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Abstract: New methods for identifying the material properties of planar objects as a result
of measurements by the eddy current method are proposed. The methods are based on the
latest surrogate strategies and advanced optimization techniques that improve efficiency and
reduce resource consumption of problem solutions, and balance computational complexity
with the accuracy of the results. High-performance metamodels for global surrogate
optimization are based on deep truly meaningful fully connected neural networks, serving
as an additional function of accumulating apriori information about objects. High accuracy
of the approximation of the multidimensional response surface, which is determined by the
“exact” electrodynamic model of the testing process, is ensured by performing calculations
according to the computer design of a homogeneous experiment with a low weighted
symmetric centered discrepancy. The results of numerical experiments performed for full
and reduced dimensional search spaces, which can be obtained by linear transformations
using the principal component method, are presented. The verification of the methods proved
their sufficiently high accuracy and computational performance.
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1. Introduction

Structuroscopy is one of the most complex types of eddy-current non-destructive objects
testing. It is aimed at determining the structure-dependent distributions of material properties, that
is electrical conductivity (EC) and magnetic permeability (MP), along the depth of the material of
objects [1,2], with the following conclusions about their structural features, namely the state of heat
treatment and internal stress, hardness and temperature, etc. Hence, according to the measurement
results of the amplitude and phase of the signals of eddy-current probes (ECP) caused by changes
in the electromagnetic field as it passes through layers of the material with different properties
and use of special algorithms for processing of the obtained data, the profiles of the and MP are
reconstructed.

Most often, the inversion method and the method of the inverse measurement problem are
used for this purpose, which in the vast majority of cases exploit optimization approaches to
reproduce profiles [3], involving minimization of the difference between the results of calculations
based on the mathematical model of field and material interaction and the measurements. The
authors give an analytical review of various applications of this technique in [4], considered in
the context of eddy-current measurements of profiles of material properties of cylindrical objects.
However, due to their versatility, their use in relation to planar test objects (TO) is not a subject
to fundamental limitations with the same inherent advantages and disadvantages. Therefore, in
the authors’ opinion it does not require a separate analysis. The authors in article [5] present an
additional analysis of modern research on this problem. Moreover, we note a significant interest
in these techniques for solving inverse problems, in the works [6–8]. The use of optimization
algorithms and physical multi-frequencymeasurements by eddy-currents is common to them, which
significantly complicates the implementation of the proposed approaches. The research [9–11]
offers to carry out measurements with devices with complex circuitry at swept-frequency for
the same purpose, leading to similar disadvantages as in the previous case. In [12] the authors’
attention is, however, on the advantages of application of data-driven methods for the EC profiles
assessment. However, the findings are characterized by low accuracy. The combination of the
iterative inversion procedure, processing the results of experimental measurements with finite
element data modelling, discussed in [13] for reconstructing the distribution, is hardlyacceptable
due to its significant computational resource intensity.

With this background, we must note that the features of ensuring accuracy when using the most
common ones for such tasks of analytical mathematical models of the Uzal-Cheng-Dodd-Deeds
type [5] for solving the problem of optimization techniques require a significant number of the
desired variables, which together determine the EC and MP profiles. Their number for complex
and realistic problems of profiles reproduction is hundreds, leading to a significant increase
in computational resource consumption. Proxy-modelling is a way out of this situation. The
role of a proxy-model can be played by a neural network metamodel, which, on the one hand,
provides a significant reduction in resource consumption, and on the other hand, acts as a carrier
of previously accumulated information about the TO [14]. Such apriori information can be
obtained due to numerical modelling using an electrodynamic model of the eddy-current testing
process to increase information on changes in the material properties of an object during its
multifrequency sounding, changes in the clearance between the ECP and the object, the depth
of field penetration, etc. This metamodel application in the target function for reconstructing
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profiles in the process of surrogate optimization significantly improves the resource consumption
indicators when solving inverse problems, hence making them efficient. The same goal is achieved
by a considerable reduction in the dimensionality of the latent search space during optimization,
achieved by appropriate methods of its transformation.

Thus, the aim of this research is to develop methods for solving inverse problems of simultane-
ous reconstruction of profiles of material properties of objects in eddy-current measurements based
on apriori information accumulation, the latest surrogate strategies, and advanced optimization
techniques. This is certain to provide an improved efficiency and reduced resource consumption of
solutions as well as balance between computational complexity and accuracy of results.

2. Formulation

In this research, we consider the process of eddy-current testing of planar objects performed
with the use of ECPs surface (Fig. 1).

Fig. 1. Eddy-current measurement of EC and MP profiles of planar test objects

The objects are characterized by infinite overall dimensions. The determination of the EC and
MP profiles is performed by numerical calculations based on the measured data. The algorithm for
solving inverse problem involves the use of an electrodynamic model of the eddy-current testing
process. To simplify it a subsurface TO layer with certain structural features caused, for example,
by technological operations to strengthen its surface is considered conditionally multi-layered.
Moreover, each of the conditional layers is characterized by different piecewise constant values
of material properties. The simulation of the continuity of EC and MP profiles is provided by
a significant number of conditional layers L, which is generally considered to be quite significant.
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The objects environment is assumed to be linear, homogeneous and isotropic. The electromagnetic
field is excited by the EC a generator coil with a sinusoidal current I varying with an angular
frequency ω = 2 · π · f . The model takes into account that the coil has a rectangular cross-section
with finite dimensions, is characterized by a uniform current density across the cross-section j0 and
has a number of turns W . These assumptions are inherent in the analytical electrodynamic model
Uzal-Cheng-Dodd-Deeds [15–18] of the eddy-current testing of planar TO, which for arbitrary
number of conditional layers will later be used in the matrix form of writing in the Theodoulidis
interpretation [19]. The output signal of the eddy current probe induced in the measuring coil of
the ECP is calculated by the equation:

emod = − j · ω · wmes ·

∮
Lc

A(P)dlp, (1)

where: A(P) is the azimuthal component of the magnetic vector potential at the observation
point P, Wb/m; wmes is the number of turns of the ECP measuring coil; Lc is the contour of the
measuring coil.

In turn, the magnetic vector potential at the observation point P with coordinates (rδ, zδ) is
calculated in accordance with the equation:

A(rδ, zδ) =

∞∫
0

J1(κrδ) · [Cs · eκzδ + Dec · e−κzδ ]dκ, (2)

where:
Cs =

µ0 · j0
2
·
χ(κr1, κr2)

κ3 · (e−κz1 − e−κz2 ),

Dec =
(κ · µt+1 − λ1) · V11(1) + (κ · µt+1 + λ1) · V21(1)
(κ · µt+1 + λ1) · V11(1) + (κ · µt+1 − λ1) · V21(1)

· Cs,

j0 = W · I(r2 − r1)
−1 · (z2 − z1)

−1,

χ(x1, x2) =

{
x1 · J0(x1) − 2 ·

∞∑
m=0

J2m+1(x1)

}
−

{
x2 · J0(x2) − 2 ·

∞∑
m=0

J2m+1(x2)

}
,

V(1) = T (1, 2) · T (2, 3) . . .T (L − 2, L − 1) · T (L − 1, L) ,

T11 (t, t + 1) =
1
2
· e(−λt+1+λt )dt ·

(
1 +

µt
µt+1

·
λt+1
λt

)
,

T12 (t, t + 1) =
1
2
· e(λt+1+λt )dt ·

(
1 −

µt
µt+1

·
λt+1
λt

)
,

T21 (t, t + 1) =
1
2
· e(−λt+1−λt )dt ·

(
1 −

µt
µt+1

·
λt+1
λt

)
,

T22 (t, t + 1) =
1
2
· e(λt+1−λt )dt ·

(
1 +

µt
µt+1

·
λt+1
λt

)
,

λt =
(
κ2 + j · ω · µ0 · µt · σt

) 1
2
.
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V(1) is the matrix whose elements are V11, V21; T() is the matrix with elements T11(), T12(),
T21(), T22(); µ0 = 4 · π · 10−7 is the magnetic constant in vacuum, H/m; J0(), J1(), Jm() are the
cylindrical Bessel functions of the first kind of zero, first, and m−th orders; (r2 − r1) is the width
of the cross-section of the ECP excitation coil, m; (z2 − z1) is the height of the cross-section of the
ECP excitation coil, m.

Based on this model (1), the authors created a software product that allows calculating the
output signal of a surface probe under various measurement conditions, which has been thoroughly
verified. The testing was carried out both by comparing with the calculations based on analytical
models obtained for one- and two-layer TO [20] and the results of numerical calculations by
the finite element method in the COMSOL Multiphysics (AC/DC Module) environment for
a three-layer object [5], where the maximum relative error in determining the vector potential in
terms of amplitude did not exceed 0.2% and in terms of phase –0.5%.

Thus, after the procedure of ECP measuring over a planar object, the signal amplitude
and phase are subject to fixation according to one of the classical measurement designs [1].
Mathematically, the measured signal emes can be represented in an algebraic form as the expression
emes = Cmes + j · Dmes, where Cmes and Dmes are its real and imaginary parts, respectively.
Such a mathematical form of EMF representation allows for the further efficient creation of the
target function F to find the optimal values of the desired model parameters. Then, the task of
reconstructing the EC and MP profiles is to minimize the following quadratic function:

F (σ,µ, f , . . .) = (Cmes − Gmetamod)
2 + (Dmes − Zmetamod)

2 → min, (3)

where: emetamod = Gmetamod + j · Zmetamod is the EMF value calculated using a neural network
proxy-model (metamodel) on the electrodynamic model; σ,µ are the corresponding vectors of
material properties determining the desired profiles.

3. Methodology

The main idea of this research is to use certain strategies and techniques of surrogate
modelling in the optimization algorithm for finding profiles of material properties [21–24],
ensuring a significant reduction in the resource consumption of problem solving and maintain
a balance between its computational complexity and the accuracy of the results. The aim of this
research has led to specific tasks, namely, the application of two approaches to the implementation
of surrogate optimization techniques in inverse profile measurement problems.

The first (Fig. 2) is to create a high-performance metamodel in the search space, the di-
mensionality of which is determined by the summation of the dimensions of the vectors σ
and µ.

The neural network metamodel is used in the design of the target function for calculating
the EMF instead of the “computationally heavy” electrodynamic model emod. Given that, the
dimensionality of the vectors σ and µ is the same and equal to the number of conditional layers of
the TO, the dimensionality of the space is equal to twice its value of one of these vectors. Since
the number of conditional layers must be sufficiently large for the reasons mentioned earlier, the
dimensionality of the search space is also appropriate. Consequently, the number of variables to
be searched when implementing the optimization algorithm is significant, which complicates its
implementation.
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Fig. 2. General scheme of implementation of the classical surrogate optimization method for solving the
inverse problem of MP and EC profiles determining

A feature of the metamodel is also its implementation in the form of two real-valued deep
fully-connected neural networks (DFCNN) with common inputs, the outputs of which, when
trained, take the values of the real and imaginary parts of the EMF emetamod. This technique
allows achieving much better results in the accuracy of the electrodynamic model approximation
than when using the amplitude and phase of the ECP signal. The use of deep neural networks
is due to their ability to detect complex nonlinear hierarchical dependencies between input and
output data. Training, cross-validation, and test samples for creating metamodels are formed on
the basis of a computer homogeneous design of the experiment (DOE) with low discrepancies
rates [25–27], which ensures reliable reproduction of the multidimensional response surface
during approximation. In addition to the usual function of high-performance computing for
surrogate optimization, metamodels additionally perform the functions of apriori accumulation of
information about the TO.

This effect is achieved by modelling in accordance with the DOE using an electrodynamic
model as a result of varying material properties, excitation frequency, air clearance between the
object and the ECP, etc. Consequently, all the above sample types with high-quality and diverse
data are generated, which is crucial for neural network training. Finally, to find the extremum of
the target function, a heuristic stochastic global optimization algorithm is used, namely a hybrid
multi-agent particle swarm optimization algorithm with evolutionary formation of the swarm
composition [28–30]. It is a kind of low-level hybridization of the particle swarm method with
a genetic algorithm. This combination of algorithms has a positive effect on both the accuracy and
speed of finding a global solution. The integration of algorithms allows finding the extremum for
complex, including ravine-like, response surface topologies. Such surfaces are characteristic of
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inverse problems that are considered to be ill-posed. This algorithm is based on the PSO algorithm
with a random topology of links with the addition of genetic operators for crossover and mutation
and the implementation of the evolution of links between swarm particles. In contrast to the
conventional PSO algorithm, the crossover for particle coordinates and velocities is borrowed
from the genetic algorithm. At the same time, two subsets are selected from the entire set of
particles. The rules for updating velocities and positions are applied several times to the particles
belonging to the “PSO subset” and they are ordered so that individuals with lower values of the
target function belong to this subset, and the rest are replaced by the results of applying genetic
operators to the elements of the second subset. In addition, in order to improve the efficiency of
the algorithm, a crossover operator for the connections between particles is also introduced, which
implements the evolution of the connections topology. The process is repeated until an acceptable
solution is found.

The second approach also uses the surrogate optimization technique with all the nuances
mentioned above, but the optimization is performed in a search space of reduced dimensionality,
i.e. the latent space. Its dimensionality implies adjustments enabling to find a balance between the
computational complexity and accuracy of the problem solution results. The dimensionality of
the space is reduced by applying the PCA (Principal Component Analysis) method of linear data
mapping into a new space of properties that are independent of each other, with a slight loss of
information [31–34]. The transition to the latent space is realized by applying the SVD (Singular
Value Decomposition) technique to the Gram matrix obtained from the training set, followed by
the analysis of singular numbers and the selection of eigenvectors providing the largest variances
in the new coordinate system. In this case, the metamodels have to be created in the latent space, in
which the optimization is also performed using the target function of the form (3). After finding the
solution, it is necessary to return to the original coordinate system. Owing to a rational regulated
choice of the dimensionality of the latent search space, this hybrid approach leads to a significant
reduction in the variables for the optimization algorithm, reducing the computation time without
a significant loss of solution accuracy, which makes it very effective.

It should be noted that both methods require training on a large dataset containing information
on electromagnetic measurements and the corresponding EC and MP profiles.

4. Inverse problem of profiles defining

4.1. Method of classical surrogate optimisation
The first step in solving the multivariate inverse problem of measuring of profiles of material

properties by the classical surrogate optimization method is to create metamodels as proxy-models
and carriers of apriori information about the TO. Using the algorithm for constructing surrogate
models proposed by the authors in [22, 23, 29], metamodels were created taking into account
the measurement conditions and possible changes in the ECP signal. To build the metamodels,
a volumetric sample is designed for the DFCNN training at the points of the multidimensional
DOE [35] based on the Sobol’s LPτ-sequences, providing their high accuracy. This sample was
obtained by calculation using the “exact” electrodynamic model [5,19] and is presented in Table 1.

It should be borne in mind that, in addition to the basic (ideal) profiles of the EC and MP, their
scattering within the technological tolerance δT , % on the TO surface is possible, where the change
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Table 1. Total sample size of 8191 × 102 for creating metamodels

№ Profile Re(emod) Im(emod) µ1 µ2 ... µ51 σ1 σ2 ... σ51

1 –0.9697 –1.697 1.087 1.345 · · · 26.097 8 771 549 8 367 573 · · · 2 073 403

2 –0.9696 –1.635 1.080 1.318 · · · 24.140 9 422 131 8 980 990 · · · 2 107 756

3 –0.967 –1.757 1.093 1.372 · · · 28.054 8 120 966 7 754 157 · · · 2 039 050

4 –0.9432 –1.683 1.077 1.305 · · · 23.161 7 795 675 7 447 448 · · · 2 021 873

5 –0.9783 –1.7 1.090 1.358 · · · 27.076 9 096 840 8 674 282 · · · 2 090 580

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

8 191 –0.9676 –1.802 1.100 1.399 · · · 30.011 7 808 166 7 459 226 · · · 2 022 533

in these parameters is of maximum importance. That is, when constructing a multidimensional
DOE, the maximum change in the profiles of material properties within this tolerance was
considered. Then the metamodels regarding, for example, the four influencing factors will have
the form emetamod = F(σmax, µmax, z, f ), of which σmax = var, µmax = var, z = var, f = var. Using
the successful sets of LPτ-sequences calculated for a single hypercube [35], the groups of their
combinations of two to nine factors were created. The resulting designs on the sequences were
analyzed both by the centered CD and wrap-around WD discrepancies and the newest ones –
mixed MD and weighted symmetric centered WSCD discrepancies [36, 37], which together make
it possible to assess the homogeneity of the DOEs created on their basis.

In these studies, the authors limited themselves to the simplest case, where metamodels take
into account only a change in two factors emetamod = F(σmax, µmax). For DOEs on LPτ-sequences
ξ1, ξ6, a transition from a unit square to a rectangle of the real factor space was made by scaling
from a unit square to a rectangle, taking into account that the material properties vary within
the technological tolerance δT = ±15%. The basic profile is the EC profile, the minimum and
maximum values for which are σmin = 2 · 106 S/m, σmax = 9.2 · 106 S/m, and for the MP
profile – µmin = 1, µmax = 26.1, respectively. Then, within the technological tolerance, the
ranges of change in the EC parameters are 7.82 · 106 ≤ σmax ≤ 10.1 · 106 S/m; and the MP –
22.185 ≤ µmax ≤ 30.015, with σmin and µmin remaining unchanged. Other initial data required to
create the DOE are as follows: the height of the ECP above the TO z = 1 · 10−3 m, the excitation
current frequency f = 2 · 103 Hz the thickness of the subsurface layer D = 3 · 10−4 m, which
was subject to conditional division into L = 51 layers to obtain piecewise constant profiles of the
material properties.

Within the specified limits of changes in material properties, we calculated the distribution of
EC σ using the typical “exponent” approximation and the distribution of MP µ using the “gaussian”
approximation [4] for the number of DOE points Nprofile = 8 191, which corresponds to the number
of profiles in the total sample. For example, the variants of some of the four profiles out of possible
8 191 cases of distributions of material properties in the subsurface TO layers calculated according
to the created DOE, are shown in Fig. 3.
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(a) (b)

Fig. 3. Profiles of material properties in the subsurface layer of the TO for some of their cases: distribution
of MP µ according to the typical “gaussian” profile (a); distribution of EC σ according to the typical

“exponential” profile (b)

This type of analysis showed the feasibility of DFCNN usage with four hidden layers and the
Levenberg–Marquardt learning method. The general structure of the selected MLPs is as follows:
MLP-n1 − n2 − n3 − n4-1, where n1, n2, n3, n4 is the number of hidden neurons in each layer
(Fig. 4).

Input layer
Training sample

102 × 6 012

Hidden layer 1
Number of neurons

n1

Hidden layers 2-4
Number of neurons

n2 − n4

Output layer
Re(emetamod) or
Im(emetamod)

Fig. 4. General structure of neural network metamodels

As a result, we obtained the rMLP-30-30-20-10-1 networks for the real part of the EMF and the
iMLP-25-25-20-10-1 networks for the imaginary part, respectively. The validity of the obtained
metamodels was evaluated by the errors MAPEmetamod, % (Mean Absolute Percentage Error),
separately for training, cross-validation, and test samples, the results of which are given in Table 2,
and by analyzing the scatter plots (Fig. 5).
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Table 2. Error of the approximation MAPEmetamod, % of obtained metamodels

Metamodel Training sample,
Ntraine = 4 206

Cross-validation
sample, NCV = 903

Test sample,
Ntest = 903

The total sample for
training, N = 6 012

rMLP-30-30-20-10-1 0.00327 0.00323 0.00339 0.003296
iMLP-25-25-20-10-1 0.01427 0.01506 0.01471 0.014487

(a) (b)

Fig. 5. Scatter diagrams of metamodels: rMLP-30-30-20-10-1 (a); iMLP-25-25-20-10-1 (b)

The verification of the obtained metamodels was carried out by checking the correctness of the
reproducibility of the response surface in the entire modelling domain by a number of statistical
indicators [38], the values of which are given in Tables 3 and 4.

The final stage of metamodels construction is to check their adequacy and informativeness.
To verify the correspondence of the metamodels to the training data, their adequacy was
determined by the Fisher criterion [38]. Thus, the obtained metamodel rMLP-30-30-20-10-1 has
a Fisher’s exponent value of F total

102;5909 = 6.309 · 106, and the critical value of this criterion with
a significance level of α = 5% and the number of degrees of freedom vR = 5 909, vD = 102 is

Table 3. Verification of the metamodel rMLP-30-30-20-10-1

Variance
components Sum of squares Middle square Dispersion Standard

estimation error

regressions SSD = 1.210734 MSD = 0.01186
vD = 102 σ2

D = 2.01419 · 10−4 SD = 0.01419221

residues SSR = 1.116 · 10−5 MSR = 1.88 · 10−9

vR = 5 909 σ2
R = 1.88 · 10−9 SR = 4.3458 · 10−5

general SST = 1.21074516 MST = 2.014 · 10−4

vT = 6011 σ2
T = 2.01421 · 10−4 ST = 0.01419228
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Table 4. Verification of the metamodel iMLP-25-25-20-10-1

Components
variances Sum of squares Middle square Dispersion Standard

estimation error

regressions SSD = 15.2868 MSD = 0.152811
vD = 102 σ2

D = 0.00254313 SD = 0.050429

residues SSR = 0.0004956 MSR = 8.38 · 10−8

vR = 5909 σ2
R = 8.38 · 10−8 SR = 2.896 · 10−4

general SST = 15.2873 MST = 0.0025432
vT = 6011 σ2

T = 0.0025432 ST = 0.05043

F table
0.05;102;5909 = 1.2837, which satisfies the adequacy condition. For the metamodel iMLP-25-25-

20-10-1, the adequacy condition for this criterion is also met, since F total
102;5909 = 1.8 ·106. The model

was tested for informativeness by calculating the coefficient of R2 determination according to the
data in Table 3 and Table 4 and testing the hypothesis of significance of this coefficient by Fisher’s
criterion. The coefficient of determination for both metamodels exceeds 0.99, which indicates
their high informativeness. These coefficients are significant according to Fisher’s criterion at
the 5% significance level, since the condition of informativeness is met for both metamodels
(F total

102;5909 = 1.448 · 106).
The nonlinear inverse problem is formulated as follows: based on the measured value of emes

EMF of the ECP, it is necessary to determine the desired profiles of material properties consisting
of 51 values of EC in the conditional layers of the TO and 51 values of MP, respectively, by means
of global surrogate optimization in the full factor search space.

By averaging the results of a series of problem solutions, the reconstructed profiles of MP
and EC along the depth of the subsurface layer were determined (Fig. 6). The parameters of the
optimization algorithm are as follows: the number of swarm particles is 20; the inertial coefficient

(a) (b)

Fig. 6. Results of determining of MP and EC profiles
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is 0.721; the cognitive and social coefficients are 1.193; the number of informants of other particles
is 3; the number of offspring is 5; the mutation probability is 0.2 and the iteration step of genetic
operators is 10.

Thus, the implementation of the first approach fails to give rather an acceptable result, which is
explained by the significant difficulties in finding the optimum due to the “curse of dimensionality”,
even in the case of a small number of layers of conditional partitioning.

4.2. Hybrid surrogate optimization method

In order to reduce the dimensionality of the search space, the PCA method based on the SVD
decomposition was used. As a result, 50 influential factors with eigenvalues greater than 1 were
selected. Subsequently, metamodels were built according to the above scheme, where the training
set is a matrix of parameters in a new latent factor space of size Nprofile × nlatent, where nlatent is the
number of variables in this space. The metamodels obtained in the space of reduced dimensionality
for the real and imaginary parts of emetamod are given in Table 5, which shows the estimation of
their training accuracy with the error MAPEmetamod, %. Figure 7 illustrates the histograms of
distributions of absolute errors of the real and imaginary parts induced in the measuring turn of
the ECP EMF, obtained by means of the created metamodels for the corresponding sample.

Table 5. Error of the approximation MAPE, % of metamodels in the latent space

Metamodel
MAPEmetamod, %

Training sample,
Ntraine = 4 206

Cross-validation
sample, NCV = 903

Test sample,
Ntest = 903

The total sample for
training, N = 6 012

rMLP-13-13-12-10-1 0.00914 0.01005 0.01023 0.00944

iMLP-13-13-12-10-1 0.01302 0.01573 0.01586 0.01385

The inverse problem is formulated similarly to the previous definition: based on the measured
value of emes EMF of the ECP, it is necessary to determine the profiles of material properties
consisting of 50 variables by means of global surrogate optimization in a new latent search
subspace.

As in the previous case, we performed multistarts of the optimization algorithm and obtained
fourteen solutions for the technological profiles of the MP and EC. At the same time, the parameters
of the optimization algorithm remained unchanged, as in the previous method. These actions are
performed for three EMF test measurement cases. After that, we returned to the original factor
space in order to obtain the actual profiles. Table 6 shows the obtained values of MAPE errors
for all individual solutions of µ and σ. Table 7 shows the values of the MP technological profile
µtech and the reconstructed µrecon for the two test measurements, obtained by averaging of the
calculations, as well as the value of the relative error at each point of the profile δi , %. The same,
but for the profile of the EC, is given in Table 8.
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(a) (b)

Fig. 7. Histograms of the distribution of absolute errors of the real and imaginary parts induced in the
measuring turn of the ECP EMF for metamodels: rMLP-13-13-12-10-1 (a); iMLP-13-13-12-10-1 (b)

Table 6. Error values MAPE, % for the reconstructed profiles of the MP and EC

№ start

MAPE, %

EMF test measurement 1 EMF test measurement 2 EMF test measurement 3

Re(emes) = −0.9739
Im(emes) = −1.637

Re(emes) = −0.9749
Im(emes) = −1.762

Re(emes) = −0.9648
Im(emes) = −1.627

µ σ µ σ µ σ

1 2.194 0.701 1.344 2.804 2.174 0.819

2 1.97 1.29 0.999 2.029 0.416 0.769

3 2.601 2.086 1.275 2.758 1.964 0.342

4 2.978 1.315 1.414 2.695 0.808 1.368

5 4.154 2.98 1.543 3.924 1.566 1.748

· · · · · · · · · · · · · · · · · · · · ·

10 0.901 0.578 1.452 0.829 1.865 0.906

11 1.256 1.453 1.469 1.69 1.112 1.427

12 1.018 0.228 1.79 2.404 1.985 1.798

13 0.679 0.186 2.03 0.634 3.964 2.603

14 0.318 0.769 1.047 0.985 0.407 0.825
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Table 7. Values of the technological and reconstructed MP profiles

№
conditional

layer

EMF test measurement 1 EMF test measurement 2

Re(emes) = −0.9739
Im(emes) = −1.637

Re(emes) = −0.9749
Im(emes) = −1.762

Profile
µtech

Profile
µrecon

Relative
error, δi, %

Profile
µtech

Profile
µrecon

Relative
error δi, %

1 1.082 1.087 0.5395 1.097 1.104 0.6223

2 1.325 1.328 0.2333 1.386 1.405 1.3664

3 1.725 1.728 0.2225 1.861 1.881 1.0654

4 2.273 2.278 0.2093 2.516 2.534 0.8414

· · · · · · · · · · · · · · · · · · · · ·

48 24.624 24.666 0.1717 29.085 29.159 0.2570

49 24.626 24.668 0.1717 29.087 29.162 0.2570

50 24.628 24.670 0.1717 29.089 29.164 0.2570

51 24.629 24.671 0.1717 29.091 29.166 0.2570

Table 8. Values of the technological and reconstructed EC profiles

№
conditional

layer

EMF test measurement 1 EMF test measurement 2

Re(emes) = −0.9739
Im(emes) = −1.637

Re(emes) = −0.9749
Im(emes) = −1.762

Profile
σtech

Profile
σrecon

Relative
error, δi, %

Profile
σtech

Profile
σrecon

Relative
error, δi, %

1 9.584777 9.6513676 0.6948 8.397073 8.43036 0.3964

2 9.134344 9.1973851 0.6902 8.014491 8.04763 0.4135

3 8.709643 8.7693371 0.6854 7.653764 7.68677 0.4312

4 8.309205 8.365743 0.6804 7.313644 7.34652 0.44952

· · · · · · · · · · · · · · · · · · · · ·

48 2.196699 2.2050656 0.3809 2.12188 2.1528 1.4570

49 2.168324 2.1764671 0.3756 2.097779 2.12869 1.4734

50 2.14157 2.1495023 0.3704 2.075055 2.10595 1.4891

51 2.116344 2.1240776 0.3654 2.053629 2.08445 1.5043
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5. Discussion

Two methods for solving the inverse problem formulated in terms of optimization are proposed
in this article, which systematically combine physical measurements and the mathematical
apparatus for processing the information received by the probe, adequate for incorrectly set tasks.
The methods are implemented in the form of algorithmic and software reconstruction of profiles,
which together constitute the defining achievements of the study. To minimize the target function
a heuristic bionic hybrid algorithm for finding the global extremum is used. The quadratic target
function includes the components calculated using computationally efficient metamodels serving
as carriers of apriori accumulated information about the TO and accurately approximate the
response surface originally specified by the electrodynamic model. Metamodels are created on
two really significant deep fully connected neural networks, which provide the above properties,
in particular: for the first method – MAPEmetamod is 0.003296% and 0.014487%, respectively, for
the real and imaginary parts of the EMF; for the second MAPEmetamod is 0.00944% and 0.01385%,
respectively, for the real and imaginary parts of the EMF. At the same time, the simplest case was
used: metamodels take into account only changes in two factors σmax and µmax. The adequacy and
informative value of the constructed metamodels of measurements by surface ECP has been proved.
According to Fischer’s criterion, both metamodels are adequate with a significance level of 5%,
where the criterion indicator is no worse than F total

102;5909 = 1.8 ·106, and informative with a coefficient
of determination of more than 0.99. Numerical simulations demonstrate the adequacy of both
methods with an acceptable profile reconstruction accuracy. Thus, for the first method, a series of
twenty-one solutions to the nonlinear inverse problem by means of surrogate optimization obtained
reconstructed profiles of MP and EC along the depth of the subsurface layer, which together provide
the maximum coincidence of the emod value with the measured emes. For the obtained solutions,
the error range MAPE, % is from 4.25% to 8.92%. By averaging the results of all solutions, the
reconstructed profiles of the MP and EC were determined, with the MP profile obtained with
error MAPE, % – 5.53% and 5.14% for the EC profile (Fig. 6). Thus, the implementation of the
first approach gives a not very acceptable result, which is explained by the significant difficulty
of finding the optimum due to the “curse of dimensionality", even in the case of a small number of
layers of conditional partitioning. The implementation of the second method yields error MAPE, %
that does not exceed 0.352% and error MAPE, % of 0.96% for the MP and EC profiles, respectively.

A significant difference between the proposed methods is the measurability of the factor space
where the optimization algorithm is implemented. Unlike the first, the second original method
takes advantage of the surrogate optimization in the search space of reduced dimensionality. In
this case, the dimensionality of the space is controlled by a researcher and is much smaller than
the original one, which can approximately constitute 40%. Thus, this provides a possibility to
significantly reduce the number of variables defining the profiles, with all the consequences:
twice reduced computation time, simplified conditions for finding the extremum with an indirect
positive effect on the accuracy of its finding. To transform the search space, the PCA principal
component method is applied, which ensures minimal loss of information and a balance between
a computational complexity and accuracy of the results.

6. Conclusions

The following conclusions can be drawn regarding the research results. One of the most
important features of the proposed methods for measuring the profiles of material properties of
planar TO by eddy-current probes is the application of the latest surrogate strategies in combination
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with modern global optimization techniques, which allows improving the efficiency and reducing
the resource consumption of problem solutions, and ensuring a balance between computational
complexity and accuracy of the obtained results. It was achieved by creating high-performance
metamodels based on real-valued deep fully-connected neural networks. In addition, the high
accuracy of the approximation of the multidimensional response surface is ensured by performing
calculations according to a computer homogeneous design of experiment with a low weighted
symmetrized centered discrepancy. We present the results of numerical experiments performed
in the search spaces of full and reduced dimensions, the latter of which is obtained by linear
transformations using the principal component method. The methods were verified by simulating
the measurements on synthetically generated data not used in training, testing, and verification of
metamodels, but known in advance. The results obtained prove to be sufficiently accurate in recon-
structing the profiles of electrical conductivity and magnetic permeability of planar test objects.
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