
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 1, PP. 153–159
Manuscript received November 23, 2023; revised March, 2024. DOI: 10.24425/ijet.2024.149525

Implementation of language models
within an infrastructure designed
for Natural Language Processing

Bartosz Walkowiak, and Tomasz Walkowiak

Abstract—This paper explores cost-effective alternatives for
resource-constrained environments in the context of language
models by investigating methods such as quantization and CPU-
based model implementations. The study addresses the compu-
tational efficiency of language models during inference and the
development of infrastructure for text document processing.

The paper discusses related technologies, the CLARIN-PL
infrastructure architecture, and implementations of small and
large language models. The emphasis is on model formats,
data precision, and runtime environments (GPU and CPU). It
identifies optimal solutions through extensive experimentation.

In addition, the paper advocates for a more comprehensive
performance evaluation approach. Instead of reporting only
average token throughput, it suggests considering the curve’s
shape, which can vary from constant to monotonically increasing
or decreasing functions. Evaluating token throughput at various
curve points, especially for different output token counts, pro-
vides a more informative perspective.

Keywords—language model deployment; quantization; Llama-
2; E5 model; ONNX; llama.cpp; CLARIN-PL

I. INTRODUCTION

ARTIFICIAL Intelligence is nowadays the focus of interest
of researchers and commercial developers. Many of those

interested do not have access to many GPU units needed to run
large language models like GPT-3 [1] or Llama-2 [2]. Methods
such as quantization and model implementations using the
CPU instead of the GPU come to the rescue. However, the
question arises as to how much it costs to reduce the model
to run on limited resources.

CLARIN-PL1 is the Polish branch of the CLARIN ERIC2

research infrastructure. As part of an international project, it
must follow trends in AI and use the latest technologies in the
field of NLP. To deliver these state-of-the-art technologies,
efficient and scalable tools are used.

The article discusses two problems: the computational per-
formance of language models in inference and the building

Financed by the European Regional Development Fund as a part of the
2014-2020 Smart Growth Operational Programme, CLARIN - Common Lan-
guage Resources and Technology Infrastructure, project no. POIR.04.02.00-
00C002/19.

B. Walkowiak and T. Walkowiak are with Faculty of Information and
Communication Technology, Wroclaw University of Science and Technology,
Wroclaw, Poland (e-mail: tomasz.walkowiak@pwr.edu.pl).

1https://clarin-pl.eu/
2https://clarin.eu

of infrastructure for processing text documents by langauge
models.

We introduce here a distinction between large and small
language models (LLM and SLM). By LLM, we refer to
generative models of general purpose like GPT-3 or Llama-2.
By SLM we mean classical transformer-based models such as
BERT [3] and T5 [4]. SLM are characterized by their smaller
size but also their specialization, as they are fine-tuned for
specific tasks.

The paper is organized as follows: Section II discusses
technologies and research connected with the topics covered
in this article. Section III provides a closer look at the
architecture and technologies used in CLARIN-PL. Section IV
then describes how the SLM and LLM models could be im-
plemented. The implementation methods are validated through
experiments performed on various aspects, including model
formats, data precision formats, and runtime environments
(GPU and CPU). The next section, Section V, is dedicated to
the technical aspects of implementing the models, specifically
the techniques used to deploy the models as services.

II. RELATED WORKS

A very popular and well-known public repository with many
language models is Huggingface. This repository together
with the comprehensive Transformers library [5] it supports
can be used to process all the most popular SLMs: BERT
[3], T5 [4], RoBERTa [6], BART [7], and also LLMs: GPT-
3 [1] and Llama-2 [2]. The Transformers library can be
used for an inference, as well as for teaching models. The
library supports several learning frameworks, with two of the
most popular: PyTorch and TensorFlow. Models can also be
converted to ONNX [8], an open-source machine-independent
standard, or to GGML [9], which enables large models and
high performance on commodity hardware.

Another issue is the runtime environment, the model can
use the GPU and benefit from its high performance. However,
GPU resources are very often limited, and the ability to run
only on the CPU is important. An excellent example of CPU
inference supporter is llama.cpp [10], which uses GGML
format and with which models such as Llama-2, among others,
can be used without access to the GPU.

There are production inference servers widely used by
industry like Triton Inference Server [11] and TensorFlow

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://clarin-pl.eu/
https://clarin.eu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


154 B. WALKOWIAK, T. WALKOWIAK

Serving [12], but they are general purpose servers for deep
model execution and do not have model-specific optimizations.
Recently, several serving systems are proposed to optimize
Transformer-based LLMs [13]–[17].

Another important model-running technique that is gaining
interest and development is quantization [18], [19], or more
generally, the choice of model precision. What precision we
choose affects, on the one hand, how much graphics card
memory we will need, that is, in extreme cases, the possibility
of running the model. On the other hand, precision, especially
in the case of LLM, affects the quality of the results.

The basic precision of the model involves the use of the
float32 type so the values are represented by 32 bits, divided
between exponent, mantissa and sign. Other float types used
include float16, but also bfloat16 (brain floating point), which
differ in the ratio of exponent and mantissa length from
the standard float16. Going even lower in precision, choices
include float8 E4M3 (4-bit exponent and 3-bit mantissa) and
float8 E5M2 (5-bit exponent and 2-bit mantissa). The differ-
ence in the way the bits are distributed between exponent and
mantissa is the realization of the problems of range (exponent)
versus precision (mantissa), because the number of values
represented is constant and it is up to us to decide how large
a range they will be distributed over.

Typically, models are learned and distributed with a preci-
sion of 32 bits and can be quantized in two ways. The first
is on-the-fly quantization (implemented by the Transformers
library [5]), and the second way is to convert the model
beforehand and load the already quantized model (the method
used in llama.cpp [10]).

Numerous open-source workflow engines are available for
general data pipelining purposes. Apache Airflow [20] or
Prefect [21] stand out as popular choices. However, in the field
of NLP, the primary focus revolves around libraries such as
spaCy [22] and Stanza [23]. Within the context of the CLARIN
[24], three solutions have emerged: WebLicht [25], CLARIN-
BE [26], and the one detailed in the next chapter.

III. CLARIN-PL LANGUAGE TECHNOLOGY CENTER

The aim of CLARIN is to develop and maintain a frame-
work that facilitates the exchange, application, and enduring
availability of linguistic resources and NLP tools to support
research in the fields of humanities and social sciences. The
CLARIN-PL Language Technology Center (LTC) [27] realizes
this goal in Poland, providing effective and user-friendly NLP
tools for the social sciences and humanities. This requirement
is fulfilled with a complete processing pipeline of the language
tools available via the REST API and web-based interface. The
solution ensures flexibility and low processing times. Some
tools use models that take longer to load than to process the
input file, in which case the tool is run as a service with the
required models preloaded into memory [28].

CLARIN-PL LTC is based on the microservice architecture
[29] that isolates individual services from each other, so each
service runs its own process. Services are interconnected by
two techniques, one is the message broker, which is RabbitMQ
[30], and the other is the shared file system. The broker is

responsible for message queueing and is also used for easy
horizontal scaling, which allows the system to dynamically
adapt to the current load. The message communication mech-
anism is lightweight, using only basic commands such as; start,
finish, and progress of tasks. This mechanism is implemented
using the AMQP protocol [31]. AMQP was not used for data
exchange because the size of the input/output data can be very
large, which can block message queues. That is why the shared
file system is used.

This architecture is deployed on a Kubernetes [32] cluster
instance. This solution allows for easy containerization, each
NLP tool being deployed as a single pod. The automatic
scaling of the number of pods is provided by KEDA HPA [33],
which scales up or down the number of instances of a given
tool depending on the length of the queue of pending jobs
on the broker. The entire infrastructure is implemented using
the HELM chart [34] tool, which simplifies and automates the
generation of multiple similar services.

Implementing a new NLP worker is possible in languages
such as Python, Java, and C++ and is based on a library
that is responsible for communication. The developer has to
implement functions that process the data (the input/output
path and input options are passed as parameters to this
function).

The orchestration of related tools in the processing chain is
provided by the Language Processing Management Notation
[35], which enables improved performance through the use of
parallel processing. This means that the processing of a corpus
(usually provided as a zip archive) can be parallelized between
multiple instances of a given tool. Furthermore, the number of
instances scales horizontally, so the response to a high load is
to increase the number of processing nodes.

In summary, CLARIN LTC provides a configurable and
powerful tool that, using well-known technologies and au-
tomation mechanisms, enables the launch of more than 100
different language tools.

IV. LANGUAGE MODELS DEPLOYMENT

As mentioned in the Introduction, contemporary NLP
is based on small and large language models, especially
transform-based ones. Such models require large computing
resources, especially graphics cards are an important aspect.
Since hardware resources are always limited, there is a ques-
tion how to effectively implement such models. Therefore, we
performed a set of numerical experiments with a classifier
built on a deep language model (Section IV-A) and a chat-
like generative large language models implemented (Section
IV-B) in different ways and on GPU and CPU.

A. Small langauge models

The small language models (like BERT or RoBERTa) could
be implemented directly by Transformers library or using
ONNX format, in both cases they can be run on CPU or
GPU. In GPU tests we used NVIDIA GeForce RTX 3090
GPU with 24GB, whereas in CPU tests we used AMD Ryzen
Threadripper PRO 3955WX 16-Core processor (4.4 GHz). For



IMPLEMENTATION OF LANGUAGE MODELS WITHIN AN INFRASTRUCTURE DESIGNED FOR NATURAL LANGUAGE PROCESSING 155

evaluation we used the E5 base model [36]. It is a general-
purpose, multilingual sentence embedding model. The model
was initialized from xlm-roberta-base and continually trained
on a mixture of multilingual datasets in a contrastive manner
with a weak supervision. We tested the effectiveness of the
model inference for sequences of 512 tokens, and for different
size of batches (ranging from 1 to 8). The experiments were
carried out in 200 iterations and the results were subsequently
averaged. The summarized findings can be observed in Table
I.

TABLE I: E5 [36] inference time per task in ms for different
deployments on the GPU (NVIDIA GeForce RTX 3090) and
CPU (AMD Ryzen Threadripper PRO 3955WX 16-Core). In
case of CPU we tested different number of used cores (4, 8,
and 16). The reported time is a time to process one text, i.e.,
in case of batches, it is a time to process one batch divided
by its size.

Transformers ONNX

batch size 1 2 4 8 1 2 4 8

GPU 12.8 8.5 8.1 7.5 9.4 8.3 7.4 6.7

CPU (4) 423 414 467 468 290 262 266 256

CPU (8) 214 196 225 225 184 153 154 147

CPU (16) 152 143 158 158 132 111 109 102

The results show that the ONNX implementation outper-
forms Transformers in terms of inference speed for both CPU
and GPU scenarios. However, the difference is significantly
larger in the CPU context. Furthermore, the results show that
the use of batches accelerates the average inference time, but
the effectiveness of batch usage is limited. Therefore, it is
crucial to choose the batch size carefully.

B. Large Language Models

Large generative language models have become an essential
component of many text-based user interface applications.
However, their size (number of weights) is much larger than
that of typical language models, ranging from 7 billion to
70 billion weights in case of Llama-2 [2]. Additionally, their
typical usage relies on autoregressive generation of responses,
wherein the network takes as input the query and the preceding
responses generated by the network itself and produces the
next token based on the estimated probability. This process
iterates, generating successive output tokens. Due to this op-
erational mechanism and the number of weights, the response
generation process is time consuming and strongly influenced
by the length of the output text.

Therefore, it is crucial to implement such models effec-
tively in production systems. To assess the feasibility of
implementing Large Language Models (LLMs), a series of
numerical experiments were conducted using the Llama 7B
Chat model provided by Meta. The model was converted into
the Transformers library format and implemented in three
different formats: a 32-bit float, a 16-bit float, and a quantized
8-bit integer.

In the initial step, the GPU inference time was analyzed
with respect to response length. All experiments were carried

0 200 400 600 800 1,000
0

10

20

30

[t
ok

en
/s

]

f32

0 200 400 600 800 1,000
0

10

20

30

[t
ok

en
/s

]

f16

0 200 400 600 800 1,000
0

10

20

30

[t
ok

en
/s

]
q8

Fig. 1: Llama GPU inference (model Llama-2-7b-chat in
Transformers library format). Speed of token generation as
a function of generated text size for various number repre-
sentations in the Transformers library. The experiments were
conducted on an NVIDIA A100 80GB GPU.

out in identical setups. They were as follows; maximal number
of tokens 1024, top p 0.5, temperature 1, top k 50, and repeat
penalty 1.1. Twenty-five diverse queries were developed, rang-
ing from straightforward ones regarding the number of animal
legs to complex biographies of historical figures. Each query
was repeated 10 times and the results are presented in Figure
1.

The first noticeable aspect is the distinct characteristics of
the curves. In the f32 format, the curve takes on a logarithmic
shape, whereas in the case of f16, we observe a consistent rate
of text generation for texts up to approximately 200 tokens,
followed by a logarithmic decrease. On the contrary, the speed
of text generation remains constant for q8 format, regardless
of the length of the generated text. This difference is likely
attributed to implementation variances.

A surprising finding, although consistent with other studies
[37], is that 8-bit quantization yields worse results compared
to 16-bit or even 32-bit floating point models. On the basis of



156 B. WALKOWIAK, T. WALKOWIAK

0 200 400 600 800 1,000
0

0.2

0.4

0.6

[t
ok

en
/s

]

Fig. 2: Speed of token generation as a function of generated
text size for Llama model running on CPU and implemented
in Transformers library in f32 format. The experiments were
carried out on an AMD Ryzen Threadripper PRO 3955WX
16-Core processor (4.4 GHz).

the conducted experiments, it is recommended to implement
the f16 model on the GPU.

The next experiment evaluated the performance of the
LLama model on the CPU using the default implementation
in the Transformers library, which utilizes 32-bit floats. These
experiments, similar to the previous case, were conducted on
a computer equipped with a 16-core CPU. The results are
presented in Figure 2 indicating very long text generation
times. For instance, generating a text of 540 tokens would take
more than 43 minutes. It shows the impracticality of such an
implementation.

Next, we investigate the use of the llama.cpp library [10],
which leverages the GGML format [9] to execute large-
language models on the CPU. We explored formats similar
to those employed in the Transformers library. We also tried
to analyze the results for the q4 models, but the quality of
the result obtained from the model was not acceptable. The
generated texts were unreadable, consisting of tokens from
different languages. The results (for formats f32, f16 and
q8) are presented in Figure 3. As we can observe, the text
generation speeds surpass the implementation in the Trans-
formers library when running on the CPU (2). The shape of the
curves remains independent of the format used. An exponential
increase in speed is noticeable for short texts, after which
the speed stabilizes and remains nearly constant regardless of
the length of the text. A closer examination of the code and
time dependencies revealed that the generation time comprises
two components: model loading (with a constant time factor)
and the token generation process with a constant speed. The
process of loading the model cannot be omitted during text
generation because the model retains context information and
has to be reloaded. This phenomenon does not occur with the
Transformers library. The best results, characterized by the
highest speed, were achieved with the q8 format. Therefore,
it is recommended for CPU implementations.

An interesting phenomenon, unrelated to the processing
time, is the length of the generated texts. Despite using the
same settings in the text generation process and the same
queries, this llama.cpp implementation generates significantly
shorter texts than the Transformers library. This can be seen

by observing the very rare points on the right sides of the
graphs in Figure 3, much rarer than in Figures 1 and 2.

An important aspect to note is the variation of speed as
a function of the length of the output text, so comparisons
of model performance should be reported for a few selected
output text length ranges. Therefore, the summary of Llama-2
performance results presented in Table II shows the average
speed across four slots for texts of various lengths: 5-20, 100-
200, 400-500, and 800-1000. In the case of the llama.cpp
implementation, we do not report results for the last slot due
to the limited number of results in this range, as discussed
earlier. It is worth noting that the best GPU implementation
(Transformers f16) is only 2.74 times faster (for longer texts)
to 5.13 times faster (for texts up to 20 tokens) than the
llama.cpp q8 implementation. This difference is smaller than
in the case of BERT models, where the processing time on
the GPU differs 11-21 times compared to the CPU time (16
core cases).

TABLE II: Llama inference (model Llama-2-7b-chat) for dif-
ferent implementations: Transformer (Trans.) and llama.cpp,
different fomat of weigths (f32, f16, and q8), and running
on CPU (MD Ryzen Threadripper PRO 3955WX 16-Core
processor at 4.4 GHz and GPU (NVIDIA A100). The table
presents an average speed across four slots for texts of various
lengths: 5-20, 100-200, 400-500, and 800-1000. We also
present the average usage of memory (in case of CPU running
models this is a computer RAM, in case of GPU running
models this is VRAM.

Model Speed [token/s] Mem
implement. 5-20 150-200 400-500 800- [GB]

Trans. f32 (GPU) 21.56 8.50 4.13 - 31.1

Trans. f16 (GPU) 32.20 32.66 24.59 16.03 18.5

Trans. q8 (GPU) 4.92 5.09 4.93 4.36 8.5

Trans. f32 0.54 0.38 0.24 - 26.5

llama.cpp f32 1.99 2.63 2.66 - 25.8

llama.cpp f16 3.51 5.02 5.09 - 13.2

llama.cpp q8 6.27 8.93 8.96 - 7.4

V. IMPLEMENTING LANGUAGE MODELS

A. Infrastructure remarks

In CLARIN-PL, as elsewhere, it is important to manage a
limited resource such as the GPU, especially one with high
computing power. In the CLARIN LTC case, the problem
was raised by the number of available resources, not their
power. Kubernetes allows GPU resources to be assigned to
a single pod. The solution we used was techniques such as
Multi-Instance GPU (MIG) [38] and Time Slicing [39], both
of which are supported by the NVIDIA A100 cards. MIG helps
when there are not enough GPU instances. It is a technique
that logically divides the graphics card, and the card can be
split into different parts. The available parts can be 10, 20, 30,
or even 40 GB of memory, allowing for a lot of flexibility. The
second method allows the GPU to be oversubscribed, but this
has the disadvantage of not isolating between resource-using



IMPLEMENTATION OF LANGUAGE MODELS WITHIN AN INFRASTRUCTURE DESIGNED FOR NATURAL LANGUAGE PROCESSING 157

0 200 400 600 800 1,000
0

2

4

6

8

10

[t
ok

en
/s

]

f32

0 200 400 600 800 1,000
0

2

4

6

8

10

[t
ok

en
/s

]

f16

0 200 400 600 800 1,000
0

2

4

6

8

10

[t
ok

en
/s

]

q8

Fig. 3: Llama CPU inference (model Llama-2-7b-chat in
GGML format). Speed of token generation as a function of
generated text size for various number representations in the
llama.cpp library. The experiments were conducted on an
AMD Ryzen Threadripper PRO 3955WX 16-Core processor
(4.4 GHz).

services; one service can starve others. For the time being,
these technologies also have the major disadvantage of not
being observable in terms of memory consumption rates.

The techniques described in Section II for dealing with GPU
limitations are extended by the technique of implementing
several models in a single pod. This implementation bypasses
the limitation that one GPU resource can be allocated to
one pod. This technique, combined with the memory release
mechanism, contributes to efficient memory usage. It is worth
noting that models running in a single pod are separated from
each other because they are run in separate processes.

B. Small Language Models as a Service

In CLARIN LTC we have implemented models such as
T5 [4] used for keyword identification [40] and text devul-
garisation [41], but also Sentence-BERT [42] and E5 [36]
for embedding generation. The important thing about these

models is that they process text of limited length (typically
up to 512 tokens), this strong certainty was used in the
design of the architecture. The assumption of a small size
also applies to the resulting files; an embedding vector of
512 or 768 (embedding), text of a similar size to the input
(devulgarisation), or a keyword list limited to a maximum of
five (keyword detection). Based on these facts, communication
with the services is done via the AMQP protocol, but unlike
regular CLARIN-PL workers, the transmission of input/output
data is also done via the AMQP protocol (rather than via a
shared drive). As can be seen, the service architecture is strictly
tailored to the characteristics of the language model and uses
their features to operate effectively. See the list of services in
Table III.

TABLE III: Small lanaguge models deployed in CLARIN-PL
LTC

service name task

sbert-distiluse-base-multilingual-cased-v1 [42] embeddings gen-
eration

sbert-paraphrase-multilingual-mpnet-base-v2 [42] embeddings gen-
eration

e5-multilingual-e5-base [4] embeddings gen-
eration

t5-voicelab-vlt5-base-keywords [40] keywords deter-
mination

t5-DEPOTxT5-base [41] devulgarization

t5-utterance-rewriting-v2-plt5-large paraphrasing

t5-plt5-large-poquad-dst-v2 dialogue state
tracking

The conversion of the models to the ONNX format was car-
ried out using the HuggingFace Optimum3 library. However,
when using this library, it should be noted that it may not
include some elements of the conversion. For example, in the
case of Sentence-BERT, elements such as the pooling layer
or the additional dense layer are omitted from the Optimum
library and had to be additionally stored in PyTorch format.
For T5 models, on the other hand, prompts and additional
parameters, often used in this type of models, must be stored
separately.

In addition to the limitations to GPU access, the memory
of graphics cards is also not infinite. To make better use of
the available memory, a memory release mechanism has been
introduced. It works as follows, when a model is not used for
a certain period (the length of this period can vary from model
to model), then the model is removed from the card’s memory
and reloaded when it is needed again.

We are using the KEDA HPA [33] automatic scaling fea-
tures to scale up or down the number of service instances of a
given model depending on the length of the queue of pending
jobs on the RabbitMQ broker.

SLM models can be used inside CLARIN-PL services
(Section III) via the AMQP protocol (the service library has
been extended with dedicated functions) as well as outside the
system via the REST interface.

3https://huggingface.co/docs/optimum

https://huggingface.co/docs/optimum


158 B. WALKOWIAK, T. WALKOWIAK

C. Generative Deep Model as a Service

We have also implemented large language models such as
Llama-2 [2] and RWKV [43]. Their implementation is very
similar to what was mentioned for SML, but it needs to
be adapted to the specifics of LLMs. The main difference
is that LLM models running in chat mode require context
and, therefore, access to the conversation history. To achieve
this, the worker’s input includes the conversation history in
JSON format. Additionally, the requests sent to the model have
been expanded to include parameters such as temperature and
top p, as well as the ability to choose between two response
modes. In single mode, the response is returned when the
entire response is generated. In streaming mode, on the other
hand, parts of the response (tokens) are returned as they are
generated. The LLM services are exposed to the outside world
as REST services4, and for the streaming mode, we utilize the
Server Side Events mechanism [44].

People are also direct users of LLMs, so we built a dedicated
application with a web-based user interface (Figure 4) to
communicate with the services. Since an LLM running in chat
mode requires context and access to the conversation history,
we implemented an infrastructure in which each conversation
thread is stored in a separate record in the database. This
approach allows for fast access and ensures security.

The user interface allows the model to be used in two
modes: chat mode and instruction mode. In chat mode, the
model has access to the conversation history, and in instruction
mode, the input is split into an instruction and text, allowing
for specific tasks to be performed. When chat mode is used,
the client that continues the conversation in the thread sends
a new input, thread ID, and parameters. The conversation
context, retrieved from the database, is prefixed to the new
input, and such a query with parameters is passed to the
model. The application interface for the different models is
unified; regardless of whether Llama-2 or RWKV is selected,
the requests sent are the same, differing only in the ”model”
parameter in the request body.

VI. CONCLUSIONS

As demonstrated in Section II, there are numerous im-
plementations of language models to choose from, together
with various techniques to support model deployment. We
conducted tests on some of these implementations to run
models in inference mode on both GPU and CPU. In addition,
we explained the differences and characteristics of runtime
environments and precision formats. These results enabled us
to identify the most suitable solutions.

We showcased the implementation of small language mod-
els at the CLARIN-PL Language Technology Center. This
approach relies on the ONNX format and utilizes AMQP for
inter-service communication, facilitating efficient and scalable
integration with other CLARIN-PL services. For LLM, we
employed a Transformer 16-bit implementation for GPU and
GGML 8-bit for CPU. Furthermore, we provided a demonstra-
tion of the user interface for auto-generative language models.

4https://services.clarin-pl.eu/api/v1/docs

Chat mode

Instruction mode

Fig. 4: CLARIN-PL chat interface (https://chat.clarin-pl.eu/)

The smallest precision we encountered involved storing
information using only 4 bits, imposing significant size limi-
tations and resulting in substantial information loss.

The phenomenon of observing different shapes in the curves
during experiments leads to the conclusion that reporting only
the average speed of tokens per second, which has been
the standard practice in many previous works [10], [17],
[18], is not entirely informative. This is because the curve
can exhibit various shapes, including constant, monotonically
increasing, or monotonically decreasing functions. A more
effective approach is to report the average number of tokens
per second at several points along the curve, specifically for
low, medium, and high numbers of output tokens.

REFERENCES

[1] T. B. Brown et al., “Language models are few-shot learners,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS’20. Red Hook, NY, USA: Curran
Associates Inc., 2020. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[2] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” 2023. [Online]. Available: doi:10.48550/arXiv.2307.09288

[3] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
4171–4186. [Online]. Available: doi:10.18653/v1/n19-1423

[4] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, p. 67, 2020,
id/No 140. [Online]. Available: jmlr.csail.mit.edu/papers/v21/20-074.
html

https://services.clarin-pl.eu/api/v1/docs
https://chat.clarin-pl.eu/
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
doi:10.48550/arXiv.2307.09288
doi:10.18653/v1/n19-1423
jmlr.csail.mit.edu/papers/v21/20-074.html
jmlr.csail.mit.edu/papers/v21/20-074.html


IMPLEMENTATION OF LANGUAGE MODELS WITHIN AN INFRASTRUCTURE DESIGNED FOR NATURAL LANGUAGE PROCESSING 159

[5] T. Wolf et al., “Transformers: State-of-the-art natural language
processing,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations.
Association for Computational Linguistics, 2020, pp. 38–45. [Online].
Available: https://aclanthology.org/2020.emnlp-demos.6

[6] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining
approach,” 2019. [Online]. Available: http://arxiv.org/abs/1907.11692

[7] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension,” in
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, Jul. 2020, pp. 7871–7880. [Online]. Available: doi:
10.18653/v1/2020.acl-main.703

[8] J. Bai et al., “ONNX: Open neural network exchange,” 2019. [Online].
Available: https://github.com/onnx/onnx

[9] G. Gerganov, “GGML - tensor library for machine learning,” 2023.
[Online]. Available: https://github.com/ggerganov/ggml

[10] ——, “Inference of LLaMA model in pure C/C++,” 2023. [Online].
Available: https://github.com/ggerganov/llama.cpp

[11] NVIDIA Corporation, “Triton inference server: An optimized cloud
and edge inferencing,” 2019. [Online]. Available: https://github.com/
triton-inference-server/server

[12] C. Olston et al., “Tensorflow-serving: Flexible, high-performance ml
serving,” in Workshop on ML Systems at NIPS 2017, 2017. [Online].
Available: doi:10.48550/arXiv.1712.06139

[13] NVIDIA Corporation, “Fastertransformer,” 2019. [Online]. Available:
https://github.com/NVIDIA/FasterTransformer

[14] D. Li, H. Wang, R. Shao, H. Guo, E. P. Xing, and H. Zhang,
“MPCFORMER: fast, performant and provate transformer inference
with MPC,” in The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?
id=CWmvjOEhgH-

[15] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun,
“Orca: A distributed serving system for Transformer-Based generative
models,” in 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). Carlsbad, CA: USENIX Association,
Jul. 2022, pp. 521–538. [Online]. Available: https://www.usenix.org/
conference/osdi22/presentation/yu

[16] N. Yang et al., “Inference with reference: Lossless acceleration of large
language models,” 2023. [Online]. Available: doi:10.48550/arXiv.2304.
04487

[17] B. Wu, Y. Zhong, Z. Zhang, G. Huang, X. Liu, and X. Jin, “Fast dis-
tributed inference serving for large language models,” arXiv:2305.05920,
2023.

[18] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3.int8():
8-bit matrix multiplication for transformers at scale,” in NeurIPS,
2022. [Online]. Available: http://papers.nips.cc/paper files/paper/2022/
hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html

[19] Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein, and
J. Gonzalez, “Train big, then compress: Rethinking model size for
efficient training and inference of transformers,” in Proceedings of
the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, ser. Proceedings of Machine Learning
Research, vol. 119. PMLR, 2020, pp. 5958–5968. [Online]. Available:
http://proceedings.mlr.press/v119/li20m.html

[20] The Apache Software Foundation, “Apache Airflow,” 2023. [Online].
Available: https://airflow.apache.org

[21] Prefect Technologies, Inc., “Prefect,” 2023. [Online]. Available:
https://www.prefect.io

[22] Explosion, “spaCy: Industrial-strength NLP,” 2023. [Online]. Available:
https://github.com/explosion/spaCy

[23] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza:
A python natural language processing toolkit for many human
languages,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations.
Online: Association for Computational Linguistics, Jul. 2020, pp.
101–108. [Online]. Available: doi:10.18653/v1/2020.acl-demos.14

[24] A. Branco et al., “The CLARIN infrastructure as an interoperable
language technology platform for SSH and beyond,” Language
Resources and Evaluation, Jun. 2023. [Online]. Available: doi:
10.1007/s10579-023-09658-z

[25] M. Hinrichs, T. Zastrow, and E. W. Hinrichs, “Weblicht: Web-based
LRT services in a distributed escience infrastructure,” in Proceedings of

the International Conference on Language Resources and Evaluation,
LREC 2010, 17-23 May 2010, Valletta, Malta, N. Calzolari et al., Eds.
European Language Resources Association, 2010. [Online]. Available:
http://www.lrec-conf.org/proceedings/lrec2010/summaries/270.html

[26] A. Lemmens and V. Vandeghinste, “A lightweight NLP workflow engine
for CLARIN-BE,” in CLARIN Annual Conference Proceedings, 2022,
pp. 29–34. [Online]. Available: https://www.clarin.eu/sites/default/files/
CLARIN2022 P 2.1.4 LemmensVandeghinste.pdf

[27] M. Pol, T. Walkowiak, and M. Piasecki, “Towards CLARIN-PL LTC
digital research platform for: Depositing, processing, analyzing and
visualizing language data,” in Reliability and Statistics in Transportation
and Communication, I. Kabashkin, I. Yatskiv, and O. Prentkovskis,
Eds. Cham: Springer International Publishing, 2018, pp. 485–494.
[Online]. Available: doi:10.1007/978-3-319-74454-4 47

[28] T. Walkowiak, “Web based engine for processing and clustering
of polish texts,” in Theory and Engineering of Complex Systems
and Dependability, W. Zamojski et al., Eds. Cham: Springer
International Publishing, 2015, pp. 515–522. [Online]. Available:
doi:10.1007/978-3-319-19216-1 49

[29] S. Newman, Monolith to microservices: evolutionary patterns to trans-
form your monolith. O’Reilly Media, 2019.

[30] VMware, “RabbitMQ,” 2023. [Online]. Available: https://www.
rabbitmq.com

[31] OASIS, “Advanced Message Queuing Protocol,” 2023. [Online].
Available: https://www.amqp.org

[32] The Linux Foundation, “Kubernetes,” 2023. [Online]. Available:
https://kubernetes.io

[33] ——, “Kubernetes Event-driven Autoscaling,” 2023. [Online]. Available:
https://keda.sh

[34] ——, “HELM The package manager for Kubernetes,” 2023. [Online].
Available: https://helm.sh

[35] T. Walkowiak, “Language processing modelling notation – orchestration
of NLP microservices,” in Advances in Dependability Engineering of
Complex Systems, ser. Advances in Intelligent Systems and Computing,
W. Zamojski et al., Eds., vol. 582. Springer, 2017, pp. 464–473.
[Online]. Available: doi:10.1007/978-3-319-59415-6 44

[36] L. Wang, N. Yang, X. Huang, B. Jiao, L. Yang, D. Jiang, R. Majumder,
and F. Wei, “Text embeddings by weakly-supervised contrastive pre-
training,” 2022. [Online]. Available: doi:10.48550/arXiv.2212.03533

[37] Y. Belkada and T. Dettmers, “A gentle introduction to 8-bit
matrix multiplication for transformers at scale using Hugging Face
Transformers, Accelerate and bitsandbytes,” 2022. [Online]. Available:
https://huggingface.co/blog/hf-bitsandbytes-integration

[38] NVIDIA Corporation, “NVIDIA Multi-Instance GPU user guide,”
2023. [Online]. Available: https://docs.nvidia.com/datacenter/tesla/pdf/
NVIDIA MIG User Guide.pdf

[39] ——, “Time-slicing GPUs in Kubernetes,” 2023. [Online].
Available: https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/
latest/gpu-sharing.html

[40] P. Pezik, A. Mikołajczyk, A. Wawrzyński, B. Nitoń, and
M. Ogrodniczuk, “Keyword extraction from short texts with a text-
to-text transfer transformer,” in Recent Challenges in Intelligent
Information and Database Systems, E. Szczerbicki et al., Eds.
Singapore: Springer Nature Singapore, 2022, pp. 530–542. [Online].
Available: doi:10.1007/978-981-19-8234-7 41

[41] C. Klamra et al., “Devulgarization of polish texts using pre-trained
language models,” in Computational Science – ICCS 2022. Cham:
Springer International Publishing, 2022, pp. 49–55. [Online]. Available:
doi:10.1007/978-3-031-08754-7 7

[42] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: http:
//arxiv.org/abs/1908.10084

[43] B. Peng et al., “RWKV: Reinventing RNNs for the transformer era,”
2023. [Online]. Available: doi:10.48550/arXiv.2305.13048

[44] L. de la Torre, J. Chacon, D. Chaos, S. Dormido, and J. Sánchez,
“Using server-sent events for event-based control in networked control
systems,” IFAC-PapersOnLine, vol. 52, no. 9, pp. 260–265, 2019,
12th IFAC Symposium on Advances in Control Education ACE 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2405896319305555

https://aclanthology.org/2020.emnlp-demos.6
http://arxiv.org/abs/1907.11692
doi:10.18653/v1/2020.acl-main.703
doi:10.18653/v1/2020.acl-main.703
https://github.com/onnx/onnx
https://github.com/ggerganov/ggml
https://github.com/ggerganov/llama.cpp
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
doi:10.48550/arXiv.1712.06139
https://github.com/NVIDIA/FasterTransformer
https://openreview.net/pdf?id=CWmvjOEhgH-
https://openreview.net/pdf?id=CWmvjOEhgH-
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
doi:10.48550/arXiv.2304.04487
doi:10.48550/arXiv.2304.04487
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://proceedings.mlr.press/v119/li20m.html
https://airflow.apache.org
https://www.prefect.io
https://github.com/explosion/spaCy
doi:10.18653/v1/2020.acl-demos.14
doi:10.1007/s10579-023-09658-z
doi:10.1007/s10579-023-09658-z
http://www.lrec-conf.org/proceedings/lrec2010/summaries/270.html
https://www.clarin.eu/sites/default/files/CLARIN2022_P_2.1.4_LemmensVandeghinste.pdf
https://www.clarin.eu/sites/default/files/CLARIN2022_P_2.1.4_LemmensVandeghinste.pdf
doi:10.1007/978-3-319-74454-4_47
doi:10.1007/978-3-319-19216-1_49
https://www.rabbitmq.com
https://www.rabbitmq.com
https://www.amqp.org
https://kubernetes.io
https://keda.sh
https://helm.sh
doi:10.1007/978-3-319-59415-6_44
doi:10.48550/arXiv.2212.03533
https://huggingface.co/blog/hf-bitsandbytes-integration
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html
doi:10.1007/978-981-19-8234-7_41
doi:10.1007/978-3-031-08754-7_7
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
doi:10.48550/arXiv.2305.13048
https://www.sciencedirect.com/science/article/pii/S2405896319305555
https://www.sciencedirect.com/science/article/pii/S2405896319305555

	Introduction
	Related works
	CLARIN-PL Language Technology Center
	Language Models Deployment
	Small langauge models
	Large Language Models

	Implementing Language Models 
	Infrastructure remarks
	Small Language Models as a Service
	Generative Deep Model as a Service

	Conclusions
	References

