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Deep learning in the classification and recognition
of cardiac activity patterns

Łukasz Jeleń, Piotr Ciskowski, and Konrad Kluwak

Abstract—Electrocardiography is an examination performed
frequently in patients experiencing symptoms of heart disease.
Upon a detailed analysis, it has shown potential to detect and
identify various activities. In this article, we present a deep
learning approach that can be used to analyze ECG signals.
Our research shows promising results in recognizing activity and
disease patterns with nearly 90% accuracy. In this paper, we
present the early results of our analysis, indicating the potential
of using deep learning algorithms in the analysis of both one-
dimensional and two–dimensional data. The methodology we
present can be utilized for ECG data classification and can be
extended to wearable devices. Conclusions of our study pave the
way for exploring live data analysis through wearable devices
in order to not only predict specific cardiac conditions, but
also a possibility of using them in alternative and augmented
communication frameworks.

Keywords—ECG signal; deep learning; arrhythmia; signal
processing; ECG classification

I. INTRODUCTION

AS defined by the World Health Organization (WHO),
cardiovascular diseases stand among the primary causes

of mortality worldwide. According to the Organization, it
causes approximately 19.9 million deaths per year. In this
paper, a pattern recognition approach to ECG signal analysis
is described. This strategy achieves one of the key WHO
objectives in the prediction and prevention of cardiovascular
disease, allowing adequate medical care and preventing early
deaths. The proposed methodology ensures the most accurate
depiction of the ECG waveform based on data similar to that
of many primary health facilities.
In 2018 Lyon et al. [1] described a study that proposes the use
of ECG signals for the prediction of cardiovascular diseases
as a crucial stage in the diagnostic procedure. Electrocardio-
graphy examination is a clinical procedure that registers and
quantifies the heart’s electrical activity within a defined time
frame. A trained physician, based on such a recording, is able
to detect an abnormal heart function that can be induced by
different circumstances.
A review of the literature shows that ECG recordings, aside
from the determination of heart diseases, have multiple poten-
tial applications [2]–[4]. In recent years, the classification of
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emotions became one of the most often mentioned applica-
tions of ECG recording usage [5], [6]. Agrafioti et al. [7]
demonstrated that their system is able to perform accurate
valence classification of ECG shapes with an accuracy of
89%. Selvaraj et al. [6] reported that it is possible to classify
emotions with about 82.88% accuracy, where ”neutral” emo-
tions provided the highest accuracy of 92.87%. This research
classified popular emotions including anger and sadness.
In 2018, Liu et al. proposed a system that combines an
accelerometer and a wearable monitoring device to track
activity based on ECG recordings [8]. The researchers re-
ported 96.92% total accuracy of the proposed framework for
the data from 13 volunteers within the age range from 5
years to 68. Investigators suggested that outcomes of their
research could be applied for user activity and behavior
monitoring. The proposed approach could potentially be used
in healthcare framework. One among the most deprived areas
is interaction with individuals who struggle with capability
of spoken or written communication. Such an interaction is a
challenging, and has led to the development of an alternative
and augmented communication system (AAC). People with
impairments need to acquire a particular communication form
that could be easier when a signal from wearable devices is
incorporated for activity recognition tasks.
This paper outlines a deep learning approach that can be
used to analyze ECG signals. We present the initial results
of such an analysis on the arrhythmia dataset, and in the
end, we draw promising conclusions about the deep learning
architectures and their application to signals recorded with a
wearable device.

II. THEORY

In the realm of modern healthcare and medical diagnostics,
the integration of technology and data science has ushered
in a new era of precision and efficiency. Among the myriad
applications of these technological advancements, the analysis
of electrocardiography (ECG) signals using deep learning
techniques has risen as a transformative force. The electro-
cardiogram (ECG) provides a wealth of information about the
electrical activity of the heart over time. However, these raw
data often require extensive processing and interpretation, a
task where deep learning excels.
In this section, we explore the intersection of ECG and deep
learning that holds great promise for the future of cardiology
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and healthcare. In Section II-A, an overview of ECG mea-
surements is described that focuses on its essential role in the
diagnosis of cardiac disorders and the understanding of heart
function. Section II-B presents the intricate processes involved
in harnessing the deep learning methodology for ECG data
analysis.

A. ECG signals recording and measurements
Physiologically, the heart’s electrical activity is a direct

result of several physiological phenomena. Electrocardiogra-
phy aims to register graphs of the voltage change in time
that resembles that process. The concept of using sensors to
measure heart’s electrical activity dates back to the late 19th

century. Willem Einthoven was the first to suggest the use of
the PQRST symbol of the electrocardiography signal to record
the heartbeat. This symbol is still used today to differentiate
between various methods of ECG signal capturing. An exam-
ple of such measurements is graphically depicted in Fig. 1.
In the figure, one can see the representation of all the ECG
peaks as well as the R–R interval which is on of the widely
recognized measurements.
ECG registration is based on the capturing of a signal from
electrodes placed on different parts of the human body. In
medical diagnosis, the prevailing clinical standard is the 12
lead system that is in common use in hospitals. The system
uses 10 electrodes that are installed on arms and legs as
well as on the chest. Sometimes, when other standards are in
use, a lower number of electrodes, e.g., 3, 4, or 6 electrodes
are utilized. Furthermore, depending on patients’ diagnostic
needs, different measurements are used. These measurements
include measurement of rest with the 12-lead system, Holter
electrocardiography or a long-term physical activity. All of
these measurements require a pre–processing of electrical
signals [9].
Measurements shown in figure 1 are typically employed for

Fig. 1. R-R interval and other peaks of one heart cycle activity, taken
from [10]

the heart rate variability (HRV) analysis. HRV is the variation
in time between successive heartbeats, specifically the intervals
between R waves in an electrocardiogram (ECG) signal. In
the most popular wearable devices, readings come from an
optical sensor, and therefore, the R–R interval is the only
calculated parameter. More advanced and certified devices
utilize entire electrical signals for analysis. The majority of
them are then calculated from a continuous ECG recording
over a specific period, such as a 5-minute recording. Typically,
these measurements are as follows:

• SDNN – Standard Deviation of Normal-to-Normal (R-R)
intervals– statistical measure used in the analysis of heart
rate variability. It quantifies the general variability in R-R
intervals and is often used as a marker of the activity of
the autonomic nervous system. A higher SDNN value
typically indicates greater heart rate variability, which
is generally considered a sign of better cardiovascular
health and adaptability to different physiological and
environmental conditions.

• RMSSD – square Root of the Mean from the Sum of
Squares of Differences between adjacent NN intervals
– is a time-domain HRV parameter that quantifies the
variability in the duration of successive R-R intervals
(normal-to-normal intervals) of the heartbeats. It is cal-
culated according to eq. 1

RMSSD =

√√√√ 1

N − 1

N∑
1

(RRi −RRi−1)2 (1)

RMSSD is commonly used as a marker of parasympa-
thetic nervous system activity. Higher RMSSD values are
typically associated with increased heart rate variability
and are considered indicative of better cardiovascular
health and greater adaptability to different physiological
and environmental conditions.

• PNN50 – Proportion of NN50 adjoining NN intervals
greater than 50ms – a heart rate variability parameter
used to assess short-term variability in heart rate. It is
often used as a marker of parasympathetic nervous system
activity. A higher value of pNN50 indicates greater vari-
ability in heart rate and is generally considered a sign of
better cardiovascular health and adaptability to different
physiological and environmental conditions.

• SDANN – standard deviation of the 5-minute mean NN
intervals – calculated by dividing a continuous ECG
recording into nonoverlapping 5-minute segments. Then,
for each of these 5-minute segments, the average normal-
to-normal or R-R intervals are calculated. Finally, the
standard deviation is computed from these 5-minute av-
erage NN intervals. The calculated value reflects the day-
to-day variations in heart rate over the recording period.
It is a valuable metric for understanding how heart rate
patterns change over extended time intervals and can
provide information on circadian rhythms and long-term
cardiovascular health.

• SDSD – Standard Deviation of Successive Differences
– quantifies the variability in the duration of successive
R-R intervals of the heartbeats. It is calculated as the
standard deviation of the differences between consecutive
R-R intervals. In other words, it measures how much each
R-R interval differs from the next in a continuous ECG
recording. This measure is used to assess the short-term
variability in heart rate. It can provide insight into the
autonomic nervous system activity and cardiac health.

• TP – total power; HF, LF, VLF – high-, low-, and very
low-frequency power; these HRV frequency domains are
often calculated using power spectral analysis techniques,
such as the Fast Fourier Transform (FFT), which de-
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composes the HRV signal into its constituent frequency
components. Analyzing these frequency components can
provide valuable information on the autonomic nervous
system activity and general cardiovascular health.

• Poincaré plots – also known as scatter plots or Lorenz
plots – are a graphical representation used in the analysis
of heart rate variability (HRV) derived from an ECG
(Electrocardiogram) signal. These plots are particularly
useful for visualizing the dynamics and patterns of heart
rate data. Poincaré plots are useful for both visual inter-
pretation and quantitative analysis of HRV

In this paper we would like to stress out the ability of wearable
device utilization in the analysis of ECG signals. One of the
most popular and widely available devices is a Polar H10
sensor. As noted in the literature, it provides a reliable method
of measuring heart rates [11], [12]. These studies describe
tests of the Polar device against Holter medical devices. The
outlined research has shown that Polar sensors are just as
accurate for low- and moderate-intensity activities in healthy
individuals and even more accurate for strenuous activities. In
Figs. 2 and 3 one can see that these signals are very similar.
From the literature, we can see that many investigations have
been conducted to compare different wearable devices, and
these have confirmed the accuracy of techniques based entirely
on measurements and heart rate (HR) computations of the R–R
interval [12]–[14]. These papers collectively provide insights
into the classification of ECG signals using wearable devices.
Hua et al. proposes a compressive domain approach that
reduces energy consumption while achieving high precision in
the classification of heartbeats from the ECG [14]. Saadatnejad
et al. introduces a lightweight LSTM–based algorithm that
meets the timing requirements for continuous monitoring on
wearable devices [15]. Azariadi et al., on the other hand,
focuses on ECG analysis and classification using wearable
devices from the Internet of Things, achieving high pre-
cision [13]. In 2015, Krishnan and Maneesha addressed a
very important issue of electrode misplacement detection in
wearable ECG devices with immediate feedback to patients
and therefore reducing the risk of misdiagnosis [16].
In our approach, we intend to use the ECG signal data as
described by Plawiak [17], and the Polar H10 sensor captured
through the available API. In light of this, a dedicated mobile
application was designed to seamlessly gather data from the
Polar device (see Fig. 2).

B. ECG signal analysis with deep learning methods

In the this section, we take the domain of ECG signal analy-
sis into the realm of cutting-edge deep learning methodologies.
Our research is devoted to exploring innovative approaches to
extract valuable insights from ECG data and to harness the
power of artificial intelligence, paving the way for advanced
cardiac diagnostics and healthcare applications.
From the literature review, one can notice that different
approaches are provided for the classification of ECG ar-
rhythmias [18]–[21]. Zeybekoglu and Mehmed used Artificial
Neural Networks (ANN) to classify five types of ECG signals
with 82% accuracy [21]. In 2017, Teijeiro et al. introduced
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Fig. 2. Raw ECG signal obtained with Polar H10 sensor

a method that combines high-level features and a Recurrent
Neural Network to classify ECG records into four target
classes, achieving 83% accuracy [19]. Kadbi et al. introduced
a method based on wavelet transform and artificial neural net-
work to accurately classify multiple types of arrhythmias with
an overall precision greater than 90% [18]. In 2018, Plawiak
performed an extensive study on the application of classical
classification methods, including probabilistic neural networks
(PNN), radial basis function networks (RBF), support vec-
tor machines (SVM) and k–nearest neighbors (kNN) [17].
Additionally, the author describes several preprocessing and
feature extraction methods, such as 3 types of normalization,
periodogram generation with Welch’s method, discrete Fourier
transform with Hamming window, series of logarithms of
signals, and genetic algorithms. Recent study of Surowiec et
al. uses deep neural networks with preprocessing based on
downsampling, passband Butterwoth filter, wavelet transform,
division into one-cycle samples (approx. 1.25 seconds in
length) based on the Pan-Thompkins method. The authors
report that the signals were converted into two-dimensional
160x30-pixel images. The images were then classified with
the highest accuracy of 93.6%. These results were compared
with a one-dimensional signal classification to learn a signal
representation for deep neural networks.
This research aimed to identify the most suitable architecture
for managing upcoming measurements. To carry out the anal-
ysis, we sought a signal representation that would be most
suitable for distinguishing different ECG signals, either one-
dimensional vector or two-dimensional image. Contrary to
previous studies, the preprocessing of the ECG signal was
minimized. Such an approach resulted in larger architectures
for both classification and feature learning, what conforms
with the main assumption of deep learning.
The preprocessing stage involved sampling of the original 10
second long signals at 360 Hz. This led to the creation of
3600 samples in the range of 400–1800 mV. The signals were
normalized to range 0–1 or standard normal variate (mean
0, std. dev. 1). Subsequently, the signals were converted to
two-dimensional images with Matlab plot function and then
resized to 750x250 pixels. Example of the signals used in
the described study are shown in Figs. 3 and 4, respectively.
Such signals were presented as inputs to 2-dimensional con-
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Fig. 3. Two–dimensional ECG signal representation [4]

Fig. 4. Two–dimensional normal ECG signal representation used in this study

volutional neural networks. To be able to conform with the
aim of this research, we have compared several classification
methods. Based on the results described in sec. III we were
able to perform a comparative study of a suitable architecture
for ECG data analysis. Methods employed in our study include
several traditional algorithms, as well as deep learning neural
networks. Traditional methods include

• Random Forest (RF) – is a method that integrates
multiple decision trees for the decision making process.
It is commonly used to handle complex datasets due to its
robustness. When used in classification tasks, it outputs
the class based on majority voting among individual trees.

• Support Vector Machine (SVM) – is a method that
calculates a hyperplane that best separates data points
belonging to different classes. This algorithm aims to
maximize the margin between the classes.

• k–Nearest Neighbors (kNN) – is an effective and simple
machine learning algorithm used for classification and
regression tasks. Given a set of point, it makes decisions
based on the majority class among their k–nearest neigh-
bors in the feature space.

In recent years, deep learning algorithms have achieved re-
markable success in various domains, including computer
vision and signal processing. These networks attempt to mimic
the architecture of the human brain to process and learn
from large volumes of data. Recently, the most popular deep
learning architectures include Convolutional Neural Networks
(CNNs) for image analysis, and recurrent neural networks
(RNNs) for sequential data. In this paper, we compared the
following base architectures:

• Long Short-Term Memory (LSTM) – is a type of
RNN architecture that is designed to effectively model
and process sequential data. It can capture long-range
dependencies and mitigate the problem of vanishing
gradients during training.

• Convolutional Neural Networks (CNNs) – are a type
of deep learning model specifically designed for pro-
cessing and analyzing grid-like data, such as images and

videos. CNNs learn hierarchical representations through
the repeated application of convolutional and pooling
layers. Convolutional layers extract low-level features
such as edges, textures, and simple shapes. Deeper layers
capture more abstract and complex features, eventually
recognizing high-level concepts such as object parts or
entire objects. The final prediction or classification is
based on these high-level features.

C. ECG Database

In this section, an overview of the database used in our
study is presented. The experiments were carried out on the
ECG signal database described by Plawiak [17]. This collec-
tion consists of 1000 signals from the MIT-BIH Arrhythmia
Database. The data was obtained from 45 patients and divided
into 17 classes: normal and pacemaker rhythm and 15 types
of cardiac dysfunction.
Many studies mentioned earlier used the original MIT long
time-series with approx. half-hour recording for each pa-
tient. Furthermore, they were also used in a time-series-
style approach, as continuous signals presented to recurrent
neural networks. These signals are typically divided into single
heartbeat cycles, usually centered around the R peak.
The database for this study was carefully selected based on
the uniqueness of the length of the ECG signal. Plawiak’s
[17] database introduces a different approach where 10 second
long signals are used. This choice corresponds approximately
to the scope of a signal considered by an expert physician
who analyzes ECG recordings. Here, only the MLII lead is
used. Furthermore, examination of the class distributions of
the classes allowed us to gain valuable insights about the
composition of the dataset. Such an analysis showed a high-
class imbalance in the original data. Since data imbalance can
have a negative influence on classification, we chose only
a subset of classes that contained at least 45 signals. For
classification purposes, we have used the following 8 classes
for which the distribution is presented in Fig. 5:

1 NSR - Normal Sinus Rhythm,
2 APB - Atrial premature beat,
4 AFIB - Atrial fibrillation,
7 PVC - Premature ventricular contraction,
8 Ventricular bigeminy,

14 LBBBB - Left bundle branch block beat,
15 RBBBB - Right bundle branch block beat and
17 PR - Pacemaker rhythm.

III. EXPERIMENT

In this section, we explore the experiments on ECG
classification. These experiments were designed to harness
the power of machine learning and deep learning techniques
to create robust and accurate models capable of automatically
identifying and categorizing cardiac arrhythmia from ECG
data (see sec. II-C). Through a comprehensive exploration of
model selection, and performance evaluation, we aim to gain
deeper understanding of the architectures that provide high
accuracies.
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Fig. 5. Distribution of used classes from MIT-Arrythmia database

A. Signal Analysis

In the initial phase of the depicted study, we performed
a comparative analysis of various deep neural network ar-
chitectures operating on one-dimensional ECG signals. These
signals were pre-processed as described in sec. II-B, resulting
in sequences of 3600 samples scaled in the range of 0-1. Based
on the pre–processed signals, various configurations of long-
term memory networks (LSTM) have been studied, including
structures with single hidden and double LSTM layers of up
to 128 neurons. In addition, deep four-lstm-level architectures
were also investigated. Table I provides the summary of the
investigated networks. From these results, one can notice that
the best results obtained with the network types mentioned
above were as low as 34%.
The second group of architectures examined included one-
dimensional convolutional neural networks. These networks
were tested with the same signals as in the previous ex-
periment. This setup included networks with one or two
convolutional layers, with filters ranging from 32 to 128
and sizes between 36 and 72. Throughout the experiment, it
was determined that the optimal filter length is 36 samples,
which corresponds to 1 second of the ECG signal. The results
for the two best 1-dimensional networks are presented in
Table I as No. 3 and 6. Hybrid neural networks were another
intriguing architectural approach. These networks consist of
a series connection of one-dimensional convolutional layers
and recurrent LSTM layers. The convolution layers served as
feature extractors creating an input vector for the subsequent
LSTM layers. A summary of such a structure is depicted in

TABLE I
RESULTS FOR SELECTED NEURAL NETWORK ARCHITECTURES

No. Architecture Configuration Additional Info Accuracy (%)
3 1x Conv. 1D 64 filters Filter length: 36 89.39
6 2x Conv. 1D 64 + 32 filters Filter length: 36 89.39

13 Hybrid Smaller CNN-1D: 64 Filter length: 36 88.64
LSTM: 16

17 1x LSTM 128 nodes 34.09

TABLE II
DETAILS OF THE HYBRID NEURAL NETWORK ARCHITECTURE

No. Type Activations Learnable Properties
1 Sequence Input 1(C) x 1(B) x 36(T) -
2 1-D Convolution 64(C) x 1(B) x 1(T) Weights: 36 x 1 x 64

Bias: 1 x 64
3 Batch Normalization 64(C) x 1(B) x 1(T) Offset: 64 x 1

Scale: 64 x 1
4 ReLU 64(C) x 1(B) x 1(T) -
5 Dropout 64(C) x 1(B) x 1(T) -
6 1-D Global Max Pooling 64(C) x 1(B) -
7 LSTM 16(C) x 1(B) InputWeights: 64 x 64

RecurrentWeights: 64 x 16
Bias: 64 x 1

8 Fully Connected 8(C) x 1(B) Weights: 8 x 16
Bias: 8 x 1

9 Softmax 8(C) x 1(B) -
10 Classification Output 8(C) x 1(B) -

Table II and the achieved results are summarized in Table I.
From the table, one can notice that the recorded accuracy is
approaching almost 89%. From the above results, we can see
that our experiments demonstrate a significant insights on the
architectures that provide promisig results when applied to
real-world data, at the same time showcasing their potential
for practical applications in ECG signal analysis.

B. Image–based Signal Analysis

Beyond the initial set of experiments, we introduce
an image–based approach to signal analysis that allows
further exploration and validation of our hypothesis. These
complementary experiments are designed to provide a more
comprehensive view of ECG signal classification.
The presented methodology is based on the examination
of several machine learning algorithms to classify images
of signals from MIT databases representing all 17 classes
(see II-C). For the purpose of this study, we compared
three traditional machine learning methods (see sec. II-B)
using the Orange Data Mining Framework [22]. These
methods were trained on a feature vector calculated with a
convolutional neural network named SqueezeNet. SqueezeNet
is a compact yet effective model trained on ImageNet. To
accurately assess the performance and generalization ability
of proposed models, a Stratified 5-fold Cross-Validation
was used. Based on the cross-validation, we determined
5 classification metrics. These results are summarized in
Table III and the ROC curve is depicted in Fig. 6. From
the results one can notice that the best classification accuracy
of 82.5% and AUC of 97.5% was obtained for the SVM
classier whilst Random Forest model provided the lowest
classification precision of 71.5% and AUC of 93%. The kNN
algorithm showed a satisfactory result of 80% and an AUC
of 94.9%. Based on these results we can note that SVMs

TABLE III
IMAGE–BASED SIGNAL ANALYSIS RESULTS

Model AUC CA F1 Precision Recall
kNN 0.949 0.800 0.788 0.787 0.800
SVM 0.975 0.825 0.810 0.824 0.825
Random Forest 0.930 0.715 0.695 0.708 0.715
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Fig. 6. Image–based Signal Analysis ROC Curve

and kNN provided the high model reliability. Other metrics
confirm our findings about the models and their classification
abilities. The calculated Precision (P) and Recall (R) metrics
provide insight into how well a model is performing in
terms of correctly identifying positive and negative instances
within a dataset. In our investigation, the best P and R were
obtained for the SVM model at levels of 82.4% and 82.5%,
respectively. For kNN precision recorded at 78.7%, while the
recall was 80%. At the same time, RF provided the worst
level at 70.8% and 71.5%, respectively. Furthermore, the F1
score was calculated that combines precision and recall into a
single value. Observations of the F1 ranges also confirm our
previous finding, where SVMs provided the best rate of 81%,
signifying a well-balanced relationship between Precision and
Recall. For kNN, the score of 78.8% indicates a balanced
harmonic mean of P and R. In the case of Random Forests,
the F1 score was the lowest recorded value (F1 = 69. 5%),
still demonstrating a reasonable balance of Precision and
Recall.
The results described in this section reveal that the SVM
model outperformed other models in all evaluated metrics,
firmly establishing its effectiveness in accurately classifying
ECG images within the signal analysis context. The kNN
model also delivered credible results, showcasing its capability
as a robust classifier. Although the Random Forest model
demonstrated its usefulness, it showed comparatively lower
performance in all various evaluation metrics. These findings
not only highlight the strengths of the SVM and kNN models,
but also offer valuable insights for selecting the most suitable
model for future image–based signal analysis tasks in ECG
signal processing contexts.

IV. CONCLUSIONS

The aim of this study was to determine the most appropriate
architecture for managing ECG measurements and to explore
the potential of the neural networks to analyze these signals.
In Section III we present and discuss the classification results.
From this discussion, several interesting conclusions were

drawn. The first conclusion is that for simple recurrent neural
networks with at most a few LSTM layers, we were unable to
obtain satisfactory results.
More promising results were obtained when the one–
dimensional convolutional layers were added to the network
architecture. Our research showed that the optimal size of
convolutional layers is 64 filters with a length of 36, which
corresponds to 1 second of the analyzed signal. All these
hybrid networks provided a high accuracy of 88-89%. These
findings lead to the conclusion that neither simple architec-
tures nor recurrent networks alone provide satisfactory results.
Only by adding additional layers we are able to obtain high
classification precision. Despite the addition of extra layers,
these structures remain relatively simple, allowing for rapid
processing and making them suitable for the analysis of data
from wearable devices.
We may also conclude that convolutional neural networks,
in combination with traditional algorithms, offer even more
promising results in processing two-dimensional images of
ECG signals. The presented results clearly show that the SVMs
outperformed other traditional classification algorithms. The
computational complexity of this approach is still acceptable
for future practical implementation.
The insights gained from this study provide valuable contribu-
tions to the analysis of ECG signals, offering opportunities for
further applications to cardiac analysis, as well as augmented
and alternative communication frameworks based on wearable
devices.
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