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Abstract
This work proposes a systematic assessment of measuring type A uncertainty (caused by random errors)
used in RF power sensor calibration. To reduce A type uncertainty, several successive measurements are
repeated. The uncertainty arises from repeatability errors in connectors caused by changes in their electrical
properties during repeated mating. The suitability of the METAS UncLib software was analysed and we
concluded that software should be developed to take into account the shape of probability density function
(PDF) using a Monte Carlo method (MCM), which was lacking in METAS UncLib. The self-developed
software was then tested on an example taken from the literature and the superiority of the MCM over the
analytical method (GUM) was confirmed. During the calibration of the RF sensor using a vector network
analyzer (VNA), a series of repeated measurements were performed and, after applying our MCM software,
it was found that the measurement uncertainties calculated by the MCM method were several times larger
than those by the GUM. The reason for this was that the correlation between the measured input quantities
was not taken into account. When this was done using a covariance matrix and assuming a normal PDF
of the input quantities, the results obtained with the GUM and the MCM converged. Our main objective
was to investigate the influence of the PDF shape of the input measurement samples on the measurement
uncertainty. Taking more than a dozen measurements is too costly, on the other hand, the small sample
size prevents a reliable determination of the PDF shape. Finally, to overcome this inconvenience, we have
developed a special method that uses the histograms of standardized input data taken at all measurement
frequencies under fixed conditions without disconnecting the connectors, to increasing the total number of
results which were needed to create the PDF histograms of input quantities.
Keywords: Monte Carlo method (MCM), type A uncertainty, RF power sensor calibration.
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1. Introduction

In the Laboratory of Electrical, Electronic and Optoelectronic Metrology (LMEEiO) at the
NIT, we have so far used the analytical method (known as the GUM after the “Guide to the Ex-
pression of Uncertainty in Measurement” [1]) for determining high-frequency (RF) measurement
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uncertainty as recommended in [2]. However, the document [2] also allows for an alternative
Monte Carlo method (MCM), depicted in detail in [3]. The MCM involves determining the PDF
of the output quantity 𝑌 by generating sufficiently numerous samples of input quantities 𝑋𝑖 with
an assumed PDF and transforming them using measurement function𝑌 = 𝑓 (𝑋1, . . . , 𝑋𝑁 ). From
the samples 𝑌 thus created, various statistical properties of the output quantity 𝑌 can be deter-
mined, for example: the estimate mY, the standard uncertainty sY as well as the lower 𝑌low and
upper 𝑌high limits of the uncertainty interval dY, for an assumed confidence level 𝑝. The MCM
has an advantage over the GUM when the estimated uncertainty of measurement consists mainly
of measurement errors with a PDF significantly deviating from the normal distribution and/or
when it is determined from a small number 𝑛 of measurement samples. The low popularity of
the MCM was due to the need to use multiple (up to 106) samples of measured quantities with
appropriately chosen PDF distributions, but with the currently available computing power of
personal computers, the estimation of uncertainty interval at 𝑝 = 95% confidence level usually
takes a few seconds, so the MCM is now growing in popularity [4, 5].

We have developed software in the form of Octave scripts to determine the two-dimensional
uncertainty (𝑖.𝑒. in the domain of complex numbers) of measurements using the MCM [6, 7]
according to guidelines [8].

In order to validate the developed software, we repeated simulations carried out in the publi-
cation [9] using the MCM and the results obtained were in agreement with those presented in [9].
The part of the calculation related to the GUM was performed using the open-access software
METAS UncLib [10]. Section 2 presents a brief description of the operation and evaluation of the
suitability of METAS UncLib software for the determination of RF measurement uncertainties
at the LMEEiO.

Due to a discrepancy between the results obtained by the GUM and the MCM of estimating the
calibration uncertainty of RF power sensors, which was pointed out in [9] but without explaining
the reasons for the discrepancy, we carried out a detailed analysis, presented in Section 3, showing
that the reason was nonlinearity of the measurement function𝑌 = 𝑓 (𝑋1, . . . , 𝑋𝑁 ). Measurements
of similar type as presented in [9] are used at the LMEEiO for calibration of RF power sensors.

We used the self-developed software to determine the mismatch uncertainty in the calibration
of an RF power sensor using a VNA. Type A uncertainty is due to connector repeatability errors
caused by variations in their electrical characteristics during repeated mating. Again, differences
between the results obtained by the GUM and the MCM were observed. However, the reason for
this was different from the previous case – it was correlations of the measured input quantities,
which required further modification of the MCM simulation model by using a covariance matrix,
described in Section 4.

After implementing the MCM in the software, which included the influence of correlations on
the measurement uncertainty, marked as MCM′, the next stage of the work involved determining
a PDF of the measured input quantities and their possible impact on the measurement uncertainty
described in Section 5. The ability to take into account the shape of the PDF is the main advantage
of the final version of the software, marked as MCM′′ that distinguishes it from the GUM [3].
The final conclusions are drawn in Section 6.

2. Description and evaluation of the usefulness of the METAS UncLib software

METAS UncLib is a software library implemented in C# for determining measurement ]un-
certainty, developed at the Swiss Federal Institute of Metrology (METAS) [10,11]. It supports the
creation of objects for determining the uncertainty of measurements and subsequent calculations
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using them, as well as storing the results. It is able to handle complex and multidimensional
quantities. The implementation is object-oriented and overloaded operators hide the complexity
of the computation from the user.

A similar approach is used in the GUM tree calculator [12] used to automatically determine
the uncertainty of measurements using a software package Python.

The result in the form of a mean value and measurement uncertainty is automatically calcu-
lated. The functions describing the sensitivity factors and components of the combined standard
uncertainty are also calculated automatically from the measurement function. Uncertainty values
are not stored in objects, but can be computed on demand. METAS UncLib can run in three
modes:

1. LinProp – supports linear propagation of uncertainty. This operating mode is fully func-
tional.

2. DistProp – supports the propagation of higher-order uncertainties, 𝑖.𝑒. higher-order terms
of the Taylor expansion of the derivatives of a measurement function used to calculate
the sensitivity factors are taken into account. This mode currently supports only normal
distributions of the input data and the outputs are also normal distributions. The authors of
the software declare that in the future it will be possible to use non-normal PDF distributions
and to use higher moments of the probability density function to calculate more realistic
uncertainty intervals.

3. MCProp – supports propagation of uncertainty using the MCM, but to a limited extent, as
it supports only normal distributions of input data.

The usefulness of the METAS UncLib software for determining the uncertainty of measure-
ment in the calibration of RF measuring instruments was tested, and compared with the analogous
software developed at the LMEEiO using the MCM.

Similarly to the MCM, in METAS UncLib there is no need to determine the sensitivity coeffi-
cients, since they are calculated automatically from the measurement function. The advantage of
the METAS UncLib software is the speed of determining the uncertainty of measurement, which
is especially important in calibration using a VNA when we are dealing with a large amount
of measurement data in the form of complex values. When the result of the measurement is a
complex value, the uncertainty takes the form of an elliptical region, unlike the one-dimensional
case where the uncertainty is a range of values. In the process of developing the MCM software
for complex values, we encountered a problem with extending the calculation time and the avail-
able memory size when calculating the measurement uncertainty area with required reliability.
This problem is eliminated in the case of analytical calculation of uncertainty using the METAS
UncLib software.

The advantage of the MCM is that the PDF of input quantity can be arbitrarily shaped, hence
the MCM can be regarded as a reference method. However, in the measurement practice of
the laboratory calibrating measuring instruments, the measurement uncertainty is usually small
compared to the measured value and then the central limit theorem works well, which leads to the
convergence of the measurand PDF estimation to the normal distribution. This is particularly true
for measurements of complex values. In the case of random errors (type A), where it is necessary
to average the results of successive measurements, the number of measurements necessary to
reliably determine the shape of the two-dimensional PDF is so large that, in practice, a two-
dimensional normal distribution that takes into account the correlation of the results is often used,
and can therefore be fully characterised in the LinProp mode of the METAS UncLib software.

METAS UncLib has the ability to include correlations between any number of measurement
inputs. A suitable covariance matrix should be prepared in advance. The same functionality is
implemented in the latest version of the self-developed MCM′ software.
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The METAS UncLib software has plugins for MATLAB [13] and Python [14], which sig-
nificantly increases its functionality. One drawback to the practical use of the METAS UncLib
software at the LMEEiO is that it cannot be used in the Octave environment, for which scripts have
been developed to determine measurement uncertainty. The simplest but expensive alternative is
to purchase a MATLAB licence and use the Octave code with minor modifications, or to write
these scripts in Python.

In conclusion, the METAS UncLib software is a proven, open-access tool supporting the
determination of measurement uncertainty due to its ease of use, high accuracy and speed of
calculations. However, it is not possible to run MCM simulations with non-Gaussian PDFs of the
input quantities 𝑋𝑖 .

This was the motivation to develop software with such functionality and then test, using
a specific example, whether the consideration of the PDF shape of the measured input quantities
𝑋𝑖 is relevant for the determination of the measurement uncertainty 𝑌 .

3. Validation of MCM software by comparison with previously published results in [9]

Publication [9] presents a comparison of results of determining the limit values of type A
measurement uncertainty (caused by a random error from the mating connectors) for the mismatch
factor 𝑀 obtained by the GUM and the MCM during the calibration of the RF power sensor.
Measurements performed made in the system shown in Fig. 1, consisting of a generator (RF
power source) and a power splitter to which the RF source and source power monitoring sensor
are permanently connected, and the power sensors already calibrated (standard) and undergoing
calibration (device under test – DUT) are connected interchangeably.

Fig. 1. Block diagram of the RF power sensor calibration system based on direct comparison [9].

The direct comparison method is usually used to calibrate the RF power sensor [15]. The
method consists in interchangeably connecting the standard power sensor and the DUT to the
RF power source. The effective efficiency of the calibrated RF power sensor is compared to the
efficiency of the DUT. In such a comparison, there is a mismatch factor 𝑀 , which is the cause
of RF power loss [16]. The mismatch is due to reflections from both the standard power sensor
ΓS, the DUT ΓD and the source ΓG. The DUT and the standard power sensor are connected
interchangeably to the RF source through a resistive power splitter. The mismatch factor is

706



Metrol. Meas. Syst.,Vol. 30 (2023), No. 4, pp. 703–720
DOI: 10.24425/mms.2023.147953

derived from the measured reflection coefficients Γ and is used to correct the calibration error
of the effective efficiency of the sensor. The measurement uncertainties of the coefficients Γ

contribute to the measurement uncertainty of the effective efficiency of the DUT through the
mismatch factor 𝑀 . Therefore, it is important to reliably determine the uncertainty of 𝑀 when
calibrating the power sensor.

The mismatch factor 𝑀 is defined as [9]:

𝑀 =

(
1 − |ΓS |2

) (
|1 − ΓDΓG |2

)(
1 − |ΓD |2

) (
|1 − ΓSΓG |2

) , (1)

where ΓS, ΓD, ΓG are, respectively, the reflection coefficients of the standard sensor, the DUT
sensor, and the equivalent source of power splitter, which can be obtained from the conventional
one-port VNA calibration method [13, 15], or calculated from the expression [9]:

ΓG = 𝑆22 −
𝑆12𝑆23
𝑆13

, (2)

where 𝑆𝑖 𝑗 are the elements of the power splitter s-matrix, measured with a two-port VNA.
The𝑀 factor is a component that takes into account the effect of the impedance mismatch when

calibrating a RF power sensor using the direct comparison method, according to the function [9]:

𝜂D = 𝜂S
𝑃D𝑃MS
𝑃S𝑃MD

𝑀 (3)

in the measurement system shown in Fig. 1.
In order to verify the developed software, the simulations performed in publication [9] using

the MCM were repeated and the results were almost identical to those in the publication mentioned
above.

The authors of [9] used a PDF consisting of uniform and normal distributions and concluded
that the obtained results show, in special cases (𝑒.𝑔. for the measurement frequency 𝑓 = 1 GHz), a
large discrepancy (even twofold) in determining the uncertainty interval using the MCM compared
to the GUM. However, they did not provide the reason for this discrepancy.

The GUM assumes that the PDF of the measurand𝑌 is normally distributed. We have checked
that even when the simplification is applied, 𝑖.𝑒. using only a normal PDF for all components
listed in (1) and (2), there is still a discrepancy in the results between the GUM and the MCM,
even greater than in the case considered in [9].

Figure 2 shows exemplary PDF graphs of the 𝑆22 element of the power splitter s-matrix, in
the form of a histogram on a logarithmic scale, to highlight the shape differences adopted for the
simulation of distributions.

In this case, the cause of the discrepancy cannot be attributed to correlations of the input
values, as such correlations do not occur here. The PDF histogram of the 𝑀 factor determined
from (1) and (2) at 1 GHz, shown in Fig. 3b, differs significantly from the normal PDF, which
requires finding the reason for these differences.

It was assumed that the discrepancy was probably due to GUM’s analytical model. The
METAS UncLib software was used for calculations using the GUM [13]. It automates the
determination of sensitivity coefficients, which is particularly helpful for complex measurement
functions, 𝑒.𝑔. here after substituting (2) into (1), and additionally enables the determination
of higher-order expansion coefficients – see Section 2 for a more detailed description. It turns
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Fig. 2. PDF: (a) real part, (b) imaginary part of the 𝑆22 of the power splitter s- matrix. (Solid line – PDF
being the sum of the normal (G) and rectangular (R) distribution, etc., dashed line – normal PDF with the

same standard uncertainty as G + R).

Fig. 3. PDF histogram of 𝑀 factor determined by the MCM from (1) and (2) at: (a) 1, 40, 50 GHz, (b) 1 GHz.

out that the reason for the discrepancy between the GUM and the MCM is the nonlinearity
of the measurement function. Using first order sensitivity terms (a standard commonly used in
measurement procedures), we obtained a large discrepancy of results between the GUM and the
MCM, similar to that in the publication [9]. However, when second-order expansion coefficients
are used, the results of GUM and MCM almost overlap, as shown in Tables 1 and 2. This
demonstrates the superiority of the MCM, which in this case, can be used to validate the GUM,
as a reference method.

Table 1. Lower and upper bounds of the uncertainty interval of the 𝑀 factor determined by the MCM and GUM for three
measurement frequencies.

GUM order 1 2 3

𝑓 [GHz] 1 40 50 1 40 50 1 40 50

𝑀lowGUM 0.9996 0.9597 1.0457 0.9989 0.9596 1.0459 0.9989 0.9596 1.0459

𝑀highGUM 1.0004 0.9856 1.1314 1.0010 0.9857 1.1317 1.0010 0.9857 1.1317

𝑀lowMCM 0.9988 0.9596 1.0460 0.9988 0.9596 1.0461 0.9988 0.9596 1.0462

𝑀highMCM 1.0011 0.9856 1.1317 1.0011 0.9856 1.1318 1.0011 0.9857 1.1319
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Table 2. Length of the uncertainty interval of the 𝑀 factor determined by the MCM and GUM for three measurement
frequencies.

GUM order 1 2 3

𝑓 [GHz] 1 40 50 1 40 50 1 40 50

dMGUM 0.0008 0.0259 0.0857 0.0021 0.0260 0.0857 0.0021 0.0260 0.0858

dMMCM 0.0022 0.0261 0.0858 0.0022 0.0261 0.0857 0.0022 0.0260 0.0857

𝛿MGUM-MCM [%] –64.5 –0.4 –0.1 –7.4 –0.1 0.0 –7.4 –0.1 0.0

Table 1 shows the lower 𝑀low and upper 𝑀high limits of the uncertainty interval of the 𝑀
factor determined by the GUM and the MCM at the three measurement frequencies 𝑓 . Table 2
shows the length 𝑑𝑀 of the uncertainty interval of the 𝑀 factor for the same parameters as in
Table 1. The use of higher order sensitivity coefficients increases the accuracy of the analytical
method. The results in the MCM method change slightly in each successive calculation due to
the randomness of the process. Tables 1 and 2 highlight a case where there is a discrepancy in the
results between the GUM and MCM. This occurs 𝑒.𝑔. for the measurement frequency of 1 GHz.

In [9], optimization of the position of the uncertainty interval was applied, implemented in
the MCM, to obtain the minimum length of this interval. Figure 4a shows the influence of the
position of the uncertainty interval on its length for three measurement frequencies.

Figure 4b shows the same relationship but only at 1 GHz. Clearly the asymmetric shape of
these curves is due to the asymmetric nature of the corresponding PDF uncertainties. For a normal
distribution, the shape of the curve would be symmetric with respect to the expected value. In the
case under consideration, this dependence is small as it is about 0.1% of the calculated uncertainty
interval. We have also added this type of position optimisation to the developed software.

Fig. 4. Influence of the position of the uncertainty interval on its length at: a) 1, 40, 50 GHz, b) 1 GHz.

4. Validation of the MCM software on example of determining type A uncertainty for RF
power sensor calibration using a VNA and assuming a Gaussian PDF of input data

The type A uncertainty was determined for the calibration of the RF power sensor using
a VNA. This uncertainty is due to the variation in the connection of the electronic calibration
module (ECM), standard and DUT sensors to the VNA port during successive measurements.
The calibration was carried out using the measuring set-up shown in Fig. 5.
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Fig. 5. Block diagram of the RF power sensor calibration system using a VNA (Keysight N5225B).

Before starting the series of actual measurements, after connecting the ECM to the VNA,
an initial calibration of the output power is performed once for all the measurement frequencies
𝑓𝑖 for which the main sensor calibration will be performed. Next, the main calibration consists of
three steps, in which:

1. The complex parameters 𝐸𝑅, 𝐸S, and 𝐸D, needed to determine the mismatch factor 𝑀 (7),
are automatically calculated by the VNA using the ECM at the output of the jumper cable,
which is permanently connected to the VNA;

2. The power 𝑃S delivered by the VNA is measured with a standard sensor while the complex
values of the reflected signal 𝐴S and the output power 𝑅S are measured with the VNA;

3. After connecting the DUT in the place of the standard sensor, the values 𝑃D, 𝐴D, and 𝑅D
are measured in the same way as 𝑃S, 𝐴S and 𝑅S.

The values above were measured for 𝑘 = 33 frequencies from 50 MHz to 26.5 GHz. As a
result, in each measurement, a total of 7 complex values {𝐴S, 𝑅S, 𝐴D, 𝑅D,𝐸𝑅, 𝐸S, 𝐸D} and 2 scalar
values {𝑃S, 𝑃D} were recorded. Finally, the measurements were repeated 𝑛 = 17 times. For each
of the 𝑛measurements, 16 scalar values were acquired: 𝑋𝑖 = {𝑃D, 𝑃S, Re𝑅D, Im𝑅D, Re𝐴D, Im𝐴D,
Re𝑅S, Im𝑅S, Re𝐴S, Im𝐴S, Re𝐸𝑅, Im𝐸𝑅, Re𝐸S, Im𝐸S, Re𝐸D, Im𝐸D} (where prefix Re and Im
means, respectively, real and imaginary parts of a complex number), at all frequencies 𝑓1...𝑘 , their
mean value 𝑚𝑋 and standard deviation 𝑠𝑋 were calculated, and then, using equations (4)–(9):

𝐾D =
𝑝D
𝑝S

· 𝑀, (4)

𝑝D =
𝑃D

|𝑅D |2
, (5)

𝑝S =
𝑃S

|𝑅S |2
, (6)
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𝑀 =

����1 − 𝐸S
ΓD − 𝐸D

𝐸R − 𝐸D𝐸S + ΓD𝐸S

����2����1 − 𝐸S
ΓS − 𝐸D

𝐸R − 𝐸D𝐸S + ΓS𝐸S

����2 , (7)

ΓD =
𝐴D
𝑅D

, (8)

ΓS =
𝐴S
𝑅S

, (9)

the calibration factor 𝐾𝐷_𝐺𝑈𝑀 was determined with the GUM for all frequencies 𝑓1...𝑘 by
calculating the mean value 𝑚𝐾D, the standard deviation 𝑠𝐾D, followed by the lower and upper
limits of the extended uncertainty interval at 𝑝 = 95%.

For comparison, using the MCM, the lower and upper limits of 𝐾𝐷_𝑀𝐶𝑀 of the uncertainty
interval were determined by generating samples of length 𝑁 = 106 with a normal PDF for all
input quantities 𝑋𝑖 and frequencies 𝑓1...𝑘 .

The results shown in Fig. 6a indicate that the uncertainty of 𝐾D determined with the MCM
significantly exceeds those determined with the GUM. There were also discrepancies in the
determination of the uncertainty of the mismatch factor 𝑀 (Fig. 6b) which are weakly visible in
Fig. 6b due to the more than 10 times smaller uncertainty of the mismatch factor 𝑀 compared to
the uncertainty of the calibration factor 𝐾D.

Fig. 6. (a) Calibration factors 𝐾D (4) and (b) mismatch factors 𝑀 (8), respectively, versus frequency, with marked
uncertainty intervals, without including correlations between the input values.

As it is crucial to compare the uncertainties obtained by the MCM and GUM methods shown
in Fig. 6, the corresponding relative differences in results between the MCM and GUM were
calculated for the lower and upper limits of the uncertainty interval, expressed as a percentage
of the values calculated by the GUM method, as shown in Fig. 7. Similar to graphs in Fig. 7,
containing relative differences between modified MCM calculations and the GUM are presented
later in this paper, because they are weakly visible in the format presented in Fig. 6.

A more detailed analysis of the input measurement data 𝑋𝑖 was carried out to explain these
discrepancies. Discrepancies occurring in the determination of uncertainty, particularly evident
in Fig. 7a, can be eliminated by taking into account the existing correlations between respective
𝑋𝑖 . It was confirmed by calculating and then implementing a covariance matrix in the prepared
MCM′ software, containing full information about all correlations of the input measurement data.
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Fig. 7. Relative differences between the MCM and GUM methods calculated for the lower and upper limits of the uncer-
tainty interval, expressed as a percentage of the values calculated by the GUM, for respectively: (a) calibration factors

𝐾D (4) and (b) mismatch factors 𝑀 (7).

The correlation between input quantities was checked by finding the number of instances
of statistically significant (𝛼 < 0.005) correlation using the Octave corrcoef function [18] at
frequencies 𝑓1...𝑘 . The analysis showed, 𝑒.𝑔., a strong correlation (in the range from 0.99 to
0.999) of the measured values 𝑃D and |𝑅D |2. With such a strong correlation, measurement
errors are largely eliminated in this case, which should be taken into account in the MCM
software by including the covariance matrix in the calculation of the uncertainty interval. 𝑃D
and |𝑅D |2 are measured simultaneously and in the following calculations have been treated here
as single quantity 𝑝D using (5). The same applies to 𝑃S and |𝑅S |2 which leads to 𝑝S (6). It
follows from the above that building the MCM simulation model containing complex quantities
requires a good knowledge of the specifics of VNA measurements. For example, treating 𝐴S and
𝑅S as independent complex quantities separately and generating independent random samples
for them leads to completely erroneous results, as these quantities are measured simultaneously;
consequently, instead of 𝐴S and 𝑅S, the reflection coefficient ΓD (8) should be used in simulations,
the same applies to 𝐴S, 𝑅S and to the coefficient ΓS (9).

Finally, we used 𝐵 = 12 input quantities 𝑋 ′
1...𝐵 = {𝑝D, 𝑝S, ReΓD, ImΓD, ReΓS, ImΓS, Re𝐸𝑅,

Im𝐸𝑅, Re𝐸S, Im𝐸S, Re𝐸D, Im𝐸D} in the measurement function (4). For each 𝑓1...𝑘 correlation
matrix of size 𝐵 × 𝐵 was calculated using the Cholesky factorization with the Octave chol
function [18], and the correlation degree between input quantities was checked by finding the
number of instances of statistically significant (𝛼 < 0.005) correlation using the Octave corrcoef
function [18], which is shown in Table 3 as numbers. When 10 or more instances occurred (from
the maximal number 𝑘 = 33), the case is highlighted in yellow.

For all input quantities 𝑋𝑖’, a corresponding 12 × 12 covariance matrix and random normal
samples of length 𝑁 = 106 were generated. The simulation results 𝐾𝐷_𝑀𝐶𝑀 ′ of the model
prepared in this way are shown in Fig. 8.

Relative differences in results between MCM′ and the GUM were calculated, taking into
account the correlations between the input quantities, for the lower and upper limits of the
uncertainty interval, expressed as a percentage of the values calculated by the GUM method.
Figure 8a shows the results for calibration factors 𝐾D and Fig. 8b for the mismatch factors 𝑀 ,
respectively. When the correlation between the measured input data is taken into account, a good
convergence between the results obtained by the MCM′ and GUM methods is apparent. Compared
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Table 3. Number of instances of statistically significant (𝛼 < 0.005) correlation between input quantities at 𝑘 measurement
frequencies. Highly correlated quantities highlighted in yellow.

pS Re𝚪D Im𝚪D Re𝚪S Im𝚪S ReED ImED ReES ImES ReER ImER

pD 33 17 11 7 9 6 7 6 5 9 9

pS 19 12 8 9 6 7 4 4 11 10

ReΓD 11 13 9 8 11 8 7 10 5

ImΓD 8 7 7 6 1 6 5 5

ReΓS 11 6 5 4 3 11 8

ImΓS 5 7 1 7 10 7

ReED 12 11 18 10 5

ImED 15 19 12 8

ReES 11 10 5

ImES 10 9

ReER 15

Fig. 8. Relative differences between the MCM′ and GUM methods calculated for the lower and upper limits of the un-
certainty interval, expressed as a percentage of the values calculated by the GUM, for respectively: (a) calibration factors

𝐾D (4) and (b) mismatch factors 𝑀 (7).

to the results shown in Fig. 7, the discrepancy between the results obtained by the MCM and
GUM has decreased by more than 50 times.

5. Non-Gaussian PDF of measured input data

After implementing the effect of correlation on measurement uncertainty in MCM′, the next
task was to determine the PDF of the measured input quantities 𝑋 ′

𝑖
and their possible effect on

the 𝐾D uncertainty interval. The ability to take into account the shape of the PDF is the main
advantage of the MCM that distinguishes it from the GUM. Using the GUM, it was a priori
assumed that the PDF of 𝐾D uncertainty has the shape of Student’s t-distribution with the number
of degrees of freedom 𝑣 = 𝑛 − 1. In Fig. 9, an example shape of PDF 𝐾D at 20 GHz is shown
using the MCM′ approach. The PDF of 𝐾D determined by the MCM is close to the real one,
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provided that the PDFs of the measured input quantities are Student’s t PDFs. The graph also
shows the limits of the uncertainty interval at 𝑝 = 95%. The shapes and uncertainty intervals are
nearly identical. We then tried to find the true shapes of the input quantities.

Fig. 9. Uncertainty limits and the PDF of calibration factor 𝐾D at 20.0 GHz.

Determining the PDF shape requires multiple measurements. Skewness and kurtosis are
parameters that determine the PDF shape of measured quantities 𝑋 ′

𝑖
. They are completely inde-

pendent of the mean value and the standard deviation of the measured quantities.
First, the measurement results of all input quantities 𝑋 ′

𝑖
were analysed as a function of

frequency. They are mostly monotonic and change slowly as a function of frequency, as illustrated
in Fig. 10 for 𝑝S where the graphs (a)–(d) show, respectively, the dependence of mean, standard
deviation, skewness, and kurtosis on the frequency.

Figure 10e shows a plot with skewness × kurtosis coordinates, where each point shows
the skewness and kurtosis obtained for a given frequency. Individual PDF distributions (𝑒.𝑔.,
normal, chi, chi2, gamma, beta, etc.) in the skewness × kurtosis coordinates take the form of a
family of curves. For example, a point with coordinates (0, 0) represents the shape of normal
distribution N(0, 1).

Unfortunately, the resulting estimates are biased for small sample size non-normal PDFs [19],
so the following analysis abandons PDF formation based on sample location in the skewness× kur-
tosis coordinates. Instead, we use a histogram of standardized values to approximate all PDFs
of measured input quantities 𝑋 ′

𝑖
shown in Fig. 10f. For 𝑛 consecutive measurements of input

quantities 𝑋 ′
𝑖
, the resulting random variable was standardized by subtracting its expected value

and dividing the difference by its standard deviation:

standard
(
𝑋 ′
𝑖

)
=
𝑋 ′
𝑖
− 𝑚𝑋 ′

𝑖

𝑠𝑋 ′
𝑖

. (10)

The samples standardized in this way retain PDF shape information expressed in its skewness
and kurtosis.

The number of results of independent measurements of the same quantity should be large
enough to determine its PDF histogram. In statistics, it is usually assumed that the optimal
number of histogram bins is 30. Then the shape of the histogram is sufficiently smoothed and
at the same time accurately reflects the PDF of the measured value. In order for the bins of the
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Fig. 10. Statistical properties of 𝑝S versus frequency.

histogram to be sufficiently filled, on average, they should contain at least 20 results, hence the
sample analysed should contain about 30 × 20 = 600 results. This number is very difficult to
achieve in practice. A single measurement of the DUT at 33 frequencies, requires at least 30
minutes. In total, it would take 200 man-hours to make 600 measurements. A separate issue is the
degradation of measuring connectors when they are repeatedly mated. To overcome this problem,
we included standardized values of measurements taken at 𝑘 = 33 frequencies as reliable ones for
determining the histogram. In consequence, 𝑛 = 17 measurements at 𝑘 frequencies were used for
statistical analyses, yielding a total of 𝑛 × 𝑘 = 561 results for each input quantity 𝑋 ′

𝑖
. An example

of a cumulative histogram of 𝑛 × 𝑘 measurements determined for standardized 𝑝S is shown in
Fig. 10f.

Based on the calculated H𝑋 ′
𝑖

histograms (𝑒.𝑔. shown in Fig. 10f), standardized vectors V𝑋 ′
𝑖

of
random values with corresponding PDF shapes and length 𝑁 = 106 were assembled in two steps:
(𝑖) initially, a vector was created piece-by-piece from the generated random vectors of length,
mean value and standard deviation taken from successive bins of the H𝑋 ′

𝑖
histogram, (ii) then the

position of the elements of V𝑋 ′
𝑖

vector was randomly changed. This procedure is explained in
Figs. 11 and 12, for two cases – using a uniform and normal distribution, respectively, and only
10 histogram bins. The uniform distribution is used to show the idea of generating vectors since
it gives worse results than the normal distribution.

The vectors from Fig. 12 sorted in ascending order, as shown in Fig. 13, are the inverse of
the cumulative distribution function (CDF). A comparison of the shape of the curves in Figs. 13a
and 13b shows that a uniform distribution does not produce a smooth final distribution, unlike a
normal distribution.
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Fig. 11. Vectors created piece-by-piece from random vectors generated according to successive bins of the histogram
standard (𝑝S) (10), using: (a) uniform PDF, (b) normal PDF.

Fig. 12. Vectors from Fig. 11, after randomly changing the position of their elements.

Fig. 13. Ascending sorted vectors from Fig. 12 for: (a) uniform PDF, (b) normal PDF.

The standardized V𝑋 ′
𝑖

vectors (𝑒.𝑔., generated for 𝑝S as shown in Fig. 14) were then reversely
unstandardized according to:

𝑋 ′′
𝑖 = standard

(
V𝑋 ′

𝑖

)
· 𝑠𝑋 ′

𝑖 + 𝑚𝑋 ′
𝑖 (11)
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and consequently used for the MCM′′ simulation of measurement uncertainty, taking into account,
in addition to correlations, the PDF shapes of the input quantities 𝑋 ′′

𝑖
, which are arguments of

the measurement function 𝑌 .

Fig. 14. Example histogram of the generated random sample 𝑝S.

Finally, after using equations (4)–(9), MCM′′ PDFs of the 𝐾D were obtained (Fig. 15).

Fig. 15. PDF of the 𝐾D calibration factor for 20.0 GHz determined with the preservation of information
about the shape of the PDF of the measured input quantities.

Relative differences in results between MCM′′ and the GUM were calculated, taking into
account the correlations and PDF shapes of input quantities, for the lower and upper limits of
the uncertainty interval, expressed as a percentage of the values calculated by the GUM method.
Figure 16a shows the results for calibration factors 𝐾D and Fig. 16b for the mismatch factors 𝑀 ,
respectively.

As it is crucial to directly compare results of the MCM′′ and MCM′ methods, shown in Fig. 8
and Fig. 16, respectively, the differences between them are obtained by using equations (12), (13)
and (14):

Δ𝑌high = 𝑌 ′′
high − 𝑌

′
high , (12)
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Fig. 16. Relative differences between the MCM′′ and GUM methods calculated for the lower and upper limits of the
uncertainty interval, expressed as a percentage of the values calculated by the GUM, for respectively: (a) calibration

factors 𝐾D (4) and (b) mismatch factors 𝑀 (7).

Δ𝑌low = 𝑌 ′′
low − 𝑌 ′

low , (13)
Δ𝑌length = Δ𝑌 ′′

low − Δ𝑌 ′
high , (14)

where Δ𝑌high, Δ𝑌low, and Δ𝑌length are the differences between the upper and lower limits of the
uncertainty interval and its length, respectively, obtained for calculations according to MCM′′ and
MCM′. 𝑌 denotes the output quantity and is replaced by the uncertainty of the calibration factor
𝐾D (4) in Fig. 17a and the uncertainty of the mishmash factor 𝑀 (7) in Fig. 17b, respectively.

Fig. 17. Differences between the MCM′ and MCM′′ methods, resulting from the use of the PDF shape information in
the determination of the measurement uncertainty parameters, as defined by equations (12)–(14), for the uncertainty of:

(a) calibration factors 𝐾D (4) and (b) factors 𝑀 (7), respectively.

The results of this comparison are homogeneous regardless of frequency, as shown in Fig. 17.
The differences between the MCM′′ and MCM′ approaches, resulting from the use of the PDF
shape of the input quantities in the latter approach to determine the measurement uncertainty,
show that the type A uncertainty of calibration factor 𝐾D (Fig. 17a) calculated with the MCM′

approach gives a larger value than with the MCM′′ approach, implying that the inclusion of the
PDF shape allows the calibration accuracy to be improved.

The same is true for the type A uncertainty of mismatch factor 𝑀 (Fig. 17b), except that the
differences between the MCM′′ and MCM′ approaches are about 2 times smaller.
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6. Conclusions

It is worth noting that the METAS UncLib software using the GUM approach is, in most
cases, faster and more accurate than the software developed at the LMEEiO, as sufficiently long
vectors have to be used to ensure adequate accuracy in the MCM′′ approach. However, in some
cases where we are dealing with specific PDF shapes of the measured values, our software
using MCM′′ is more accurate and can be used to validate the designated interval or area of
measurement uncertainty.

The lower uncertainty of the mismatch factor 𝑀 in comparison to the uncertainty of the cali-
bration factor 𝐾D confirms the advantages of calibrating RF power sensors by direct measurement
using the VNA.

Reliable PDF determination of the measured quantities for a small sample of repeated inde-
pendent measurements is a challenging task. To achieve this, we have developed a special method
that uses the histograms of standardized input quantities at all measurement frequencies to in-
crease the total number of results which were needed to create the PDF histogram of measured
input quantities.

The results presented in Section 5 showed that in our particular case, the influence of the PDF
shape on 𝐾D uncertainty limits is substantial.

It is worth noting that the 𝐾D calibration coefficients in the 3–7 GHz range (see Fig. 7a) show
ripples due to the nonlinearity of the VNA source, which can be observed by lowering the output
power of the VNA – these ripples then decrease significantly. As this type of error is systematic, it
does not significantly affect the determination of type A uncertainty and is omitted here. However,
it is advisable to eliminate this imperfection in order to increase the accuracy of the calibration.
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