
10.24425/acs.2023.148882
Archives of Control Sciences

Volume 33(LXIX), 2023
No. 4, pages 801–827

Equivalent diagrams of fractional order elements

Sebastian RÓŻOWICZo , Maciej WŁODARCZYKo and Andrzej ZAWADZKIo

This paper presents equivalent impedance and operator admittance systems for fractional
order elements. Presented models of fractional order elements of the type: 𝑠𝛼𝐿𝛼 and 1/𝑠𝛼𝐶𝛼,
(0 < 𝛼 < 1) were obtained using the Laplace transform based on the expansion of the factor
sign to an infinite fraction with varying degrees of accuracy – the continued fraction expansion
method (CFE). Then circuit synthesis methods were applied. As a result, equivalent circuit
diagrams of fractional order elements were obtained. The obtained equivalent schemes consist
both of classical RLC elements, as well as active elements built based on operational amplifiers.
Numerical experiments were conducted for the constructed models, presenting responses to
selected input signals.

Key words: fractional order derivative, Laplace transform for fractional order systems, CFE
method, circuit synthesis, numerical experiments

1. Introduction

Two trends can be noted in the literature on elements described by fractional
order equations:

1. Modeling physical phenomena with fractional order elements.

2. Creating equivalent diagrams for fractional order elements.

Regarding the first group of issues, the area of fractional order differen-
tial calculus covers electrical engineering in the broadest sense and concerns,
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among other things, the description and modeling of: supercapacitors [1–3],
electrolytes [4,5], lossy inductive elements [6,7] long line [8,9], relaxation phe-
nomena of organic dielectric materials [10], viscoelastic phenomena [11–14],
diffusion phenomena [15–17], heating process and heat conduction [18].
The second group includes the creation of equivalent diagrams in the form

of ladder systems of passive elements or active elements [1, 19–21]. Implemen-
tations of such elements (time- or frequency-related) are generally divided into
realizations by approximations of 𝐿𝛽, 𝐶𝛼 elements through ladder structures and
synthesis of RL or RC structures [19], and realizations of fractional-order ele-
ments using electronic active circuits such as a gyrator or generalized impedance
converter GIC [20, 21]. There have also been other studies on new ways to
realize secondary fractional-order elements, as using a field-effect transistor.
These generalized models have come to be known as quasi-conductance, pseudo-
conductance, or quasi-inductive or pseudo-inductive elements. Even though that
the mathematical tools used in their analysis are more theoretically involved and
more complicated than in the classical implementation, it turns out that tradi-
tional circuit models are replaced by models derived from differential-integral
calculus of fractional order. The solution of a fractional order differential equa-
tion describing such systems is possible using the Laplace transform method.
Then, an algebraic equation is transformed using simple mathematical rules to
obtain a solution in the operator 𝑠 domain. The final solution of the differential
equation is obtained by applying the inverse Laplace transform. Determining the
inverse Laplace transform is done by decomposing the function into simple frac-
tions. In practical applications, the non-infinite-order systems of continuous-time
systems can be successfully approximated by higher-order systems that main-
tain a constant phase in the selected frequency band. This can be successfully
accomplished with the Continued Fraction Expansion (CFE) method [22].
In previous publications, equivalent diagrams of elements for fractional order

derivatives applicable only to a specific𝛼 value (e.g.𝛼 = 0.5)were presented [23].
This paper presents awide range of equivalent impedance and operator admittance
diagrams of fractional-order elements: 𝑠𝛼𝐿𝛼𝑖1/𝑠𝛼𝐶𝛼, (for any 𝛼 values in the
range 0 < 𝛼 < 1), obtained by the expansion of the factor 𝑠𝛼 (applying the
Laplace transform) in to a repeating decimal with different degrees of accuracy
(CFE method), and passive or active circuit synthesis methods.
The Introduction of the paper discusses the problem. Section 2 is devoted to

a synthetic presentation of the mathematical methods used in the analysis carried
out – the CFE method for determining the Laplace transform for fractional order
systems is discussed. The essential parts of the work are contained in Section 3,
which presents the synthesis of fractional order elements for different orders
of approximation, including for negative impedance and using an operational
amplifier. The results of the theoretical analysis of the developed equivalent
diagrams of fractional order elements are also included. Section 4 contains the
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results of numerical experiments for selected orders of approximation of fractional
order systems, showing the responses to input signals because it suggests that the
responseses are like impulse, unit step function and sinusoidal excitation.

2. CFE Method – (Continued fraction expansion)

Determination of the inverse Laplace transform in the form of a function
represented by a quotient of polynomials of the variable 𝑠 with integer powers,
for single poles is carried out by decomposing the function into simple fractions.
Therefore, one should approximate the factor 𝑠𝛼 with a multinomial, in which the
𝑠 appears in integer powers. And this is where the CFE method has come into
play, making such the approximation possible.
CFE is derived from the expansion in to a repeating decimal of the expression

(1 + 𝑥)𝛼 for 0 ¬ 𝛼 ¬ 1:

(1 + 𝑥)𝛼 �
1

1 −
𝑎𝑥

1 +
(1 + 𝛼)𝑥

2 +
(1 − 𝛼)𝑥

3 +
(2 + 𝛼)𝑥

2 +
2(1 − 𝛼)𝑥
5

(1)

substitute 𝑥 = 𝑠− 1 and, taking the subsequent expressions for consideration, one
obtains approximations to the required order.
According to this method, factor 𝑠𝛼 can be presented as the quotient of

polynomials of the variable 𝑠 and 𝛼 order derivative – these variables occur here
in integer powers [24, 25].

𝑠𝛼 �
𝑁 (𝑠, 𝛼)
𝐷 (𝑠, 𝛼) =

𝐴∑
𝑘=0

𝑃𝐴𝑘 (𝛼)𝑠𝐴−𝑘

𝐴∑
𝑘=0

𝑄𝐴𝑘 (𝛼)𝑠𝐴−𝑘
, (2)

where: 𝐴 – order of approximation, 𝑃𝐴𝑘 (𝛼),𝑄𝐴𝑘 (𝛼) – 𝛼 polynomials of order 𝐴.
These approximations according to [24] are respectively:
– 1st order approximation:

𝑠𝛼 �
(1 + 𝛼)𝑠 + (1 − 𝛼)
(1 − 𝛼)𝑠 + (1 + 𝛼) ; (3)
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– 2nd order approximation:

𝑠𝛼 �

(
𝛼2 + 3𝛼 + 2

)
𝑠2 +

(
−2𝛼2 + 8

)
𝑠 +

(
𝛼2 − 3𝛼 + 2

)(
𝛼2 − 3𝛼 + 2

)
𝑠2 +

(
−2𝛼2 + 8

)
𝑠 +

(
𝛼2 + 3𝛼 + 2

) ; (4)

– 3rd order approximation:

𝑠𝛼 �
𝑃30𝑠

3 + 𝑃31𝑠2 + 𝑃32𝑠 + 𝑃33
𝑄30𝑠3 +𝑄31𝑠2 +𝑄32𝑠 +𝑄33

, (5)

where:
𝑃30 = 𝑄33 = 𝛼

3 + 6𝛼2 + 11𝛼 + 6,
𝑃31 = 𝑄32 = −3𝛼3 − 6𝛼2 + 27𝛼 + 54,
𝑃32 = 𝑄31 = 3𝛼3 − 6𝛼2 − 27𝛼 + 54,
𝑃33 = 𝑄30 = −𝛼3 + 6𝛼2 − 11𝛼 + 6,

– 4th order approximation:

𝑠𝛼 �
𝑃40𝑠

4 + 𝑃41𝑠3 + 𝑃42𝑠2 + 𝑃43𝑠 + 𝑃44
𝑄40𝑠4 +𝑄41𝑠3 +𝑄42𝑠2 +𝑄43𝑠 +𝑄44

, (6)

where:
𝑃40 = 𝑄44 = 𝛼

4 + 10𝛼3 + 35𝛼2 + 50𝛼 + 24,
𝑃41 = 𝑄43 = −4𝛼4 − 20𝛼3 + 40𝛼2 + 320𝛼 + 384,
𝑃42 = 𝑄42 = 6𝛼4 − 150𝛼2 + 864,
𝑃43 = 𝑄41 = −4𝛼4 + 20𝛼3 + 40𝛼2 − 320𝛼 + 384,
𝑃44 = 𝑄40 = 𝛼

4 − 10𝛼3 + 35𝛼2 − 50𝛼 + 24.

In the paper [24] it was shown that the approximation of order 𝐴 = 5 gives an
accuracy which is relatively best for polynomials of the fifth degree. Increasing
the order of approximation in addition to increased number of components in the
polynomials gives a negligible improvement of accuracy. It means that increasing
the order of approximation, in addition to increased number of components in
the polynomials, and thus larger number of poles and a more complex numerical
implementation, gives a relatively negligible change in the solution, which is
interpreted as a slight improvement of accuracy.
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Assuming the order of approximation to be 𝐴 = 5, these polynomials take the
following form:

𝑃50(𝛼) = 𝑄55(𝛼) = −𝛼5 − 15𝛼4 − 85𝛼3 − 225𝛼2 − 274𝛼 − 120,
𝑃51(𝛼) = 𝑄54(𝛼) = 5𝛼5 + 45𝛼4 + 5𝛼3 − 1005𝛼2 − 3250𝛼 − 3000,
𝑃52(𝛼) = 𝑄53(𝛼) = −10𝛼5 − 30𝛼4 + 410𝛼3 + 1230𝛼2 − 4000𝛼 − 12000,
𝑃53(𝛼) = 𝑄52(𝛼) = 10𝛼5 − 30𝛼4 − 410𝛼3 + 1230𝛼2 + 4000𝛼 − 12000,
𝑃54(𝛼) = 𝑄51(𝛼) = −5𝛼5 + 45𝛼4 − 5𝛼3 − 1005𝛼2 + 3250𝛼 − 3000,
𝑃55(𝛼) = 𝑄50(𝛼) = 𝛼5 − 15𝛼4 + 85𝛼3 − 225𝛼2 + 274𝛼 − 120.

(7)

It isworth noting that the polynomials appearing in the approximations contain
integer powers of 𝑠, so known methods can be used to determine the inverse
transform.

3. Synthesis of fractional order elements

Fractional order systems modeling is proving to be an indispensable tool
for simulation, identification and control of some automation systems [26–32].
Cited works show that the main area of application of fractional order operators
is control theory, however, their capabilities also suit other areas, such as the
theory of electrical circuits. Attempts have already been made (among other
works [33–35]), but they were few and do not exhaust the subject. A good
example is the inductive and capacitive elements occurring in some electrical
circuits, the behavior of which cannot be accurately described by the classical
method. Only the use of fractional order operators to describe them for the
parameter 𝛼 (0 ¬ 𝛼 ¬ 1) gives satisfactory results.
We will consider the elements 𝐿𝛼 and 𝐶𝛼 defined for (0 < 𝛼 < 1) via the

following equations:

𝑢𝐿 (𝑡) = 𝐿𝛼
𝐷𝛼𝑖𝐿 (𝑡)
𝑑𝑡𝛼

, (8)

𝑖𝐶 (𝑡) = 𝐶𝛼
𝐷𝛼𝑢𝐶 (𝑡)
𝑑𝑡𝛼

. (9)

By performing the Laplace transformation of the above equations with zero
initial conditions, their operator impedances can be obtained in the form:

𝑍𝐿𝛼
(𝑠) = 𝑠𝛼𝐿𝛼 , (10)

𝑍𝐶𝛼
(𝑠) = 1

𝑠𝛼𝐶𝛼
(11)
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or admittance by the formulas:

𝑌𝐿𝛼
(𝑠) = 1

𝑠𝛼𝐿𝛼
, (12)

𝑌𝐶𝛼
(𝑠) = 𝑠𝛼𝐶𝛼 . (13)

Comparing the dependencies, it is easy to see that the impedance operator
of the element (10) and the admittance operator (13) have the same form – they
differ only by a factor. The same is true for admittance (12) and impedance (11).
Thus, given these relationships, it is sufficient to synthesize only the impedance
operator of the elements 𝐿𝛼 and 𝐶𝛼. In the following subsections, such synthesis
is presented for approximations of orders 1 to 5.

3.1. Element synthesis for 1st order approximation

Given equations (2) and (10) for the 1st order approximation, the impedance
synthesis of element 𝐿𝛼 can be made according to the following relationship:

𝑍𝐿𝛼
= 𝑠𝛼𝐿𝛼 = 𝐿𝛼

(1 + 𝛼)𝑠 + (1 − 𝛼)
(1 − 𝛼)𝑠 + 1 + 𝛼 = 𝐿𝛼

(1+𝛼)
(1−𝛼) +

−4𝐿𝛼𝛼
(1−𝛼)2𝑠 + (1−𝛼2)

. (14)

Using the decomposition of straight fractions and switching to the form used
in the synthesis of the two-port elements [36], we obtain:

𝑍𝐿𝛼
= 𝑅0 +

−𝑘𝑖
𝑠 + 𝜎𝑖

, (15)

where:

𝑅0 = 𝐿𝛼
(1 + 𝛼)
(1 − 𝛼) , 𝑘𝑖 =

4𝐿𝛼𝛼
(1 − 𝛼)2

, 𝜎𝑖 =
(1 − 𝛼2)
(1 − 𝛼)2

. (16)

It should be noted that the second component of the formula (15) represents
the impedance 𝑍1, consisting of a parallel combination of resistance 𝑅1 and a
capacitor with capacitance 𝐶1, the form of which according to [12, 24] is as
follows:

𝑅1 =
𝑘𝑖

𝜎𝑖
=
4𝐿𝛼𝛼

(1 − 𝛼2)
, 𝐶1 =

1
𝑘𝑖

=
(1 − 𝛼)2
4𝐿𝛼𝛼

. (17)

Negative impedance synthesis can be performed in many ways [14, 25] – the
authors chose the simplest one, using an operational amplifier. The equivalent
diagram of the 1st order element was developed as shown in Fig. 1.
In an similar way, the impedance of element 𝐶𝛼 can be synthesized according

to relations (2) and (11):

𝑍𝐶𝛼
=
1

𝑠𝛼𝐶𝛼
=
1
𝐶𝛼

(1−𝛼)𝑠 + 1 + 𝛼
(1+𝛼)𝑠 + 1 − 𝛼 =

1
𝐶𝛼

(1−𝛼)
(1+𝛼) +

1
𝐶𝛼

4𝛼
(𝛼 + 1)

(1+𝛼)𝑠 + (1−𝛼) . (18)
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Figure 1: Equivalent diagram of the 𝑍𝐿𝛼
(𝑠) = 𝑠𝛼𝐿𝛼 1st order element

Using the decomposition of simple fractions and switching to the form used
in the synthesis of two-port elements [11], we get:

𝑍𝐶𝛼
= 𝑅0 +

𝑘𝑖

𝑠 + 𝜎𝑖
, , (19)

where:
𝑅0 =

1
𝐶𝛼

(1 − 𝛼)
(1 + 𝛼) , 𝑘𝑖 =

1
𝐶𝛼

4𝛼
(1 + 𝛼)2

, 𝜎𝑖 =
(1 − 𝛼)
(1 + 𝛼) . (20)

The second component of formula (15) represents impedance 𝑍1 consisting of a
parallel combination of resistance 𝑅1 and a capacitor with capacitance𝐶1, whose
values according to [11] are:

𝑅1 =
𝑘𝑖

𝜎𝑖
=

4𝛼
𝐶𝛼 (1 − 𝛼2)

, 𝐶1 =
1
𝑘𝑖

= 𝐶𝛼
(1 + 𝛼)2
4𝛼

. (21)

Thus, the results of synthesizing the impedance of element 𝐶𝛼 of order 1 can
be presented using passive elements connected as shown in Fig. 2.

Figure 2: Equivalent diagram of the 𝑍𝐿𝛼
(𝑠) = 𝑠𝛼𝐿𝛼 1st order element

3.2. Element synthesis for 2nd order approximation

According to relations (3) and (10) for the 2nd order approximation, the
impedance synthesis of element 𝐿𝛼 can be represented in the following form:

𝑍𝐿𝛼
= 𝑠𝛼𝐿𝛼 = 𝐿𝛼

(
𝛼2 + 3𝛼 + 2

)
𝑠2 +

(
−2𝛼2 + 8

)
𝑠 +

(
𝛼2 − 3𝛼 + 2

)(
𝛼2 − 3𝛼 + 2

)
𝑠2 +

(
−2𝛼2 + 8

)
𝑠 +

(
𝛼2 + 3𝛼 + 2

) . (22)
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Writing the impedance in the form of a continued fraction (Cauer’s method [16]),
we get the form:

𝑍𝐿𝛼
= 𝑠𝛼𝐿𝛼 = 𝑅1 +

1

𝑌2 +
1

𝑅3 +
1

𝑌4 +
1
𝑅5

, (23)

where:

𝑅1 = 𝐿𝛼

(
𝛼2 + 3𝛼 + 2

)(
𝛼2 − 3𝛼 + 2

) , 𝑌2 = 𝑠
(𝛼 − 1)

(
𝛼2 − 3𝛼 + 2

)
12𝐿𝛼𝛼(𝛼 + 2) = 𝑠𝐶2 ,

𝑅3 =
−12𝐿𝛼𝛼(𝛼 + 2)2

𝛼4 + 4𝛼3 − 15𝛼2 − 4𝛼 + 14
,

𝑅5 =
144𝐿𝛼𝛼(𝛼 − 1)(

𝛼2 + 3𝛼 + 2
) (
𝛼3 + 2𝛼2 − 22𝛼 + 28

) ,
𝑌4 = 𝑠

(
𝛼3 + 2𝛼2 − 22𝛼 + 28

) (
−𝛼3 − 5𝛼2 + 10𝛼 + 14

)
144𝐿𝛼𝛼(𝛼 − 1) (𝛼 + 2) = 𝑠𝐶4 .

(24)

This corresponds to the equivalent impedance diagram of the ladder structure
shown in Fig. 3.

Figure 3: ELadder structure corresponding to the impedance diagram (23)

To assess whether a given component of the ladder structure is passive or
active, determine the sign of the values of 𝑅𝑚 (𝑚 = 1, 3, 5) and 𝐶𝑛 (𝑛 = 2, 4) for
the assumed 0 < 𝛼 < 1. For this purpose, the graph of the variation of various
parameters depending on the fractional order 𝛼 was made.
It can be concluded from Figures 4 and 5, it can be concluded that for the

assumed values 0 < 𝛼 < 1, only the element 𝑅1 is positive and the other elements
are negative and they can be represented in the form of active systems as in Fig. 6.
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Figure 4: Values of elements 𝑅𝑚 (𝑚 = 1, 3, 5) for impedance 𝑍𝐿𝛼
(𝑠) = 𝑠𝛼𝐿𝛼

Figure 5: Values of elements 𝐶𝑛 (𝑛 = 2, 4) for impedance 𝑍𝐿𝛼
(𝑠) = 𝑠𝛼𝐿𝛼

Figure 6: Equivalent diagram of active elements for: a) negative resistance (𝑚 = 3, 5),
b) negative capacitance (𝑛 = 2, 4)
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Similarly, the 𝑍𝐶𝛼
(𝑠) impedance synthesis was performed, obtaining the fol-

lowing expression:

𝑍𝐶𝛼
=
1

𝑠𝛼𝐶𝛼
=
1
𝐶𝛼

(
𝛼2 − 3𝛼 + 2

)
𝑠2 +

(
−2𝛼2 + 8

)
𝑠 +

(
𝛼2 + 3𝛼 + 2

)(
𝛼2 + 3𝛼 + 2

)
𝑠2 +

(
−2𝛼2 + 8

)
𝑠 +

(
𝛼2 − 3𝛼 + 2

) . (25)

Similarly an equivalent diagram was obtained in the form of the ladder struc-
ture shown in Fig. 3, where the individual elements have the value:

𝑅1 =

(
𝛼2 − 3𝛼 + 2

)
𝐶𝛼

(
𝛼2 + 3𝛼 + 2

) ,
𝑌2 = −𝑠𝐶𝛼

(𝛼 + 1)
(
𝛼2 + 3𝛼 + 2

)
12𝛼 (𝛼 − 2) = 𝑠𝐶2 ,

𝑅3 =
1
𝐶𝛼

−12𝛼(𝛼 − 2)2

(𝛼 + 1)
(
−𝛼3 + 5𝛼2 + 10𝛼 − 14

) ,
𝑅5 =

144𝛼(𝛼 + 1)
𝐶𝛼

(
𝛼2 − 3𝛼 + 2

) (
−𝛼3 + 2𝛼2 + 22𝛼 + 28

) ,
𝑌4 = 𝑠𝐶𝛼

(
−𝛼3 + 5𝛼2 + 10𝛼 − 14

) (
−𝛼3 + 2𝛼2 + 22𝛼 + 28

)
144𝛼(𝛼 + 1) (𝛼 − 2) = 𝑠𝐶4 .

(26)

The values of the elements 𝑅𝑚 and 𝐶𝑛 for the impedance 𝑍𝐶𝛼
(𝑠) = 1/𝑠𝛼𝐶𝛼

depending on the parameter 𝛼 are shown in Figures 7 and 8.
It follows from Fig. 7 and 8, it is found that for the assumed values of

0 < 𝛼 < 1, all elements are positive, so they can be represented as passive
elements as shown in Figure 3.

Figure 7: Values of elements 𝑅𝑚 (𝑚 = 1, 3, 5) for impedance 𝑍𝐶𝛼
(𝑠)



EQUIVALENT DIAGRAMS OF FRACTIONAL ORDER ELEMENTS 811

Figure 8: Values of elements 𝑅𝑚 (𝑚 = 1, 3, 5) for impedance 𝑍𝐶𝛼
(𝑠)

3.3. Element synthesis for 3rd order approximation

Considering the 3rd order approximation, according to relations (2) and (5),
(6), the impedance operator of the element 𝐿𝛼 has the form:

𝑍𝐿𝛼
= 𝑠𝛼𝐿𝛼 = 𝐿𝛼

𝑁 (𝑠, 𝛼)
𝐷 (𝑠, 𝛼) , (27)

where:

𝑁 (𝑠, 𝛼) = (𝛼3 + 6𝛼2 + 11𝛼 + 6)𝑠3 + (−3𝛼3 − 6𝛼2 + 27𝛼 + 54)𝑠2

+ (3𝛼3 − 6𝛼2 − 27𝛼 + 54)𝑠 + (−𝛼3 + 6𝛼2 − 11𝛼 + 6),

𝐷 (𝑠, 𝛼) = (−𝛼3 + 6𝛼2 − 11𝛼 + 6)𝑠3 + (3𝛼3 − 6𝛼2 − 27𝛼 + 54)𝑠2

+ (−3𝛼3 − 6𝛼2 + 27𝛼 + 54)𝑠 + 𝛼3 + 6𝛼2 + 11𝛼 + 6.

This leads to the following form of the continued fraction:

𝑍𝐿𝛼 = 𝑠𝛼𝐿 = 𝑅1 +
1

𝑌2 +
1

𝑅3 +
1

𝑌4 +
1

𝑅5 +
1

𝑌6 +
1
𝑅7

, (28)
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where:

𝑅1 = −𝐿𝛼
(
𝛼3 + 6𝛼2 + 11𝛼 + 6

)(
𝛼3 − 6𝛼2 + 11𝛼 − 6

) ,
𝑅3 =

24𝐿𝛼𝛼(𝛼 + 2)
(
𝛼2 + 5𝛼 + 6

)
(𝛼 − 1)

(
𝛼4 + 8𝛼3 − 52𝛼2 + 28𝛼 + 87

) ,
𝑅5 =

[
− 600𝐿𝛼𝛼

(
−2𝛼3 + 2𝛼2 + 23𝛼 − 23

) (
−2𝛼3 − 6𝛼2 + 23𝛼 + 69

) ]/ [ (
𝛼4 + 5𝛼3 − 73𝛼2 + 205𝛼 − 174

) (
2𝛼6 + 18𝛼5 − 15𝛼4 − 579𝛼3

−81𝛼2 + 3153𝛼 + 2686
) ]
,

𝑅7 =
24000𝛼

(
𝛼2 − 3𝛼 + 2

)
𝐶𝛼

(
𝛼3 + 6𝛼2 + 11𝛼 + 6

) (
2𝛼5 + 6𝛼4 − 91𝛼3 − 273𝛼2 + 2657𝛼 − 4029

) ,
𝑌2 = 𝑠

−(𝛼 − 1)
(
𝛼3 − 6𝛼2 − 11𝛼 − 6

)
24𝐿𝛼𝛼

(
𝛼2 + 5𝛼 + 6

) ,

𝑌4 = 𝑠
−
(
𝛼4 + 8𝛼3 − 52𝛼2 + 28𝛼 + 87

) (
𝛼4 + 5𝛼3 − 73𝛼2 + 205𝛼 − 174

)
600𝐿𝛼𝛼(𝛼 + 2)

(
−2𝛼3 + 2𝛼2 + 23𝛼 − 23

) ,

𝑌6 = 𝑠
[(
2𝛼5 + 6𝛼4 − 91𝛼3 − 273𝛼2 + 2657𝛼 − 4029

) (
2𝛼6 + 18𝛼5 − 15𝛼4

−579𝛼3 − 81𝛼2 + 3153𝛼 + 2686
)] / [

2400𝐿𝛼𝛼
(
𝛼2 − 3𝛼 + 2

)
·
(
−2𝛼3 − 6𝛼2 + 23𝛼 + 69

) ]
,

The ladder structure showing the equivalent impedance diagram (28) is shown
in Figure 9.

Figure 9: Ladder structure corresponding to the equivalent impedance diagram (28)

Then, as for the 2nd order approximation, the determination of the values signs
of individual elements was carried out, using the graphs of various parameters
variation depending on the fractional order 𝛼, shown in Figures 10 and 11.
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Figure 10: Values of elements 𝑅𝑚 (𝑚 = 1, 3, 5, 7)
for impedance 𝑍𝐿𝛼

(𝑠) = 𝑠𝛼𝐿𝛼

Figure 11: Values of elements 𝐶𝑛 (𝑛 = 2, 4, 6)
for impedance 𝑍𝐿𝛼

(𝑠) = 𝑠𝛼𝐿𝛼

It can be seen fromFigures 10 and 11 that for the assumed values of 0 < 𝛼 < 1,
only the 𝑅1 element is positive, while the other elements are negative. It is
possible, therefore, to present them in the form of active components as shown
in Fig. 6.
Performing the synthesis of impedance 𝑍𝐶𝛼

(𝑠) analogously we obtain:

𝑍𝐶𝛼
=
1

𝑠𝛼𝐶𝛼
=

𝑁 (𝑠, 𝛼)
𝐶𝛼𝐷 (𝑠, 𝛼) , (29)
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where:

𝑁 (𝑠, 𝛼) = (−𝛼3 + 6𝛼2 − 11𝛼 + 6)𝑠3 + (3𝛼3 − 6𝛼2 − 27𝛼 + 54)𝑠2

+ (−3𝛼3 − 6𝛼2 + 27𝛼 + 54)𝑠 + 𝛼3 + 6𝛼2 + 11𝛼 + 6 ,

𝐷 (𝑠, 𝛼) = (𝛼3 + 6𝛼2 + 11𝛼 + 6)𝑠3 + (−3𝛼3 − 6𝛼2 + 27𝛼 + 54)𝑠2

+ (3𝛼3 − 6𝛼2 − 27𝛼 + 54)𝑠 + (−𝛼3 + 6𝛼2 − 11𝛼 + 6).
In this case, there is also an equivalent diagram in the form of the ladder

structure shown in Fig. 9, where the individual elements have the value:

𝑅1 = −
(
𝛼3 − 6𝛼2 + 11𝛼 − 6

)
𝐶𝛼

(
𝛼3 + 6𝛼2 + 11𝛼 + 6

) ,
𝑅3 =

24𝛼(𝛼 − 2)
(
𝛼2 − 5𝛼 + 6

)
𝐶𝛼 (𝛼 + 1)

(
−𝛼4 + 8𝛼3 + 52𝛼2 + 28𝛼 − 87

) ,
𝑅5 =

[
600𝛼

(
−2𝛼3 − 2𝛼2 + 23𝛼 + 23

) (
−2𝛼3 + 6𝛼2 + 23𝛼 − 69

)] / [
𝐶𝛼

(
−𝛼4

+ 5𝛼3 + 73𝛼2 + 205𝛼 + 174
) (
−2𝛼6 + 18𝛼5 + 15𝛼4 − 579𝛼3

+ 81𝛼2 + 3153𝛼 − 2686
) ]
,

𝑅7 =
−24000𝛼

(
𝛼2 + 3𝛼 + 2

)
𝐶𝛼

(
𝛼3 − 6𝛼2 + 11𝛼 − 6

) (
2𝛼5 − 6𝛼4 − 91𝛼3 + 273𝛼2 + 2657𝛼 + 4029

) ,
𝑌2 = 𝑠

−(𝛼 − 1)
(
𝛼3 − 6𝛼2 − 11𝛼 − 6

)
24𝐿𝛼𝛼

(
𝛼2 + 5𝛼 + 6

) ,

𝑌4 = 𝑠𝐶𝛼

(
−𝛼4 + 8𝛼3 + 52𝛼2 + 28𝛼 − 87

) (
−𝛼4 + 5𝛼3 + 73𝛼2 + 205𝛼 + 174

)
600𝛼(𝛼 − 2)

(
−2𝛼3 − 2𝛼2 + 23𝛼 + 23

) ,

𝑌6 = 𝑠𝐶𝛼

[(
2𝛼5 − 6𝛼4 − 91𝛼3 + 273𝛼2 + 2657𝛼 + 4029

) (
−2𝛼6 + 18𝛼5

+ 15𝛼4 − 579𝛼3 + 81𝛼2 + 3153𝛼 − 2686
) ] / [

2400𝛼
(
𝛼2 + 3𝛼 + 2

)
·
(
−2𝛼3 + 6𝛼2 + 23𝛼 − 69

) ]
.

Determinations of the sign of the value of individual elements can be read
from the graphs shown in Figures 12 and 13.
It follows from the above results, that for the assumed values of 0 < 𝛼 < 1, all

elements are positive, so they can be presented in the form of passive elements
in the structure shown in Fig. 9.
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Figure 12: Values of elements 𝑅𝑚 (𝑚 = 1, 3, 5, 7) for impedance 𝑍𝐶𝛼
(𝑠)

Figure 13: Values of elements 𝐶𝑛 (𝑛 = 2, 4, 6) for impedance 𝑍𝐶𝛼
(𝑠)

3.4. Element synthesis for 5th order approximation

According to relations (2) and (7), for the 5th order approximation, the synthe-
sis of the impedance of the element 𝐿𝛼 can be represented in the following form:

𝑍𝐿𝛼
= 𝑠𝛼𝐿𝛼 = 𝐿𝛼

𝑁 (𝑠, 𝛼)
𝐷 (𝑠, 𝛼) , (30)
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where:

𝑁 (𝑠, 𝛼) = −𝑠5(𝛼5 + 15𝛼4 + 85𝛼3 + 225𝛼2 + 274𝛼 + 120)
− 𝑠4(−5𝛼5 − 45𝛼4 − 5𝛼3 + 1005𝛼2 + 3250𝛼 + 3000)
− 𝑠3(10𝛼5 + 30𝛼4 − 410𝛼3 − 1230𝛼2 + 4000𝛼 + 12000)
+ 𝑠2(10𝛼5 − 30𝛼4 − 410𝛼3 + 1230𝛼2 + 4000𝛼 − 12000)
− 𝑠(5𝛼5 − 45𝛼4 + 5𝛼3 + 1005𝛼2 − 3250𝛼 + 3000)
+ (𝛼5 − 15𝛼4 + 85𝛼3 − 225𝛼2 + 274𝛼 − 120),

𝐷 (𝑠, 𝛼) = 𝑠5(𝛼5 − 15𝛼4 + 85𝛼3 − 225𝛼2 + 274𝛼 − 120)
− 𝑠4(5𝛼5 − 45𝛼4 + 5𝛼3 + 1005𝛼2 − 3250𝛼 + 3000)
+ 𝑠3(10𝛼5 − 30𝛼4 − 410𝛼3 + 1230𝛼2 + 4000𝛼 − 12000)
− 𝑠2(10𝛼5 − 30𝛼4 − 410𝛼3 − 1230𝛼2 + 4000𝛼 + 12000)
− 𝑠(−5𝛼5 − 45𝛼4 − 5𝛼3 + 1005𝛼2 + 3250𝛼 + 3000)
− 𝛼5 − 15𝛼4 − 85𝛼3 − 225𝛼2 − 274𝛼 − 120) .

This leads to the following form of the continued fraction:

𝑍𝐿𝛼 = 𝑠𝛼𝐿 = 𝑅1 +
1

𝑌2 +
1

𝑅3 +
1

𝑌4 +
1

𝑅5 +
1

𝑌6 +
1

𝑅7 +
1

𝑌8 +
1

𝑅9 +
1
𝑌101

, (31)

where:

𝑌101 = 𝑌10 +
1
𝑅11

, 𝑅1 = −𝐿𝛼𝑋
𝐴

,

𝑅3 =
60𝐿𝛼𝛼(𝛼 + 2)𝐵

(𝛼 − 1)𝐷 , 𝑅5 =
−1680𝐿𝛼𝛼𝐸𝑁

𝐹𝑀
,
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𝑅7 =
−94080𝐿𝛼𝛼𝐻𝐽

𝐺𝐾
, 𝑅9 =

205752960𝐿𝛼𝛼𝐼𝑃
𝑆𝑇

,

𝑅11 =
14814213120𝐿𝛼𝛼𝑈

𝑊𝑋
, 𝑌2 = − 𝑠(𝛼 − 1)𝐴

60𝐿𝛼𝛼𝐵
,

𝑌4 =
−𝑠𝐷𝑀

1680𝐿𝛼𝛼(𝛼 + 2)𝐸 , 𝑌6 =
𝑠𝐹𝐺

94080𝐿𝛼𝛼𝐻𝑁
,

𝑌8 =
−𝑠𝐾𝑆

205752960𝐿𝛼𝛼𝐽𝑃
, 𝑌10 =

𝑠𝑇𝑊

14814213120𝐿𝛼𝛼𝐼𝑈

in which:

𝐴 = 𝛼5 − 15𝛼4 + 85𝛼3 − 225𝛼2 + 274𝛼 − 120,
𝐵 = 𝛼4 + 14𝛼3 + 71𝛼2 + 154𝛼 + 120,
𝑈 = 𝛼4 − 10𝛼3 + 35𝛼2 − 50𝛼 + 24,
𝑋 = 𝛼5 + 15𝛼4 + 85𝛼3 + 225𝛼2 + 274𝛼 + 120,
𝐷 = 𝛼6 + 17𝛼5 − 347𝛼4 + 1781𝛼3 − 3014𝛼2 − 718𝛼 + 4440,
𝐸 = −11𝛼5 − 88𝛼4 + 28𝛼3 + 1412𝛼2 + 1639𝛼 − 2980,
𝐹 = 11𝛼9 + 242𝛼8 + 253𝛼7 − 32318𝛼6 + 61941𝛼5 + 775038𝛼4 − 2065013𝛼3

− 4304642𝛼2 + 9234488𝛼 + 10793360,
𝐺 = −11𝛼9 − 132𝛼8 + 1727𝛼7 + 26268𝛼6 − 373461𝛼5 + 114212𝛼4

+ 4151273𝛼3 − 34133148𝛼2 + 79510072𝛼 − 64760160,
𝐻 = −143𝛼8 + 429𝛼7 + 10844𝛼6 − 33390𝛼5 − 266601𝛼4 + 866583𝛼3

+ 1851944𝛼2 − 7288998𝛼 + 4859332,
𝐼 = −26𝛼7 − 130𝛼6 + 3003𝛼5 + 15015𝛼4 − 109014𝛼3 − 545070𝛼2

+ 1260557𝛼 + 6302785,
𝐽 = 143𝛼8 + 1287𝛼7 − 8270𝛼6 − 100170𝛼5 + 66261𝛼4 + 2599749𝛼3

+ 3347554𝛼2 − 21866994𝛼 − 48593320,
𝐾 = −143𝛼13 − 3432𝛼12 − 7881𝛼11 + 450066𝛼10 + 3280146𝛼9 − 26747556𝛼8

− 220536722𝛼7 + 849643992𝛼6 + 6033756453𝛼5 − 12563224068𝛼4

− 73449872997𝛼3 + 46429080324𝛼2 + 351444161944𝛼 + 249121581456,
𝑀 = 𝛼4 + 23𝛼3 − 208𝛼2 + 538𝛼 − 444,
𝑁 = −11𝛼4 − 77𝛼3 + 17𝛼2 + 1043𝛼 + 1788,
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𝑃 = −26𝛼9 + 156𝛼8 + 2717𝛼7 − 17862𝛼6 − 75981𝛼5 + 636066𝛼4 + 61403𝛼3

− 6909258𝛼2 + 13866127𝛼 − 7563342,
𝑆 = −143𝛼12 − 1287𝛼11 + 29442𝛼10 + 290718𝛼9 − 2988516𝛼8 − 32711004𝛼7

+ 313189594𝛼6 + 798379461𝛼5 − 14064211011𝛼4 + 23835719331𝛼3

+ 167166761124𝛼2 − 724611496824𝛼 + 830405271520,
𝑇 = 26𝛼12 + 520𝛼11 − 625𝛼10 − 78800𝛼9 − 393088𝛼8 + 3651250𝛼7

+ 33877750𝛼6 − 53154250𝛼5 − 908017682𝛼4 − 688762570𝛼3

+ 7623780475𝛼2 + 17329217450𝛼 + 9841626744,
𝑊 = 26𝛼9 + 130𝛼8 − 5436𝛼7 − 27175𝛼6 + 455763𝛼5 + 2278815𝛼4

− 21629165𝛼3 − 108145825𝛼2 + 1071353531𝛼 − 2050338905.

Figure 14: Ladder structure corresponding to the equivalent impedance diagram (31)

Due to the complexity of the values of the individual elements, their sign was
determined using the graphs shown in Figures 15–18.

Figure 15: Values of elements 𝑅𝑚 (𝑚 = 1, 3, 5) for impedance 𝑍𝐿𝛼
(𝑠)
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Figure 16: EValues of elements 𝑅𝑚 (𝑚 = 7, 9, 11)
for impedance 𝑍𝐿𝛼

(𝑠)

Figure 17: Values of elements 𝐶𝑚 (𝑚 = 2, 4, 6)
for impedance 𝑍𝐿𝛼

(𝑠)

Diagrams shown in Figures 15–18 show that only 𝑅1 (in the diagram from
Figure 14) is positive and can be represented as a simple resistor, while the other
𝑅𝑛 elements (𝑛 = 3, 5, 7, 9, 11), in the range considered are negative and
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Figure 18: Values of elements 𝐶𝑚 (𝑚 = 8, 10)
for impedance 𝑍𝐿𝛼

(𝑠)

therefore take the form of the active elements shown in Figure 6a. As for the
elements𝐶𝑚 (𝑚 = 2, 4, 6, 8, 10), they are all negative, so they will take the form
of Fig. 6b. As can be seen, for 5th-order approximation, the equivalent scheme is
complex and contains a large number of active elements.

4. Numerical experiments

The purpose of numerical experiments presented in this chapter is to determine
the response of energy storage elements or electrical circuits to different types
of excitation. Knowing the responses to specific signals, it is possible to obtain
dynamics description of the analyzed circuit. Therefore, signals in the form
of impulse function, unit step function and sinusoidal excitation were used for
selected orders of approximation.
Fractional order systems realized for approximation of order 3 and 5 were

selected to check the response to impulse function excitation. The results are
presented in Figures 19 and 20.
The responses of the systems for the approximation of order 2 and 4 to unit

step function excitation are presented in Figures 21 and 22
Simulations comparing the responses to harmonic excitation of the fractional

order element for approximation of order 4 and 5 are presented in Figures 23
and 24.
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Figure 19: The response of a fractional order element to an impulse
function excitation for the 3rd order approximation

Figure 20: The response of a fractional order element to an impulse
function excitation for the 5th order approximation

Analyzing the presented results (which are responses to individual excitations)
in the form of time characteristics for different system approximations will allow,
in practice, a direct assessment of the dynamic properties of the system and
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Figure 21: The response of a fractional order element a unit
step function excitation for the 2nd order approximation

Figure 22: The response of a fractional order element a unit
step function excitation for the 4th order approximation

the determination of the optimal fractional order of the modeled real system or
circuit.
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Figure 23: The response of a fractional order element to sinusoidal
excitation for the 4th order approximation

Figure 24: The response of a fractional order element to sinusoidal
excitation for the 5th order approximation

5. Conclusion

The use of the CFE method to determine the inverse transform and thus solve
the differential equation of the fractional order is an interesting are of research.
Using approximations of higher and higher orders, a more and more accurate
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solution was obtained at the expense of expanding the calculation (polynomials
of higher degrees and thus, more poles). Increasing the order of derivatives to 0.9,
characteristics of fractional order elements lie closer and closer to the classical
first-order derivative. Considering the position of the transforms poles, it can be
seen that they lie in the left half-plane or on the imaginary axis of the complex
plane, and that with decreasing order of the derivative they lie closer and closer
to the zero point.
Currently, high power conversion efficiency is being pursued through the

continued development of high-power semiconductor devices. Classical analysis
of the operation of such systems does consider all the phenomena occurring there.
The use of analysis based on fractional-order derivatives is quite complicated,
but the effort put into mathematical considerations can be very profitable, as it
allows correcting the errors of classical analysis and thus, designing systems with
high energy efficiency. This is an issue of great importance, as such systems are
increasingly important and have many practical applications.
In the previous publications, equivalent diagrams of fractional order elements

applicable only to a specific 𝛼 value (e.g. 𝛼 = 0.5) [23] were presented. This
paper presents equivalent diagrams for arbitrary 𝛼 values in the range 0–1.
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