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Stability of convex linear combinations
of continuous-time and discrete-time linear systems

Tadeusz KACZOREKo

The asymptotic stability of the convex linear combination of continuous-time and discrete-
time linear systems is considered. Using the Gershgorin theorem it is shown that the convex
linear combination of the linear asymptotically stable continuous-time and discretetime linear
systems is also asymptotically stable. It is shown that the above thesis is also valid (even simpler)
for positive linear systems.

Key words: convex linear combination, linear system, continuous-time, discrete-time, pos-
itive, system, stability

1. Introduction

It is well-known that [1, 2, 5–14, 19] the dynamical properties of the linear
systems essentially depend on the location of their poles and zeros in the complex
plane. There exist many methods of the assignment of the poles and zeros in the
continuous-time and discretetime linear systems [1, 2, 5–10,14, 19].
A special class of dynamical systems are the positive systems. A dynami-

cal system is called positive if its state variables and outputs take nonnegative
values for any nonnegative inputs and nonnegative initial conditions [2, 6, 7, 9].
Models having positive behavior can be found in engineering, electrical circuits,
economics, social sciences, biology medicine etc.
It is well-known [1,2,5,9,17,18] that if the pair (𝐴, 𝐵) of the linear systems is

controllable then using the state feedback we may assign the poles of the closed-
loop systems in the desired state positions. In single-input single-output linear
systems by the use of the state feedbacks we may modify the positions only of
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its poles [2, 7, 9]. In multi-inputs multi-outputs linear systems by the use of the
state feedbacks we may also modify the positions of the zeros of their transfer
matrices. Practical stability, asymptotical stability and robust stability have been
investigated in [15, 16]. Stabilization of descriptor fractional continuous-time
and discrete-time systems have been analyzed in [17, 18] and global stability of
nonlinear feedback systems with fractional positive linear parts in [4].
In this paper the stability of the convex linear combination of continuous-time

and discrete-time linear system will be investigated.
The paper is organized as follows. In Section 2 the Geshgorin theorem is

applied to analysis of the asymptotic stability of continuous-time and discrete-
time linear systems and some its extension is proposed. The main results of
the paper for continuous-time linear systems are given in Section 3 and for
the discrete-time linear systems in Section 4. The results for the positive linear
systems are extended in Section 5. Concluding remarks are given in Section 6.
The following notations will be used:< – the set of real numbers,<𝑛×𝑚 – the

set of 𝑛×𝑚 real matrices,<𝑛×𝑚
+ – the set of 𝑛×𝑚 real matrices with nonnegative

entries and<𝑛
+ = <𝑛×1

+ , 𝐼𝑛 – the 𝑛 × 𝑛 identity matrix.

2. Gershgorin theorem and its application to stability of linear systems

Consider the autonomous continuous-time linear system

¤𝑥(𝑡) = 𝐴𝑥(𝑡), (1a)

where 𝑥(𝑡) ∈ <𝑛 is the state vector and

𝐴 =


𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎𝑛1 . . . 𝑎𝑛𝑛

 ∈ <𝑛×𝑛 (1b)

is the state matrix.
The system (1) is called asymptotically stable if lim

𝑡→∞
𝑥(𝑡) = 0 for all initial

conditions 𝑥(0) ∈ <𝑛.

Theorem 1 The system (1) is asymptotically stable if and only if Re 𝑠𝑙 < 0 for
𝑙 = 1, . . . , 𝑛 where 𝑠𝑙 are the eigenvalues of the matrix (1b).

Note that
|𝑠 − 𝑎𝑖𝑖 | ¬ 𝑅𝑖 , (2a)

where
𝑅𝑖 =

∑︁
𝑗=1
𝑗≠𝑖

|𝑎𝑖 𝑗 |, 𝑖 = 1, . . . , 𝑛 (2b)



STABILITY OF CONVEX LINEAR COMBINATIONS OF CONTINUOUS-TIME
AND DISCRETE-TIME LINEAR SYSTEMS 791

defines in the complex plane of 𝑠 the circles 𝐶𝑖, 𝑖 = 1, . . . , 𝑛 with the centers
located in the points 𝑠 = 𝑎𝑖𝑖 and the radiuses 𝑅𝑖. In similar way we may define
the circles 𝐶′

𝑗
, 𝑗 = 1, . . . , 𝑛 with the centers in the points 𝑠 = 𝑎𝑖𝑖 and the radiuses

𝑅′
𝑗 =

∑︁
𝑖=1
𝑖≠ 𝑗

|𝑎𝑖 𝑗 |, 𝑗 = 1, . . . , 𝑛 (2c)

Gershgorin Theorem. The eigenvalues of the matrix (1b) are located inside
circles defined by (2).
Using Gershgorin theorem it is easy to prove the following theorem [3].

Theorem 2 The linear continuous-time system (1) is asymptotically stable if all
the circles 𝐶𝑖, 𝑖 = 1, . . . , 𝑛 and 𝐶′

𝑗
, 𝑗 = 1, . . . , 𝑛 are located in the left-hand part

of the complex plane of 𝑠.
Consider the two similar matrices 𝐴 ∈ <𝑛×𝑛 and

𝐴 = 𝐷 𝐴 𝐷−1 , (3a)

where
𝐷 = diag

[
𝑑1, . . . , 𝑑𝑛

]
, 𝑑𝑖 ≠ 0, 𝑖 = 1, . . . , 𝑛. (3b)

The matrices 𝐴 and 𝐴 have the same eigenvalues 𝜆1, . . . , 𝜆𝑛 since

det
[
𝐼𝑛𝑠 − 𝐴

]
= det

[
𝐷 𝐷−1𝑠 − 𝐷 𝐴 𝐷−1]

= det𝐷 det[𝐼𝑛𝑠 − 𝐴] det𝐷−1 = det[𝐼𝑛𝑠 − 𝐴] . (4)

Note that

𝐴 = diag
[
𝑑1, . . . , 𝑑𝑛

] 
𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎𝑛1 . . . 𝑎𝑛𝑛

 diag
[
𝑑−11 , . . . , 𝑑−1𝑛

]

=



𝑎11 𝑎12
𝑑1

𝑑2
. . . 𝑎1𝑛

𝑑1

𝑑𝑛

𝑎21
𝑑2

𝑑1
𝑎22 . . . 𝑎2𝑛

𝑑2

𝑑𝑛
...

...
. . .

...

𝑎𝑛1
𝑑𝑛

𝑑1
𝑎𝑛2

𝑑𝑛

𝑑2
. . . 𝑎𝑛𝑛


. (5)

Now let us consider the Metzler matrix

𝐴 = 𝐴1 + 𝑘𝐴2 ∈ 𝑀𝑛 , (6)

where 𝐴1 ∈ 𝑀𝑛, 𝐴2 ∈ <𝑛×𝑛 and 𝑘 > 0 is a scalar.
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Knowing the matrices 𝐴1 and 𝐴2 find a nonsingular matrix 𝐷 such that the
scalar 𝑘 takes the maximal value 𝑘max > 0 for which the matrix

𝐴 = 𝐷 𝐴 𝐷−1 = 𝐷 (𝐴1 + 𝑘𝐴2)𝐷−1 = 𝐷 𝐴1𝐷
−1 + 𝑘𝐷 𝐴2𝐷

−1 (7)

is asymptotically stable.
To find the 𝑘max the following theorem can be used.

Theorem 3 The positive system (1) is asymptotically stable if the sum of entries
of each column (row) of the matrix 𝐴 is negative.

Example 1 Consider the matrix (6) for

𝐴1 =

[
−3 1
2 −4

]
, 𝐴2 =

[
0.2 0.3
0.3 0.4

]
. (8)

In this case the matrix (6) has the form

𝐴 = 𝐴1 + 𝑘𝐴2 =

[
−3 + 0.2𝑘 1 + 0.3𝑘
2 + 0.3𝑘 −4 + 0.4𝑘

]
(9)

and using Theorem 3 we obtain for columns:
column 1: −1 + 0.5𝑘 < 0 → 𝑘 < 2, column 2: −3 + 0.7𝑘 < 0 → 𝑘 < 4.286

and for rows:
row 1: −2 + 0.5𝑘 < 0→ 𝑘 < 4, row 2: −2 + 0.7𝑘 < 0→ 𝑘 < 2.857.

Therefore, 𝑘max for which the matrix (9) is asymptotically stable is 𝑘max < 2.
If we apply the approach based on the matrix 𝐷 = diag[𝑑1, 𝑑2] then we obtain

𝐴 = 𝐷 (𝐴1 + 𝑘𝐴2)𝐷−1 =

[
𝑑1 0
0 𝑑2

] [
−3 + 0.2𝑘 1 + 0.3𝑘
2 + 0.3𝑘 −4 + 0.4𝑘

] [
𝑑1 0
0 𝑑2

]−1
=


−3 + 0.2𝑘 (1 + 0.3𝑘) 𝑑1

𝑑2

(2 + 0.3𝑘) 𝑑2
𝑑1

−4 + 0.4𝑘

 . (10)

Using Theorem 3 we obtain for example for 𝑑1 = 0.8, 𝑑2 = 0.6 for

column 1: −3 + 0.2𝑘 + (2 + 0.3𝑘) 𝑑2
𝑑1

< 0 → 𝑘 < 3.329,

column 2: −4 + 0.4𝑘 + (1 + 0.3𝑘) 𝑑1
𝑑2

< 0 → 𝑘 < 3.333 for

row 1: −3 + 0.2𝑘 + (1 + 0.3𝑘) 𝑑1
𝑑2

< 0 → 𝑘 < 2.778,

row 2: −4 + 0.4𝑘 + (2 + 0.3𝑘) 𝑑2
𝑑1

< 0 → 𝑘 < 4.
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Therefore, in this case the matrix (10) is asymptotically stable for 𝑘max < 2.778.
In general case applying the known optimization methods we may find 𝑘max

for systems with some additional restrictions on the stability of the systems.
Now let us consider the autonomous discrete-time linear system

𝑥𝑘+1 = 𝐴𝑥𝑘 , 𝑘 = 0, 1, . . . , (11)

where 𝑥𝑘 ∈ <𝑛 is the state vector and 𝐴 ∈ <𝑛×𝑛 is the state matrix.
The discrete-time system (11) is called asymptotically stable if lim

𝑘→1
𝑥𝑘 = 0 for

all initial conditions 𝑥0 ∈ <𝑛.
Theorem 4 [1, 5, 10] The discrete-time system (11) is asymptotically stable if
and only if |𝑧𝑙 | < 1 for 𝑙 = 1, . . . , 𝑛 where 𝑧𝑙 are the eigenvalues of the matrix 𝐴

of the system.
In a similar way for the discrete-time system we may also defined in the complex
plane 𝑧 the circles 𝐶𝑖 and 𝐶

′
𝑗 .

Theorem 5 The linear discrete-time system (11) is asymptotically stable if all
the circles 𝐶𝑖 and 𝐶

′
𝑗 are located inside the unit circle (with the center in the

point (0, 0) and radius equal 1).
Note that the considerations can be extended to continuous-time bounded linear
systems.

3. Convex linear combinations of continuous-time linear systems

Consider the pair of real matrices of the same dimension
𝐴1, 𝐴2 ∈ <𝑛×𝑛 (12a)

and the real number 𝑞 satisfying the condition
0 ¬ 𝑞 ¬ 1. (12b)

Definition 1 The real matrix
𝐴(𝑞) = (1 − 𝑞)𝐴1 + 𝑞𝐴2 , (13)

where 𝑞 satisfies the condition (12b), is called the convex linear combination of
the matrices (12a).

Theorem 6 The convex linear combination (13) of the asymptotic stable matri-
ces (12a) is also asymptotically stable matrix for all value of 𝑞 satisfying the
condition (12b).
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Proof. By Gershgorin Theorem the circles corresponding to all values of 𝑞
satisfying the condition (12b) are located between the circle corresponding to
𝑞 = 0 and to the circle corresponding to 𝑞 = 1. By assumption the circles
corresponding to 𝑞 = 0 and to 𝑞 = 1 are located in the left-hand side of the
complex plane since the matrices (12a) are asymptotically stable. Therefore,
the convex linear combination (13) is asymptotically stable for all values of 𝑞
satisfying the condition (12b). 2

Example 2 Consider the convex linear combination of the asymptotically stable
matrices

𝐴1 =

[
−3 −2
1 −3

]
, 𝐴2 =

[
−3 −2
−2 −4

]
. (14)

The convex linear combination of the matrices (14) for 𝑞 = 0.4 has the form

𝐴(0.4) = (1 − 0.4)𝐴1 + 0.4𝐴2 = 0.6
[
−3 | − 2|
1 −3

]
+ 0.4

[
−3 | − 2|
| − 2| −4

]
=

[
−3 2
1.4 −3.4

]
. (15)

The circle corresponding to the matrix (15) is located in the left-hand side of the
complex plane (Fig. 1). The matrix (15) is asymptotically stable.

𝐶𝑟1, 𝐶𝑟2 – circle related to row 1 (centre (−3, 0) radius 2) and row 2 (centre
(−3.4, 0) radius 1.4) of the matrix 𝐴 respectively; 𝐶𝑐1, 𝐶𝑐2 – circle related to
column 1 (centre (−3, 0) radius 1.4) and column 2 (centre (−3.4, 0) radius 2) of
the matrix 𝐴 respectively.

Figure 1: Illustration to Example 2



STABILITY OF CONVEX LINEAR COMBINATIONS OF CONTINUOUS-TIME
AND DISCRETE-TIME LINEAR SYSTEMS 795

4. Convex linear combinations of discrete-time linear systems

The convex linear combination of two matrices of discrete-time linear sys-
tem (11) is defined in a similar way as for continuous-time linear systems.

Definition 2 The real matrix

𝐴(𝑞) = (1 − 𝑞)𝐴1 + 𝑞𝐴2 (16a)

is called the convex linear combination of the matrices

𝐴1, 𝐴2 ∈ <𝑛×𝑛 , (16b)

where 𝑞 satisfies the condition (12b).

Theorem 7 The convex linear combination (16) of the asymptotically stable
matrices (16b) is also asymptotically stable matrix for all values of 𝑞 satisfying
the condition (12b).

Proof is similar to the proof of Theorem 6.

Example 3 Consider the convex linear combination of the asymptotically stable
matrices

𝐴1 =

[
0.4 0.3
−0.2 0.5

]
, 𝐴2 =

[
0.5 −0.3
−0.3 0.4

]
(17)

of the discrete-time linear system (11).

The convex linear combination of the matrices (17) for 𝑞 = 0.3 has the form

𝐴(0.3) = (1 − 0.3)𝐴1 + 0.3𝐴2

= 0.7
[
0.4 0.3

| − 0.2| 0.5

]
+ 0.3

[
0.5 | − 0.3|

| − 0.3| 0.4

]
=

[
0.43 0.03
0.23 0.47

]
. (18)

The circle corresponding to the matrix (18) is located inside the unite circle
(Fig. 2). Therefore, the matrix (18) is asymptotically stable.

𝐶𝑟1, 𝐶𝑟2 – circle related to row 1 (centre (0.43, 0) radius 0.03) and row 2
(centre (0.47, 0) radius 0.23) of the matrix 𝐴 respectively; 𝐶𝑐1, 𝐶𝑐2 – circle
related to column 1 (centre (0.43, 0) radius 0.23) and column 2 (centre (0.47, 0)
radius 0.03) of the matrix 𝐴 respectively.
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Figure 2: Illustration to Example 3

5. Positive linear systems

In this section the results of the last two sections will be extended to the posi-
tive continuous-time and discrete-time linear systems. Consider the autonomous
continuous-time linear system (1)

Definition 3 [6,7,9] The system (1) is called positive if 𝑥(𝑡) ∈ <𝑛
+, 𝑡 ­ 0 for any

initial conditions 𝑥0 = 𝑥(0) ∈ <𝑛
+.

Theorem 8 [6, 7, 9] The system (1) is positive if and only if its matrix 𝐴 is the
Metzler matrix.

Definition 4 [6, 7, 9] The positive system (1) is called asymptotically stable if
lim
𝑡→∞

𝑥(𝑡) = 0 for all 𝑥(0) ∈ <𝑛
+.

Theorem 9 [6, 7, 9] The positive system (1) is asymptotically stable if and only
if one of the equivalent conditions is satisfied:

1. All coefficient of the characteristic polynomial

det[𝐼𝑛𝑠 − 𝐴] = 𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + . . . + 𝑎1𝑠 + 𝑎0 (19)

are positive, i.e. 𝑎𝑘 > 0 for 𝑘 = 0, 1, . . . , 𝑛 − 1;

2. There exists strictly positive vector𝜆𝑇 =
[
𝜆1 · · · 𝜆𝑛

]𝑇 ,𝜆𝑘 > 0, 𝑘 = 1, . . . , 𝑛
such that

𝐴𝜆 < 0 or 𝐴𝑇𝜆 < 0. (20)
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For the positive system (1) the equalities (2b) and (2c) take the forms

𝑅𝑖 =

𝑛∑︁
𝑗=1
𝑗≠𝑖

𝑎𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛 (21a)

𝑅′
𝑗 =

𝑛∑︁
𝑖=1
𝑖≠ 𝑗

𝑎𝑖 𝑗 , 𝑗 = 1, . . . , 𝑛 (21b)

since the off-diagonal entries of the Metzler matrices are not-negative.
Therefore, for positive systems the Theorem 6 takes the form

Theorem 10 The convex linear combination (13) of Metzler matrices 𝐴1, 𝐴2 ∈
𝑀𝑛 is also Metzler matrix and it is asymptotically stable if the matrices are
asymptotically stable.

Now let us consider the autonomous discrete-time linear systems (11).

Definition 5 [7, 9] The fractional system (11) is called (internally) positive if
𝑥𝑖 ∈ <𝑛

+, 𝑖 ∈ 𝑍+ = 0, 1, . . . for any initial conditions 𝑥0 ∈ <𝑛
+.

Theorem 11 [7, 9] The system (11) is positive if and only if

𝐴 ∈ <𝑛×𝑛
+ . (22)

Definition 6 The positive system (11) is called asymptotically stable if

lim
𝑖→∞

𝑥𝑖 = 0 for all 𝑥0 ∈ <𝑛
+ . (23)

Theorem 12 [7] The positive system (11) is asymptotically stable if and only if
one of the equivalent conditions is satisfied:

1. All coefficient of the characteristic polynomial

𝑝𝐴 (𝑧) = det
[
𝐼𝑛 (𝑧 + 1) − 𝐴

]
= 𝑧𝑛 + 𝑎𝑛−1𝑧

𝑛−1 + . . . + 𝑎1𝑧 + 𝑎0 (24)

are positive, i.e. 𝑎𝑘 > 0 for 𝑘 = 0, 1, . . . , 𝑛 − 1.

2. There exists strictly positive vector 𝜆𝑇 =

𝑏𝑖𝑔[𝜆1 · · · 𝜆𝑛
]𝑇 , 𝜆𝑘 > 0, 𝑘 = 1, . . . , 𝑛 such that

[𝐴 − 𝐼𝑛]𝜆 < 0, 𝜆𝑇 [𝐴 − 𝐼𝑛] < 0. (25)
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Theorem 13 [7] The positive system (11) is asymptotically stable if the sum of
entries of each column (row) of the matrix 𝐴 is less than one.

For positive linear discrete-time systems all entries of the matrices (16b) are
non-negative. From Definition 2 it follows that the convex linear combination
(16a) has also all nonnegative entries. Therefore, for positive linear discrete-time
systems we have the following.
Theorem 14 The convex linear combination (16a) of non-negative matrices
𝐴1, 𝐴2 ∈ <𝑛×𝑛

+ is also non-negative matrix and it is asymptotically stable if
the matrices are asymptotically stable.

6. Concluding remarks

The asymptotic stability of the convex linear combination of continuous-time
and discrete-time linear systems has been analyzed.Using theGershgorin theorem
it is shown that the convex linear combination of the linear asymptotically stable
continuous-time (Theorem 6) and discrete-time linear systems (Theorem 7) is
also asymptotically stable. It is shown that the above thesis is also valid (and even
simpler) for positive linear systems (Theorems 8 and 13). The considerations
can extended to the fractional linear systems and to the descriptor standard and
fractional linear systems. An open problem is an extension of these considerations
to the different fractional orders linear systems.
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