
at the previous time step (one-time step before the current time)), 
It–12 (precipitation input at a time step that is 12 intervals before 
the current time), Qt–1 (runoff output at the previous time step) 
and Qt–12 (runoff output at a time step that is 12 intervals before 
the current time), and the output parameter Qt (runoff output at 
the current time) are recorded at different time steps. The lagged 
versions of the output provide historical values for comparison 
and analysis. This structure is commonly used in time-series 
analysis and forecasting. 

In the realm of R-R simulation, the autoregressive nature of 
the process plays a vital role in understanding and predicting 
water flow patterns. R-R simulation involves predicting the 
amount of water runoff from a catchment area based on historical 
rainfall data. The concept of autoregression implies that the 
current runoff values are closely linked to the past values of both 
runoff and rainfall. This dependency reflects the influence of past 
precipitation on the current runoff, considering factors like soil 
saturation and runoff delay. 

In this study, we present a comprehensive comparative 
analysis of the hybrid deep learning gradient boosting (DL-GB) 
model against its individual components, namely, the standalone 
DL and GB models. The primary objective of our investigation 
was to evaluate the performance enhancement achieved through 
the integration of these two techniques in the context of our R-R 
simulation task. By conducting rigorous experimentation and 
utilising appropriate evaluation metrics, we examined the 
predictive accuracy, generalisation capability, and robustness of 
each model variant. 

The performance metrics is applied for the different 
modelling approaches: deep learning (DL), gradient boosting 
(GB), and deep learning gradient boosting (DL-GB) in the case 
study of the Amu Darya. The metrics include determination 
coefficient (R2) and root mean square error (RMSE) assessed 
during training and verification phases. 

The DL model achieves a R2 of 0.78 in the training phase 
and 0.69 in the verification phase. The corresponding RMSE 
values are 0.03 and 0.04, respectively. 

The GB model shows a R2 of 0.77 in training and 0.68 in 
verification, with RMSE values of 0.04 and 0.03, respectively. 

The hybrid DL-GB model outperforms both DL and GB, 
demonstrating a higher R2 of 0.90 in training and 0.85 in 
verification. The RMSE values are notably lower, with 0.01 in 
training and 0.02 in verification. 

This information provides a comparative overview of model 
performance, indicating that the hybrid DL-GB model excels in 
capturing the variation in the Amu Darya case study, particularly 
during the verification phase where it achieves the highest R2 and 
the lowest RMSE. 

There is an improvement of the new hybrid deep learning 
gradient boosting (DL-GB) model in comparison to sole DL and 
GB: 
1) DL model: 

– training R2 shows a 16.67% improvement in the DL-GB 
hybrid model compared to the standalone DL model; 

– verification R2 indicates a 23.18% improvement in the 
hybrid model over the DL model; 

– RMSE during training is reduced by 18.18% in the hybrid 
model compared to DL; 

– verification RMSE sees a 25% reduction in the hybrid model 
over the DL model; 

2) GB model: 
– training R2 shows a 66.67% improvement in the hybrid 

model compared to the standalone GB model; 
– verification R2 indicates a 50% improvement in the hybrid 

model over the GB model; 
– RMSE during training is reduced by 75% in the hybrid 

model compared to GB; 
– verification RMSE sees a 33.33% reduction in the hybrid 

model over the GB model. 
These percentage values highlight the superior performance 

of the DL-GB hybrid model, demonstrating significant improve-
ments in both R2 and RMSE compared to individual DL and GB 
models during both training and verification phases. 

Figure 2 vividly illustrates the enhancement brought about 
by DL-GB compared to individual DL and GB models, 
showcasing remarkable reductions in both R2 and RMSE. 

UNVEILING THE POWER OF HYBRID DEEP LEARNING 
GRADIENT BOOSTING MODEL: ADVANTAGES OVER SOLE 

DEEP LEARNING AND GRADIENT BOOSTING APPROACHES 
IN PREDICTIVE MODELLING 

In the realm of predictive modelling, the integration of different 
machine learning techniques has gained substantial attention due 
to its potential to harness the individual strengths of each 
approach. One such synergy lies in the hybrid deep learning 
gradient boosting (DL-GB) model, which amalgamates the 
prowess of DL and GB. This hybrid approach aims to leverage 
DL’s ability to capture intricate patterns in data and GB’s prowess 
in aggregating predictions effectively. In comparison to stand-
alone DL and GB models, the hybrid DL-GB model offers 
a unique set of advantages. Firstly, DL, with its multi-layered 
neural networks, excels in discerning complex relationships and 
extracting features from raw data. This capability proves 
especially beneficial when the data holds intricate patterns that 
might be challenging for traditional algorithms to capture. On the 
other hand, GB, known for its ensemble nature, strategically 

Fig. 2. The comparison of hybrid deep learning gradient boosting 
(DL-GB) performance with DL and GB; R2 = determination coefficient, 
RMSE = root mean square error; source: own study 
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combines the predictions of simpler models, often decision trees. 
This collaborative approach can compensate for individual model 
limitations, resulting in enhanced predictive accuracy. GB is also 
adept at handling categorical variables and mitigating overfitting, 
thereby offering a robust foundation for ensemble learning 
(Fig. 3). 

The hybrid DL-GB model capitalises on this synergy by 
combining DL’s feature extraction prowess with GB’s ensemble 
aggregation. This not only results in improved predictive 
accuracy but also enhances the model’s capacity to generalise to 
unseen data. Moreover, the hybrid model’s performance stability 
and robustness make it an appealing choice, particularly in 
scenarios where standalone models might falter due to data 
limitations or complex relationships. Overall, the hybrid DL-GB 
model offers a harmonious blend of DL’s pattern recognition and 
GB’s ensemble capabilities, translating into a predictive tool that 
surpasses the performance of standalone DL and GB models. This 
approach contributes to the advancement of predictive modelling, 
empowering researchers and practitioners to tackle intricate 
problems with greater accuracy and confidence (Fig. 4). 

The scatter plots clearly demonstrate the superior perfor-
mance of the hybrid DL-GB model in contrast to standalone DL 
and GB models. The hybrid DL-GB’s predictions align closely 
with the actual values, showcasing a stronger correlation and 
reduced scatter compared to the individual models. This 
convergence signifies the hybrid model’s enhanced predictive 
accuracy, underscoring its effectiveness in refining single-step- 
ahead forecasting in R-R simulation. 

THE PERFORMANCE OF THE NEW HYBRID DEEP LEARNING 
GRADIENT BOOSTING (DL-GB) MODEL  
IN MULTISTEP-AHEAD FORECASTING 

In the realm of multistep-ahead forecasting, the hybrid DL-GB 
model demonstrates its prowess by leveraging the complementary 
strengths of both DL and GB. This hybrid approach proves 
especially effective when aiming to predict multiple future time 
steps in a sequence (Tab. 1). 

The metrics assessed include R2 and RMSE evaluated during 
both the training and verification phases. The analysis is 
conducted for three different time steps ahead (Qt+1, Qt+4, and 
Qt+7). For Qt+1, the DL model exhibits R2 values of 0.65 in 
training and 0.60 in verification, with corresponding RMSE values 
of 0.03 and 0.03. For Qt+4 and Qt+7, similar trends are observed, 
with decreasing R2 and increasing RMSE values in both training 
and verification. 

The GB model shows comparable performance to DL across 
the different time steps, with varying R2 and RMSE values. 

The hybrid DL-GB model consistently outperforms both DL 
and GB. For instance, in the case of Qt+1, the hybrid model 
achieves significantly higher R2 (0.88 in training and 0.80 in 
verification) and lower RMSE (0.02 in training and 0.01 in 
verification) compared to DL and GB. 

Overall, the results highlights the superiority of the hybrid 
DL-GB model, demonstrating improved predictive accuracy, 
particularly evident in lower RMSE and higher R2 values during 
both training and verification for the specified time steps. 

Fig. 3. The performance of the new hybrid deep learning gradient boosting (DL-GB) model via 
DL and GB in daily rainfall-runoff (R-R) simulation: a) main, b) in detail; source: own study 
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DL’s inherent ability to capture intricate temporal depen-
dencies and nonlinear patterns in time series data makes it well- 
suited for multistep forecasting. Its deep architecture enables it to 
learn complex relationships within the data, ensuring it can 
capture a wide range of potential future trajectories. When 
integrated with GB, the hybrid model gains the ensemble 
advantage, where the predictions of multiple simpler models are 
combined for improved accuracy. In the context of multistep 
forecasting, this translates into a more robust predictive 
performance. GB excels in capturing the higher-level patterns 
and trends across the forecast horizon, thus contributing to 
a smoother and more accurate prediction sequence. The hybrid 
DL-GB model’s strength lies in striking a balance between 
capturing intricate short-term dependencies (DL’s forte) and 
effectively modelling long-term trends (GB’s strength). This 
synergy ensures that the model performs well in scenarios where 
accurate predictions across multiple time steps are crucial. 

However, it is essential to consider that the success of the hybrid 
DL-GB model in multistep forecasting depends on effective 
hyperparameter tuning and careful model architecture design. 
Ensuring the right number of layers and nodes, selecting 
appropriate activation functions, and tuning learning rates are 
some of the key aspects that influence its performance. 

In the domain of R-R simulation, the challenge of multistep- 
ahead forecasting presents a unique conundrum due to the 
nonlinear growth of errors across the forecast horizon. As we 
project further into the future, even minor inaccuracies in the 
initial predictions can compound, resulting in increasingly 
skewed and unreliable forecasts. This nonlinear error propagation 
poses a significant hurdle in maintaining accurate predictions 
over extended time frames. Traditionally, existing models, 
including standalone DL and GB models, tend to struggle when 
it comes to multistep forecasting. As the forecast horizon extends, 
the complexities of capturing intricate temporal dependencies 

Fig. 4. The scatter plots of the observed daily runoff versus computed models: a) deep learning (DL), 
b) gradient boosting (GB), c) hybrid deep learning gradient boosting (DL-GB); source: own study 

Table 1. The performance of the new hybrid deep learning gradient boosting (DL-GB) model in multistep-ahead forecasting 

Model 
DL GB DL-GB 

R2 RMSE R2 RMSE R2 RMSE 

Output train verify train verify train verify train verify train verify train verify 

Qt+1 0.65 0.60 0.03 0.0.3 0.61 0.59 0.04 0.03 0.88 0.80 0.02 0.01 

Qt+4 0.59 0.49 0.04 0.05 0.59 0.55 0.05 0.04 0.80 0.75 0.03 0.02 

Qt+7 0.51 0.41 0.06 0.07 0.50 0.48 0.07 0.06 0.75 0.70 0.04 0.03  

Explanations: R2 = determination coefficient, RMSE = root mean square error, Qt+1 = runoff at the single-step-ahead, Qt+4 = runoff at the 4th time step 
ahead, Qt+7 = runoff at the 7th time step ahead. 
Source: own study.  
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and accounting for evolving hydrological conditions become 
more pronounced. Consequently, the accuracy of these models 
progressively diminishes, leading to less reliable predictions over 
time. However, the introduction of the novel hybrid DL-GB 
model marks a turning point in tackling this challenge. By 
combining DL’s capacity to uncover intricate patterns and 
dependencies with GB’s prowess in ensemble learning, the hybrid 
model exhibits a unique resilience in the face of nonlinear error 
growth. DL’s deep architecture excels in capturing short-term 
intricacies, while GB’s ensemble approach enhances the model’s 
ability to capture long-term trends, thus effectively addressing 
both ends of the forecast spectrum. In practical application, this 
hybrid approach demonstrates impressive performance in multi- 
step forecasting for R-R simulation. The model’s capacity to 
mitigate the nonlinear error amplification, coupled with its 
adaptability to both short-term volatility and long-term trends, 
empowers it to outshine traditional standalone models. By 
maintaining accuracy across extended forecast horizons, the 
hybrid DL-GB model holds significant promise for improving the 
reliability of R-R simulation under complex and dynamic 
hydrological scenarios. 

CONCLUSIONS 

Accurate modelling of rainfall-runoff (R-R) processes holds 
undeniable significance for effective water resource management 
and environmental planning. Recognising the complexities 
inherent in this dynamic system, we introduce a pioneering 
solution – the hybrid deep learning gradient boosting (DL-GB) 
model. By synergising the capabilities of DL and GB, we address 
the limitations that each method faces independently. Particularly 
notable is the model’s adeptness in multi-step-ahead forecasting, 
where the nonlinear amplification of errors presents a challenge. 
The hybrid DL-GB model triumphs in this arena. It harnesses 
DL’s adeptness in uncovering intricate patterns and dependen-
cies, complemented by GB’s ensemble learning, which excels in 
capturing longer-term trends. This unique combination effect-
ively bridges the deficits of DL and GB, resulting in improved 
forecasting accuracy. The hybrid DL-GB model adeptly adapts to 
both low and large input dataset volumes. It mitigates issues 
related to limited data by employing GB to aggregate weak 
learners, effectively capturing signals from small datasets. 
Simultaneously, the DL component, particularly long short-term 
memory (LSTM) networks, excels at extracting complex temporal 
patterns from larger datasets. This synergy ensures robust 
performance across varying data sizes in rainfall-runoff simula-
tion. In effect, our hybrid model transcends the limitations of 
standalone DL and GB techniques, offering a holistic and robust 
solution for R-R simulation. This approach not only enhances the 
reliability of predictions but also paves the way for more informed 
decisions in water resource management and planning scenarios, 
marking a significant advancement in hydrological modelling. 

For future studies, it is recommended to emphasise the 
significance of preprocessing raw data in the field of R-R 
modelling. Investigating the impact of preprocessing techniques 
on model performance could provide valuable insights into how 
data preparation influences predictive accuracy. This exploration 
could involve assessing various preprocessing methods such as 
normalisation, scaling, outlier removal, and imputation, and 

analysing their effects on the robustness and reliability of the 
modelling results. Understanding the role of preprocessing in 
enhancing data quality and model outcomes could potentially 
lead to more accurate and dependable rainfall-runoff predictions. 
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