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Abstract. The paper presents the analysis of modern Artificial Intelligence algorithms for the automated system supporting human beings
during their conversation in Polish language. Their task is to perform Automatic Speech Recognition (ASR) and process it further, for instance
fill the computer-based form or perform the Natural Language Processing (NLP) to assign the conversation to one of predefined categories.
The State-of-the-Art review is required to select the optimal set of tools to process speech in the difficult conditions, which degrade accuracy
of ASR. The paper presents the top-level architecture of the system applicable for the task. Characteristics of Polish language are discussed.
Next, existing ASR solutions and architectures with the End-To-End (E2E) deep neural network (DNN) based ASR models are presented in
detail. Differences between Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN) and Transformers in the context of

ASR technology are also discussed.
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1. INTRODUCTION

The Automatic Speech Recognition (ASR) is the scientific do-
main of quickly growing importance. Multiple practical ap-
plications (such as virtual assistants) show vast area of op-
portunities to accelerate and facilitate daily operations. The
key operations consist in detecting the speech in the sound
stream and identifying subsequent words and phrases inside.
Later, the detected tokens can be extracted and passed, for in-
stance to the text document (functionalities already available
in the office suite such as MS Office). In many cases the con-
text of words and phrases is important, requiring the Natural
Language Processing (NLP) techniques. The ASR domain is
challenging as the obtained results strongly depend on the an-
alyzed language. The most widely exploited is English due to
its worldwide popularity and structural simplicity. Each lan-
guage requires a separate approach (e.g. considering flexion).
The Polish language is challenging due to its complexity, irreg-
ular syntax, multiple homonyms and non-standard characters
(adding to the difficulty in recognizing words). The additional
problem is the ASR performed in difficult conditions, such as
the noisy environment. From multiple telecommunication and
signal processing domains [1] it is known that the background
noise strongly influences the ability to recognize the particu-
lar words. Therefore it is important to evaluate capabilities
of the existing methods to recognize Polish language in such
conditions, which include external sources of disturbances and
characteristics of the transmission channel (recognized as the
non-flat spectrum bandpass filter) - see [2]. It affects the qual-
ity of the signal and can obstruct or even block further language
processing. To tackle the presented problems, the Artificial In-
telligence (AI) may be applied, with the focus on the Deep
Neural Networks (DNN). They have proven their efficiency in
multiple applications, especially complex and structured data
processing. Currently there are many feed-forward and recur-
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rent architectures (such as CNN or LSTM) applicable for the
task. New solutions (i.e. Transformers) also emerged recently.
Their efficiency and computational complexity must be com-
pared to determine their usage in the embedded applications.
The following paper presents an analysis of available ASR so-
lutions for processing the Polish language. The aim of the re-
search was to identify the tools the most suitable for the speech
analysis in difficult conditions. The selected algorithms will be
compared and implemented in various scenarios. One of their
applications can be the ASR component of automated system
for the Medicine Doctor support during the patient’s interview
(Fig. 3). The structure of the paper is as follows. In Section
2, the problem to solve and the proposed system are presented.
In Section 3, difficulties and challenges regarding Polish lan-
guage processing as well as a brief leading to conventional
ASR systems are described. Section 4 describes data sources
applicable in the project. Section 5 describes End-to-End DNN
(E2E) approach as well as the types of neural networks used in
E2E. In Section 6, we described selected E2E models we plan
to test in the context of Polish language recognition and us-
ability for the problem posed in Section 2. Conclusions are in
Section 7.

2. POLISH ASR FOR AUTOMATED ANALYSIS OF
DOCTOR-PATIENT CONVERSATIONS

The research problem under consideration is the processing of
speech during a conversation in Polish conducted under diffi-
cult environmental conditions. These include external sources
of interference (such as ambient noise), but also the telecom-
munications channel, which is the medium of speech trans-
mission. Recent crises (including the COVID-19 pandemic)
confirm multiple scenarios where this is the case. One of the
possible applications of such a system may be the ASR during
the medical interview between the doctor and the patient. It
should employ technology of an automatic conversation tran-
script for a healthcare professional. The resulting system’s
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purpose would be to record the conversation, extract particu-
lar keywords and use them to deliver additional functionali-
ties, such as automated filling the medical forms or suggesting
the diagnosis and further code of conduct. The crucial com-
ponent of such a system will be the data set, which must be
specifically prepared for the planned scenarios. The inherent
part of the deep learning-based system is the set of recordings
large enough to successfuly train the model. The architec-
ture of a system for such an application is shown in Fig. 3.
There are three key components: the ASR, the NLP and the
post-processing module. The speech signal extracted from
the conversation is fed into the input of the ASR model which
first stage is the extraction of acoustic features. On their ba-
sis the model decodes the phonemes contained in the speech
stream and assigns corresponding text representations to them.
The output of ASR is a text (speech transcription). The rec-
ognized text is therefore fed to the input of the NLP model,
which task is to extract keywords necessary for further pro-
cessing (like filling the computer-based form). The presented
system should work autonomously with the maximum possi-
ble accuracy. This calls for the AI methods’ implementation,
which are currently widely used in most data processing appli-
cations. Numerous examples of the algorithms’ implementa-
tion for ASR exist in the literature. Since the 1980s, Hidden
Markov Models (HMM [3]), conventional models based on the
acoustic analysis, language and lexicon structures (Fig. 1) and
then hybrid systems have been developed [4]. The research on
DNN [5] led to a shift from architectures based on feature ex-
traction and pattern analysis to the E2E (Fig. 2) approach [6].
Their advantage is the ability to operate on the raw information
(as ’the data speaks for itself”). This facilitates implementation
of language-independent systems (based on multilingual data).
The technology requires a large amount of data to produce sat-
isfactory recognition results and huge computing power during
the training in the GPGPU framework. The domain is mature
enough to spawn not only research projects, but also commer-
cial applications, e.g. Google STT [7].

Lexicon

l

S?ee:h Featur.e Acoustic Decoder Transcription
signal extraction model (text)
Language
model

Fig. 1. A simplified diagram of a conventional ASR system consisting of
three, separate models - acoustic, language and pronunciation. Train-
ing of the models is performed separately and requires forced audio
and transcript alignment [8].

The ASR and NLP models in Fig. 3 are based on the E2E
architecture, in which ‘raw’ data are directly fed to the input of
the network. The ASR covers encoding by mapping the input
speech sequence to a sequence of features, matching the lat-
ter to the language and decoding the final classification results.
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Fig. 2. A simplified diagram of the ASR system in the E2E approach, in
which acoustic, language and pronunciation models are implemented
by an integrated deep model that requires soft audio and transcript
alignment [9].

As all recognition stages are integrated into a single network,
it is often difficult to determine which part performs the partic-
ular subtask. The DNN directly maps acoustic signals to labels
without any intermediate states. Development of the individual
approach is driven by the specificity of Polish language. The
system should be also able to retrain on newly delivered and
publicly available data, which imposes anonymization of the
voice recordings eliminating the threat of identifying speak-
ers. This requires constructing the problem-specific data sets
for training and testing the implemented algorithms. The pro-
posed methodology includes using the generally available data
sets (see Section 4) first, and them supplementing them with
the application-oriented sets. Construction of the system con-
sists in a sequence of steps:

a Fine-tuning of the selected DNN models initially trained on
the more general sets of recordings.

b Examining the efficiency, training and adaptation to new
tasks of the Polish language ASR models and systems out-
lined in the paper

¢ Based on the resulting transcription, training the NLP mod-
els to search for keywords (symptoms).

d Implementing a method of automatically completing the
medical form based on the information filtered from the tran-
script.

Transcription
(text)

keywords

ASR E2E Filled medical
|-» documentation

form

NLP transfer v
learning
(text maining)

Dataset —¥|

learning filling of forms

Fig. 3. Proposed architecture for a medical interview support system,
consisting of 3 modules: ASR, NLP and medical record filling. Each
module is a DNN model.

The comparison of algorithms applicable in the system is
based on the Word Error Rate (WER). It is used widely in lit-
erature and allows to assess the efficiency of ASR and to com-
pare results of different researchers. WER is the ratio of in-
correctly recognized words to the total number of words in the
transcription. So, the lower the WER, the ASR more efficient
and vice versa:

I+D+S
— X
N

where all symbols denote the number of words in the tran-
scription, respectively: S - substitutions (incorrect words) , D
- deletions (removed words), I - insertions (added words) and
N - number of words in the reference transcription. The subse-
quent sections present the state-of-the-art in the ASR domain
and justify the selected algorithms for the project.

WER = 100 1
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3. CHARACTERISTICS OF THE POLISH LANGUAGE

Currently, the largest number of ARS solutions based on DNN
and E2E architecture is for English and Chinese [10]. These
languages are highly-supported by a significant amount of data
to train Al models. As there are approximately 7,000 differ-
ent languages spoken by people worldwide [11], the need to
build ASR systems dedicated to them (or multilingual) is sub-
stantial. The presented research concerns the Polish language,
which is complex due to its structure, grammar and spelling.
The following section presents peculiarities of the language
(especially opposed to English), justifying the particular archi-
tecture of the ASR system.

A. ASR for Polish language

The problem of the speech recognition can be thought of as
an attempt to transcribe an acoustic signal into distinct words.
This task is divided into three subtasks of modeling of:

1. Acoustic speech patterns (predicting which phoneme is ut-
tered in a particular segment of the speech signal).

2. Language statistics (predicting the most probable word se-
quences).

3. Pronunciation (different variants for each word).

In a conventional ASR system (Fig. 1), these are performed
by acoustic (AM), language (LM) and pronunciation (PM)
models [8] which are trained and optimized separately and ex-
change information. The Conventional ASR systems are most
often built on the basis of HMM, ANN or mixture of differ-
ent approaches (e.g. GMM-HMM, HMM-ANN [12], etc.). To
train an AM based on HMM, pairs ’acoustic feature - phoneme
(label)’ are required. This demands the use of forced align-
ment (assignment of corresponding graphical representations
to each segment of audio data). Preparation of the training
data and training process is time-consuming and requires an
immense amount of work. ML is commonly based on statisti-
cal models (e.g. n-grams, see Section C), because most ASR
solutions were originally developed for a positional language
(English) and later adapted to other ones (including Polish with
almost arbitrary sentence formation). Conventional ASR sys-
tems are differentiated by the acoustic features used, (e.g., for-
mant frequencies or linear prediction coefficients (LPC) and
others), when E2E mainly uses spectrograms of/and MFCC
(Mel Frequency Cepstrum Coefficient - filter bank analysis and
mel scale simulate nonlinear frequency recognition across the
audio spectrum by the human ear [13]). Table 1 shows WERs
for sample conventional Polish ASR systems. HMM-based
AM achieve high efficiency for short commands, but low for
continuous speech. Enhancing the system with DNN signif-
icantly improved recognition of Polish continuous speech, so
the usage of DNN for Polish speech recognition is effective.

In the considered support system (Fig. 3) all these stages
are performed by a single DNN. The NLP does not act as a
language component of ASR, but is a separate model process-
ing the ASR output sequence to perform data mining.

Table 1. WER results for the Convenional Polish ASR based on litera-
ture sources. All ASR systems in the table have HMM-based AM, LM
based on n-grams (except Skrybot, whose authors only report that LM
is based on statistical methods) and were created using datasets con-
taining recordings and transcriptions in Polish. The AM of the ARM-1
NG system was enhanced with DNN. CGl stands for Computer Game
Interface ASR system.

’ Ref. ‘ System ‘ Speech ‘ WER ‘ Date ‘
[14] | Social robot short commands 3.9% 2016
[15] | CGI short commands 0.7% 2021
[16] | Skrybot continuous speech | 27.2% | 2021
[17] | ARM-1 continuous speech | 26.4% | 2016
[18] | ARM-1 NG continuous speech | 4.84% | 2021

B. Acoustic Modeling

[19] compares, Power Spectral Density (PSD) curves for Pol-
ish and American English speech - despite significant differ-
ences between them, both curves have similar shape and con-
tain several maxima and minima (in some cases occurring in
different frequency regions). The first maximum, at approx-
imately the same frequency for both languages, reflects the
influence of the fundamental frequency on the speech spec-
trum, while the remaining maxima represent the influence of
vowel formants. They occur at separate frequencies for both
languages, which is due to different phoneme systems and
relative frequencies for phonemes. [20] compares fundamen-
tal frequency of the laryngeal tone (FO) levels for Polish and
American male speakers. Small differences in Fundamental
Speaking Frequency (FSF) were found between these groups.
The long-term spectral characteristics of Polish and English
are similar in terms of PSD levels and statistical distributions
with Polish having a fixed lexical accent location (on the penul-
timate syllable). Therefore inclusion of accented vowel models
in Polish ASR allows for a reduction in verbal errors [21]. The
set of phonemes present within a Polish language is not ob-
vious, and researchers adopt two SAMPA conventions ([22]).
Both distinguish 37 phonemes for Polish, but the former ac-
cepts the existence of the phonemes '3’ and ’¢’ (written as
o > and ’e ’), while the latter questions their distinction, in-
cluding additional phonemes ’ki’ and ’gi’. To represent the
pronunciation of words from the phonetic dictionary as ac-
curately as possible and to train the AM optimally, in [14] it
was decided to combine these concepts, obtaining a set of 39
phonemes used for the words’ representation. According to
[15], most phonemes (plosives, fricatives and affricates) occur
in soundless-sonorous pairs. However, under certain circum-
stances, some of them become voiceless (so-called devoicing)
and vice versa: voiceless phonemes become sonorous. In the
prosody of Polish, the melody of a word (pitch contour) does
not affect its meaning. The melody of a sentence may carry
semantic information (e.g. a question, an emotion).

C. Language Modeling

There are key differences in LM structure for English and
Polish. Slavic languages are characterized by rich morphol-
ogy - nouns, pronouns, adjectives, counts and verbs conju-
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gate depending on the grammatical context. Inflectional forms
are formed from lemmas using prefixes, suffixes and/or core
changes. This results in large dictionaries with hundreds of
thousands of entries. Sometimes suffixes differ by only one
phoneme, so many forms of words sound very similar. These
languages also differ in the level of gender lexicalization. In
Polish, feminine nominal forms are common, while in English
most nouns have no gender designation. In Polish there are
3 types in the singular and 2 in the plural - [15], [23]. There
are many other marked forms, such as diminutives and aug-
mentatives, which are rare or absent in English [24]. Words
have many forms, so the number of tokens is greater than in
English. Polish is characterized by a relatively high morpho-
logical richness - there are 4 million inflectional forms out of
about 180,000 basic [25]. A larger number of tokens results in
rare data, where it is not possible to collect a corpus allowing
the calculation of probabilities for every sequence of a given
length that may occur. There are sequences for which there
are no probability estimates [26]. The number of permitted
sentence forms is different: in English, sentences are usually
constructed according to the subject-verb-object (SVO) forma-
tion, while in Polish it is relatively unlimited and has no sig-
nificant impact on the meaning of the sentence, which is re-
solved around compound inflection. The function of a word
(e.g., whether a noun is a subject or a complement) is deter-
mined by its form, not by its position in the sentence. Polish
sentences often lack a subject - it can be inferred from the form
of the verb, and there are no partitions preceding nouns or other
parts of speech [15], [27], [25]. A common approach is to use
n-grams in LM [28], with the effectiveness of a given n-gram
depending on the language. N-grams follow positional logic in
English, but are less effective in inflectional languages such as
Polish. N-grams are sequences of n words into which an entire
utterance is divided. The technique is based on predicting sub-
sequent words based on previous words and discovering the
meaning of an utterance based on the local context. A given
word is analyzed taking into account neighboring words (e.g.
in most commonly used 3-grams, the meaning of the middle
word is recognized on the basis of the single word preceding
and following it). In Polish, due to its free sentence formation
and complex inflection, knowledge of both local and global
context is essential for recognizing meaning.

D. Pronunciation Modeling

Polish, like other Slavic languages, has a simple relationship
between orthography and pronunciation. With the help of ba-
sic rules, a grapheme-phoneme conversion can be made. For
abbreviations, a spelling-letter converter can be used. Care
should be taken regarding numerals and loanwords [29]. The
rule of simple relation between orthography and pronunciation
applies to vowels, but not to all consonants. Vowels are repre-
sented by a phoneme with an identical symbol. For consonants
followed by the letter ’i” and a vowel, a softening symbol can
be introduced for the corresponding vowel [16]. There are also
consonants composed of more than one letter, which in pro-
nunciation are a single voice like: ’cz’, ’sz’, dz’, dZ’, as well

as sounds that have two spellings, like: ’z/rz’, *h/ch’, "u/6’.
The exception is ’¢/ci’, where the pronunciation depends on
spelling. A significant difference between Polish and English
is that the latter has a large number of homophones and many
combinations of different words have similar pronunciation,
while Polish has a much smaller number of homophones. In
English, an unstressed vowel is usually pronounced as ’3’, 1’
(phonemes with similar sounds and spectrum) or 9, so unac-
cented vowels are almost indistinguishable [30].

4. DATASETS

Slavic languages are spoken by around 320 million people,
mainly in central, eastern and southern Europe. The largest
language is Russian (~160 million speakers), The next one be-
ing Polish ( 50 million speakers) [31]. Despite this, the num-
ber of resources available to prepare ASR systems is still lim-
ited [27], so Polish is classified as a low-resource language
[32]. There are both speech corpora containing only Polish
e.g.: CORPORA [33] and multilingual dataset, including Pol-
ish, designed to create and train E2E ASR systems. Since the
presented research is based on the E2E architecture, it was de-
cided to use two multilingual open source dataset: Multilingual
LibriSpeech (MLS) [34] and Mozilla Common Voice (MCV)
[35]. Also, the application-oriented dataset must be prepared.

A. Mozilla Common Voice - MCV [35]

MCYV contains MP3 recordings of speech and corresponding
text files for 112 languages, including Polish. Metadata in-
cludes age, gender and accent. The Polish part of MCV is
constantly being expanded, and currently contains 173 hours
of speech recordings, (163 hours validated, 3,208 voices). In
MCY, the dataset for each language is divided into a training
(train), development (dev) and test set [36].

B. Multilingual LibriSpeech - MLS [34]

It is a multilingual version of the LibriSpeech [37] dataset,
originally developed only for English. The collection covers
read speech using publicly available LibriVox audiobooks and
Project Gutenberg text data. It contains 44,500 hours of En-
glish and a total of 6,000 hours in 7 other languages, including
Polish. The dataset is decomposed into training, development
and testing parts. In the Polish set, the recordings are in sub-
sets of 103.65, 2.08 and 2.14 hours, respectively (female and
male voices).

C. Application-Specific Datasets

As the publicly available datasets do not consider all the re-
quirements of the planned research, there is the need to prepare
the individual collection of conversations. The requirements
include specific topic of conversations (by different speakers)
and various sound degradation sources (e.g. the inclusion of
background noises, the use of different recording devices, etc.).
The data set prepared for the mentioned medical interview sup-
port system should contain recordings of a conversations be-
tween a patient and a doctor where specific vocabulary is used
(e.g. names of drugs, symptoms of illness) and are aimed at
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various groups of diseases. The interviews’ quality should be
intentionally degraded to create the playground for the applied
system.

The dataset created for the proposed system requires con-
stant extensions to include changing environmental condi-
tions. So far, 17 scenariosare considered, assigned to vari-
ety of speakers (14 female and 15 male initially selected).
The scenarios must be repeated in different configurations of
the patient-doctor voice, in terms of gender. Recordings are
made in various acoustic conditions, including: an acoustic
test chamber characterized by a short reverberation time, an
office, and a doctor-like room (medium reverberation time).
In medical applications, it is crucial for speakers to have their
mouths covered with a mask, which is also covered in part
of the recordings. Recordings includes various bit resolutions
(16 and 24 bits per sample) and sampling rates (44.1 kHz, 48
kHz and 65.5 kHz). Different positions of the recording equip-
ment (orientations relative to the doctor’s head and the patient’s
head) must also be taken into account, sound recording devices
of varying quality (different microphones varying in price, dy-
namics, frequency response and characteristics and recorders).
The scenarios are divided into doctor-patient utterances and
matched with the corresponding recording.

Due to the fact that all the text is initially matched to the
entire recording, semi-automatic annotation of the recordings
must be performed on the utterances of a particular speaker
(doctor or patient). For this purpose, the recordings are ini-
tially segmented using a speaker diarization method (separat-
ing the audio signal into segments based on who is speaking
at a given time) based on voice activity detection - Oracle-
VAD diarization and a deep neural model available in the
open-source NeMo Toolkit. This allows the determination of
speaker embedding in the recording and speaker label times-
tamps. The output of the model results in Rich Transcription
Time Marked (RTTMS) files containing details about record-
ing. Considering that several E2E ASR models are capable
of handling recordings of limited duration (e.g., Whisper up to
30 seconds), the recordings and reference transcriptions details
about divided into fragments according to the timestamp val-
ues of the speaker labels. Finally, the dataset will be based on
pairs: recording and corresponding transcription. At this stage,
the text is not further normalized, and a future normalization
must be adapted to specific E2E ASR models.

5. END-TO-END ASR

In the solution proposed in Section 2, we decided to use the
E2E architecture due to its simpler training procedure, lower
data requirements and higher recognition efficiency for Polish
continuous speech (WERs for E2E solutions tested for Polish
are in Table 2). This section covers the E2E architecture and
its variations. In E2E architecture all recognition steps are per-
formed by a single network, trained for the ’general’ task of
recognizing words. This calls for a global optimization for the
network training. E2E models use soft alignment: each audio
frame corresponds to all possible states with a defined proba-
bility distribution, which does not require the forced alignment

[6]. ASR E2E is based on three types of DNNs: RNN, CNN
and Transformers. A popular solution used in E2E ASR is the
Sequence-to-Sequence (Seq2Seq [38], Fig. 2), in which one
sequence (speech signal features) is transformed into another
one (strings - transcription). Seq2Seq architectures consist of
an encoder and a decoder (Encoder-Decoder structure (ED)).
The role of the encoder is to take the speech signal and trans-
form it into vector of a high-level representation (acoustic fea-
tures) which is passed to the input of the decoder, that outputs
a probability distribution for the current unit (e.g. a word). Fi-
nally, the most probable transcription of the input audio signal
is obtained. Below we describe the most important solutions
used in E2E ASR systems.

A. Recurrent Neural Networks - RNN

RNNSs are suited for analyzing sequential data over time (such
as speech) - they can take a sequence of values at the input
and return a sequence of values at the output, ‘remember’ pre-
vious values of the output. In the context of ASR, the advan-
tage of RNNs over conventional ASR is the absence of any
prior knowledge of data (only the choice of input and output
representations). They are also robust to temporal and spatial
noise [39]. However, they require pre-segmented training data
and post-processing (transforming the results into labeled se-
quences). The real, often noisy input signal is labeled with
a sequence of discrete letters or words, and speech represents
connected units with unknown segmentation. RNNs can only
be trained to produce a set of separate label classifications. Al-
though the RNN has access to the entire previous sequence, the
encoded hidden state information is usually rather local [40].
In response to these problems, types of RNNs have been de-
veloped specifically for ASR tasks: Connectionist Temporal
Classification (CTC), Recurrent Neural Network Transducer
(RNN-T) and Attention-based Encoder-Decoder (AED).

A.1. Connectionist Temporal Classification - CTC [41] is
a type of network output and associated scoring function for
direct labeling of unsegmented sequences (see Fig. 4A). For
a temporal classifier, no external post-processing is required,
as CTC directly outputs the probabilities of label sequences
by mapping the input speech sequence to the output label se-
quence. Its training leads to predicting labels in any input se-
quence, as long as the overall result is correct. Therefore there
is no need to pre-segment data and match labels to the input
data. If the length of the output labels is less than the length
of the input speech sequence, a blank label is inserted in the
former to align them. The utterance of each letter is character-
ized by a specific duration. To match the CTC output sequence
to this duration, each letter in the output text is repeated, and
the repetitions form a single letter [42]. The procedure de-
scribed in the last step is the so-called ’collapsing together’
of different paths into a single designation: the probability of
some designation is calculated as the sum of the probabilities
of all paths mapped to it by a many-to-one function (e.g. F(c-
ar-) = F(-c-aa-r) = "car’). This is possible because the paths
are mutually exclusive. This is what makes it possible to skip
data segmentation in CTC - this procedure allows the network
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to predict a label without prior knowledge of where it occurs.
Thus, one may think that CTC is not a good model for prob-
lems in which the location of the label must be determined.
However, it has been proven in experiments that CTC predicts
labels in an approximate position relative to the input sequence
[42], [9]. The CTC mechanism can also be combined with
other networks (such as CNNs) as a loss function (CTC loss)
in learning of mapping input sequences to output sequences,
even if they are of different lengths. Such a process involves
performing backward calculations to identify all possible out-
put sequences corresponding to a given input sequence. Losses
are then calculated based on their probabilities. The Softmax
activation function in Fig. 4 is currently the standard output
layer component for making decisions:

eti

n X 7
j=1¢"

So ftmax = s(x;) = 2)

Softmax transforms real numbers (from preceding parts of
the network) into a probability vector. Here x is the softmax
input vector (containing n elements for n possible categories).

A) Speech B) Speech
signal signal
+ . i
High-level High-level

representations

representations

Most probable
labels of the input
sequence
(Transcription)

previous
decoder output

previous
recognition

Most probable
labels of the input
sequence
(Transcription)

Fig. 4. Simplified CTC (A) and AED (B) structure [9]. The AED struc-
ture shows additional blocks of the attention mechanism and decoder,
as well as added recursive paths.

A.2. Recurrent Neural Network Transducer - RNN-T is an
extended CTC model, in which information context learning
is added (see Fig. 5). It is used in ASR as AM, while the
additional Long short-term memory network (LSTM, type of
RNNs with additional memory cells [43]) is LM. Such a joint
network combines language and acoustic features through a
combination of high-level acoustic and language representa-
tions. In the CTC model, each recognition is conditionally
separated, which is not the case for RNN-T. This allows them
to be used in streaming recognition [9]. The performance of
the RNN-T model can be explained based on 4 basic steps:

1. The role of the encoder is the same as that of the CTC model:
generation features from an audio recording.

2. The prediction network generates a high-level representation
based on the previous output of the whole model.

3. Based on the high-level representation joint network, which
is usually a feed-forward network, combines the outputs of
the decoder and the prediction network [44].

4. The output vector of step 3 is fed into a softmax layer to
determine the output prediction of the whole model.

Speech
signal

Acoustic high-level
representations

Contex (Language)
high-level representations previous
J recognition

Joint network

Most probable
labels of the input
sequence
(Transcription)

Fig. 5. Simplified RNN-T structure [9].

A.3. Attention-based Encoder-Decoder - AED solves a
problem present in traditional ED architecture, in which the
context vector is created only based on the last hidden state of
the encoder, which can lead to limitations for long input sen-
tences. The reason is that in an RNN, old information can be
forgotten after propagation over many time steps and attention
is scattered throughout the sequence (there is no obvious word
alignment during decoding) [45]. The AED architecture (See
Fig. 4 B) solves this problem, as the encoder is a bidirectional
RNN, while the decoder is an RNN working on the input from
the previous state and a dynamic context vector. The latter is
created by the attention layer located between the encoder and
decoder. It accesses all the hidden states of the encoder and
every part of the input sequence (word in the sentence) at the
same time. The AED model is autoregressive at every step. It
uses previous generated symbols as extra data of input during
the generation of further ones. The performance of the AED
model can also be explained based on 4 basic steps:

1. The encoder network has the same function as in CTC.

2. Taking the output representations of the encoder, the decoder
outputs the sequence one element at a time.

3. The attention layer calculates attention weights between the
previous decoder output and the encoder output of each
frame with the attention function, then a context vector - the
weighted sum of the encoder outputs - is generated.

4. The previous output label is given to the decoder input to-
gether with the context vector. Based on this, the decoder
output is generated.

The attention mechanism (Fig. 6) gives each input a weight
to evaluate its importance compared to other inputs. The at-
tention weights between the previous decoder output and the
encoder output of each frame are calculated using the atten-
tion function. Then a context vector - the weighted sum of the
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High-level
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previous decoder
hidden state

Attention weight
Context vector

Decoder

Fig. 6. Attention mechanism used in AED structure.

encoder outputs - is generated. The attention mechanism intro-
duces the exploration of context relations in sequences to E2E
systems. It simulates the human attention mechanism and al-
lows the network to focus on important parts of the input data
rather than the irrelevant ones [46].

B. Convolutional Neural Networks - CNN

Although RNNs are well suited for classifying temporal se-
quences, their learning speed is slow for long input sequences
due to iterative multiplications over time. Another approach
to building E2E ASR models is to use convolutional networks
(CNNs). The CNN are feedforward networks with convolution
layers represented by a series of filters (matrices with num-
bers), each recognizing a particular pattern [47]. There are
solutions fully based on CNNs such as described in the study
[48]. CNNs in combination with CTC, or RNN-T layers can
be found in the NVIDIA family models, such as Jasper [49],
or its modifications, e.g. QuartzNet (described in Section 6A).
CNNs are also part of Transformer-based architectures, such
as Speech-Transformer (see 7) and Conformer (see 8). CNNs
are consequently an integral part of most modern E2E ASR
models. One reason for this is the widespread use of acoustic
features in the form of mel-spectrograms and Mel-Frequency
Cepstrum Coefficient (MFCC [13]) depiction, which allows
speech sounds to be represented as images and adapts tech-
niques originally used in the field of image recognition. The
ASR task requires the model to consider long-term dependen-
cies. According to [50], in CNNs of sufficient depth, higher
layer features are able to capture temporal dependencies with
relevant contextual information. By using small filter sizes
along the frequency axis of the spectrogram, the model is adept
at learning fine-grained localized features. Multiple stacked
convolution layers are robust to translational frequency shifts
(depending on age or gender of the speaker) [51]. In the afore-
mentioned fully convolutional ASR, the model architecture is
divided into 4 parts: a CNN front-end, CNN acoustic model,
CNN language models and a Beam-search decoder. The pa-
per describes the equivalents of the techniques used for image
processing and the process of adapting CNNs to speech sig-
nal (e.g., the pre-processing layer uses logarithmic compres-
sion and normalization of the mean variance per channel - the

equivalent of the instance normalization layer used in CNN
image processing [52]).

C. Transformer

Similar to AED, this network is based on ED, an attention
mechanism, and is used to process sequential input data, but in
Transformer the input data is not processed sequentially. Hid-
den states can be computed in parallel, which reduces learning
time. Transformer can also be self-supervised, so no labeling
is required [53], [54]. The no data labeling requirements and
parallel input access to all hidden states are attributes of the
Transformer that make it suitable for the ASR task. This chap-
ter describes two major Transformer-based ASR architectures:
the Speech-Transformer and the Conformer.

C.1. Speech-Transformer is Transformer adapted to ASR by
replacing the embedding layer of the encoder with convolu-
tion layers, before passing features to Transformer layers (see
Fig. 7) [55]. Additional CNN layers in speech Transformer
reduce differences in dimensions of the input and output se-
quences. This is due to number of frames in the audio sig-
nal being greater than the number of output tokens (text) [55].
As in any ED-based ASR architecture, the encoder’s task is
to change the input speech sequence into a sequence of high-
level representations - acoustic features. The decoder takes
them with previously generated y;_; character and returns the
next one y; [56]. In this architecture is the stack of M optional
modules to extract more expressive representations (e.g. extra
encoder blocks).

speech Outputs
signal
Character
Conv/2 + ReLu Embedding
Output Encoding
Conv/z + ReLu

Positional
Encoding

Decoder

Layer Norm

Masked
Multi-Head

Positional
Attention

Layer Norm

Multi-Head
Attention

Multi-Head
Attention

Layer Norm

Feed Forward
Networks

Feed Forward
Networks

—() De——
Layer Norm Layer Norm
L’ (e )
(Csotma )

Most probable
labels of the input
sequence
(Transcription)

Fig. 7. Example of E2E ASR model in Speech-Transformer architec-
ture [55], contains convolutional layers at the beginning, followed by
Transfromer layers with a multihead self-attention mechanism.

The ’Linear’ transformation is done on the flattened output
of the feature map. This allows for obtaining vectors of the
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correct dimension (’input encoding’). The sum of the input
and positional encoding is fed into the encoder. It contains a
MH attention [55] and a position-wise Feed-Forward Network
(FNN). The attention extracts contents from a set of queries Q
and keys K of dimension d;. and values V of dimension d,. The
retrieval function is driven by similarities between queries and
keys and returns a weighted sum of values:

oK”
en

The FNN is applied individually to each position in the se-
quence. Layer normalization and residual connections are im-
plemented in each sub-block to achieve efficient training. Each
decoder contains three sub-blocks: masked MH attention, MH
attention with keys and values derived from the encoder out-
puts, and queries from the outputs of the previous sub-block,
FNN. Masking ensures that predictions for a given position
can only depend on known outputs in smaller positions. De-
coder outputs are transformed into output class probabilities
using linear projection and softmax function. The positional
encoding mentioned above adds sequence information to each
element of the sequence. This is necessary because the self-
attention layer does not distinguish the order of the elements
in the sequence.

Attention(Q,K,V) = So ftmax( ) 3)

C.2. Conformer is a Convolution-augmented Transformer
for Speech Recognition (see Fig. 8) [57]. The structure in-
cludes an Conformer encoder and a LSTM-based decoder. The
former is similar to a standard AM, taking input attributes x,
and mapping them to a high level features. The decoder takes
these and, given the context extracted by the encoder, outputs a
probability distribution for the current entity (e.g. a word) [58].
Conformer encoder is based on the idea of Transformer, but
with added convolution. In its architecture ’SpecAugumenta-
tion’ refers to the data augmentation method for ASR from [59]
and ’Dropout’, is used to prevent overfitting [60]. Conformer
encoder structure uses additional layers of CNNs to capture
global and local context. The combination of CNN and Trans-
former enables learning local position-dependent features and
exploiting global content-based interactions. At the same time,
this combination extends self-attention with relative position
based information that maintains uniformity.

6. E2E DNN MODELS SELECTED FOR RESEARCH

For the considered ASR system (Fig. 3) we selected five E2E
ASR models adapted for Polish ASR. Their performance for
continuous speech is higher than conventional methods. E2E
ASR is easier to design and train with lower data segmentation
requirements (or absence of thereof) and lack of forced align-
ment. Due to the limitations of RNNs mentioned in Section A,
we chose models mainly CNN and Transformers-based. The
goal is to compare their WER and use either as the standalone
approach or the ensemble. In Table 2 we present WER values
for selected models, based on the literature reports. The table
also provides results for three previously undescribed datasets:
Polish Parliamentary Corpus [62] (PPC) - a collection of

A) Speech
signal

SpecAugment

Convolution
Subsampling

Feed Forward
Network

®

Multi-Head
Attention

®

Dropout

Convolution
Module
Co;for:!er x N
ocks
®
Feed Forward
Network

High-level
representations

Fig. 8. Simplified structure of the Conformer type encoder [57]. On
the left is shown an simplified structure of the encoder using Con-
former blocks. The SpecAugment [59] block shown in the diagram
refers to an augmentation method that operates on the logarithmic mel-
spectrogram of the input audio, rather than the raw audio itself, treating
it as a visual rather than an audio problem. Layer convolutional sub-
sampling allows to reduce the dimensions of feature maps in CNN lay-
ers [61]. A dropout [60] layer protects the deep model from overfitting.
On the right is shown the detailed structure of Conformer blocks, which
includes both layers of multi-headed attention and convolution layers.

Table 2. WER results for the investigated models based on literature
sources. The abbreviations used are as follows: Arch. - ASR architec-
ture, Network - type of network used, TF - Transformer, CF - Conformer,
T - RNN-Transducer.

’ Ref. ‘ Model ‘ Arch. ‘ Network Data. ‘ WER ‘ Date ‘
[66] | QuartzNet BxR CNN MCV 14% 2023
[67] | FastConf. ED CF-T-CTC MCV 5.99% | 2023
[68] | ESPnet2 ED CF MCV 2.6% | 2020
[68] | ESPnet2 ED TF MCV 15.1% | 2020
[69] | Whisper ED CNN-TF MCV 6% 2023
[70] | Wav2Vec 2.0 ED CNN-TF MCV 9.8% | 2021
[71] | Wav2Vec 2.0 ED CNN-TF | MCV/E | 7.6% | 2022
[72] | Wav2Vec 2.0 ED CNN-TF MLS 17.2% | 2020
[73] | Whisper ED CNN-TF MLS 5% 2022
[63] | Wav2Vec 2.0 ED CNN-TF PPC 32.1% | 2023
[63] | Whisper ED CNN-TF PPC 32.5% | 2023
[70] | Wav2Vec 2.0 ED CNN-TF VP 7.1% | 2021

documents from the proceedings of the Polish parliament ana-
lyzed linguistically ([63] describes the use of recordings from
the Polish parliament to test ASR E2E models); Europarl-st
[64] (E) - contains translations from publicly available video
recordings of European Parliament debates for 9 languages (in-
cluding Polish), recordings and transcriptions; is divided into
Training, Development and Test parts; VoxPopuli [65] (VP) -
a multilingual speech corpus based on recordings from Euro-
pean Parliament events from 2009-2020.
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A. Quartznet

NVIDIA Quartznet [66] model architecture (see Fig. 9) based
on Jasper [49] with CNN trained using CTC loss function. The
BxR architecture includes B blocks, each with R convolution
sub-blocks, which allows for efficient implementation on the
GPU. It uses spectrograms as input speech features. The main
extension in the QuartzNet architecture is the replacement of
1D convolutions with 1D Time-Channel Separable Convolu-
tions (IDTCSC). The input is the number of dimensions of
the input data, while the output is the number of feature maps
produced by a convolution filter. Here, ’time’ refers to one-
dimensional data. The filter moves along the time axis and the
convolution is divided into time-wise and channel-wise opera-
tions. The former use separate convolution filters for each data
point in time. This allows to analyze temporal data from dif-
ferent perspectives and detect patterns and relationships. The
channel-wise operation consists in applying convolution to the
resulting data to extract features in multiple channels. The
IDTCSC minimizes the model, reducing the number of net-
work parameters, computational efficiency and prevent over-
fitting [74]. The selected QuartzNetl5x5 (available in the
NVIDIA NeMo toolkit [75]) contains 15 CNN blocks multi-
plied 5 times. We use fine-tuned model from English to Pol-
ish: it used the encoder from the English version of QuartzNet,
while the decoder was changed to output Polish alphabet char-
acters and tuned using the Polish part of MCV [76]. It uses the
character coding scheme and text transcription in the standard
character set available in the Polish part of the MCV dataset.
The ’Conv-BN-ReLU’ block applies 1-dimensional convolu-
tion, batch normalization [77] and ReLU function [78]. The
"TCSDConv-BN-ReLLU’ block applied IDTCSC, batch nor-
malization and ReLU function.

A Spectrogram B)

Conv-BN-ReLU
1D Depthwise
Conv
xR
.
.
.
/
( x ¥
.
TCSConv-BN-ReLU RepeatR |
Repeat B ] Times o
Times L Batch Norm
- 1D Depthwise
Conv
Pointwise Conv
Most probable

labels of the input
sequence

Fig. 9. Architecture of Quartznet model [74]. Its structure mainly in-
cludes CNN layers, with a CTC layer at the output of the entire model.

B. FastConformer Transducer-CTC

The model uses a fast Conformer with joint Transducer and
CTC decoder loss [67]. To speed up the encoder, the down-

sampling rate was increased (from 4x to 8x), reducing the se-
quence length of the speech features and the computational
cost of subsequent attention layers [79]. The model uses
a hybrid decoder, i.e. a combination of RNN-T and CTC
(Transducer-CTC) [80]. It is available in the NVIDIA NeMo
Toolkit [75] and was adapted to Polish using the MCV, MLS
and VP. It aldo uses the Google SentencePiece Unigram tok-
enizer [81], transcribes text in uppercase and lowercase letters
of the English alphabet together with spaces, periods, commas,
question marks and several other characters.

C. Wav2Vec 2.0 XLSR-53

It is a framework developed by Facebook AI for self-
supervised learning of speech representations, using a CNN
and a Transformer. The raw speech waveform is fed to the in-
put of the CNN encoder, with output receiving hidden speech
representations. They are then fed to the input of Transformer
encoder whose output is processed by a quantization module
to represent targets for self-supervised learning. The model
builds context representations on continuous speech [82]. [72]
shows the use of the Wav2Vec 2.0 framework for unsupervised
learning of the ASR XLSR-53 multilingual model. It covers
53 languages, including Polish. Tuning the model to the new
languages was done by training with CTC loss and using MCV,
MLS and Babel [83] datasets. The [63] tested the capabilities
of the Whisper and Wav2Vec 2.0 models to detect keywords in
the child abuse domain. A list of keywords for detection was
defined and obtained from a set of open documents. All doc-
uments were searched and preprocessed by lemmatizing and
removing stop words, numbers and date units.

D. Whisper

This is OpenAl’s open-source, general-purpose, multilingual
ASR model, based on the Transformer ED with two CNNs lay-
ers at the top of the encoder structure (Speech-Transformer),
supporting 57 languages (including Polish [69]). The Whisper
model exists in several versions: tiny, base, small, medium and
large. With the Whisper [73] model, it is possible to map be-
tween utterances and their transcription by predicting the raw
text of the transcription without significant standardization or
preprocessing. This allows for skipping the separate step of re-
verse normalization of the text to obtain the correct transcrip-
tion. The Whisper model was trained on an extensive dataset
of audio and transcriptions from the Internet. It was varied
in sound and transcription quality. While diversity in audio
quality can help train the model to be robust to speech signal
quality, diversity in transcription quality is not similarly ben-
eficial. Because of this, automatic methods were used to fil-
ter transcriptions to improve their quality. Heuristics based on
punctuation, capitalization and other features were also used to
detect and remove machine-generated transcriptions from the
training dataset

E. ESPnet

This is an open source Toolkit for E2E speech processing, in-
cludes DNN-based models described earlier such as: CTC,

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication.



N

www.czasopisma.pan.pl P N www.journals.pan.pl

K. Pondel-Sycz, P. Bilski

AED, BLSTM, RNN-T, hybrid CTC/attention, AED/BLSTM
and Transformer/Conformer ASR (supports streaming) [84]
and a pre-trained multilingual model with available Polish
[85]. In [68] to test the implementation of the Conformer archi-
tecture in the ESPnet toolkit, the corpora used were subjected
to the same data preparation procedure as in Kaldi [86].

7. CONCLUSIONS

The paper presents the current state of ASR methodology for
Polish. The aim of the analysis was to identify the main tools
and algorithms applicable to ASR and to identify those that
could potentially be adapted to conversations conducted with
impaired acoustic signal transmission. First, the available ap-
proaches were categorized and compared. We analyzed the
performance of conventional and E2E systems. The best con-
ventional ASR achieved a low WER for short commands or
continuous speech with HMM enhancement by DNN (ARM-
1 NG). The best E2E model considered is Whisper [73], with
a WER of 5%, so it can provide a baseline for evaluating the
quality of such models. The WERs for ARM-1 NG (4.84%)
and Whisper (5%) are similar, but the second one is an open-
source project that uses state-of-the-art ASR technology, mak-
ing it easier to tune for a new task. However, it should be
noted, that the low WER for the Whisper model was achieved
for the most popular datasets (MCV and MLS) in developing
and testing E2E ASR models. Tests of this model, on a less
popular dataset, showed a significant drop in its performance
(WER of more than 30% for the PPC dataset). Therefore, it
can be assumed that the MCV and MLS datasets were used in
training Whisper, results from the model’s fitting to the data.
In order to determine the actual performance of the Whisper
model, it is necessary to conduct tests of the model, for data
that we know for sure were not involved in the training. Model
over-fitting to data, is one of the main problems of DNN-based
solutions. In addition, such models have very high computa-
tional requirements. This is a significant challenge for these
models, so scaling is important in the upcoming work.
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