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Abstract. The paper presents the analysis of modern Artificial Intelligence algorithms for the automated system supporting human beings
during their conversation in Polish language. Their task is to perform Automatic Speech Recognition (ASR) and process it further, for instance
fill the computer-based form or perform the Natural Language Processing (NLP) to assign the conversation to one of predefined categories. The
state-of-the-art review is required to select the optimal set of tools to process speech in the difficult conditions, which degrade accuracy of ASR.
The paper presents the top-level architecture of the system applicable for the task. Characteristics of Polish language are discussed. Next, existing
ASR solutions and architectures with the End-To-End (E2E) Deep Neural Network (DNN) based ASR models are presented in detail. Differences
between Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN) and transformers in the context of ASR technology are also
discussed.
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1. INTRODUCTION

The Automatic Speech Recognition (ASR) is the scientific do-
main of quickly growing importance. Multiple practical applica-
tions (such as virtual assistants) show vast area of opportunities
to accelerate and facilitate daily operations. The key operations
consist in detecting the speech in the sound stream and identi-
fying subsequent words and phrases inside. Later, the detected
tokens can be extracted and passed, for instance to the text doc-
ument (functionalities already available in the office suite such
as MS Office). In many cases the context of words and phrases
is important, requiring the Natural Language Processing (NLP)
techniques. The ASR domain is challenging as the obtained re-
sults strongly depend on the analyzed language. The most widely
exploited is English due to its worldwide popularity and struc-
tural simplicity. Each language requires a separate approach
(e.g. considering flexion). The Polish language is challenging
due to its complexity, irregular syntax, multiple homonyms and
non-standard characters (adding to the difficulty in recogniz-
ing words). The additional problem is the ASR performed in
difficult conditions, such as the noisy environment. From mul-
tiple telecommunication and signal processing domains [1] it is
known that the background noise strongly influences the ability
to recognize the particular words. Therefore it is important to
evaluate capabilities of the existing methods to recognize Pol-
ish language in such conditions, which include external sources
of disturbances and characteristics of the transmission channel
(recognized as the non-flat spectrum bandpass filter) – see [2].
It affects the quality of the signal and can obstruct or even block
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further language processing. To tackle the presented problems,
the Artificial Intelligence (AI) may be applied, with the focus on
the Deep Neural Networks (DNN). They have proven their ef-
ficiency in multiple applications, especially complex and struc-
tured data processing. Currently there are many feed-forward
and recurrent architectures (such as CNN or LSTM) applica-
ble for the task. New solutions (i.e. transformers) also emerged
recently. Their efficiency and computational complexity must
be compared to determine their usage in the embedded applica-
tions. The following paper presents an analysis of available ASR
solutions for processing the Polish language. The aim of the re-
search was to identify the tools the most suitable for the speech
analysis in difficult conditions. The selected algorithms will be
compared and implemented in various scenarios. One of their
applications can be the ASR component of automated system
for the Medicine Doctor support during the patient’s interview
(Fig. 3). The structure of the paper is as follows. In Section 2,
the problem to solve and the proposed system are presented. In
Section 3, difficulties and challenges regarding Polish language
processing as well as a brief leading to conventional ASR sys-
tems are described. Section 4 describes data sources applicable
in the project. Section 5 describes End-to-End DNN (E2E) ap-
proach as well as the types of neural networks used in E2E. In
Section 6, we described selected E2E models we plan to test in
the context of Polish language recognition and usability for the
problem posed in Section 2. Conclusions are in Section 7.

2. POLISH ASR FOR AUTOMATED ANALYSIS
OF DOCTOR-PATIENT CONVERSATIONS

The research problem under consideration is the processing of
speech during a conversation in Polish conducted under diffi-
cult environmental conditions. These include external sources
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of interference (such as ambient noise), but also the telecommu-
nications channel, which is the medium of speech transmission.
Recent crises (including the COVID-19 pandemic) confirm mul-
tiple scenarios where this is the case. One of the possible applica-
tions of such a system may be the ASR during the medical inter-
view between the doctor and the patient. It should employ tech-
nology of an automatic conversation transcript for a healthcare
professional. The resulting system purpose would be to record
the conversation, extract particular keywords and use them to
deliver additional functionalities, such as automated filling the
medical forms or suggesting the diagnosis and further code of
conduct. The crucial component of such a system will be the data
set, which must be specifically prepared for the planned scenar-
ios. The inherent part of the deep learning-based system is the
set of recordings large enough to successfully train the model.
The architecture of a system for such an application is shown in
Fig. 3. There are three key components: the ASR, the NLP and
the post-processing module. The speech signal extracted from
the conversation is fed into the input of the ASR model whose
first stage is the extraction of acoustic features. On their basis the
model decodes the phonemes contained in the speech stream and
assigns corresponding text representations to them. The output
of ASR is a text (speech transcription). The recognized text is
therefore fed to the input of the NLP model, whose task is to ex-
tract keywords necessary for further processing (like filling the
computer-based form). The presented system should work au-
tonomously with the maximum possible accuracy. This calls for
the AI methods implementation, which are currently widely used
in most data processing applications. Numerous examples of the
algorithm implementation for ASR exist in the literature. Since
the 1980s, Hidden Markov Models (HMM [3]), conventional
models based on the acoustic analysis, language and lexicon
structures (Fig. 1) and then hybrid systems have been devel-
oped [4]. The research on DNN [5] led to a shift from architec-
tures based on feature extraction and pattern analysis to the E2E
(Fig. 2) approach [6]. Their advantage is the ability to operate on
the raw information (as ‘the data speaks for itself’). This facil-
itates implementation of language-independent systems (based
on multilingual data). The technology requires a large amount of
data to produce satisfactory recognition results and huge com-
puting power during the training in the GPGPU framework. The
domain is mature enough to spawn not only research projects,
but also commercial applications, e.g. Google STT [7].

Fig. 1. A simplified diagram of a conventional ASR system consisting of
three, separate models – acoustic, language and pronunciation. Training
of the models is performed separately and requires forced audio and

transcript alignment [8]

Fig. 2. A simplified diagram of the ASR system in the E2E approach, in
which acoustic, language and pronunciation models are implemented
by an integrated deep model that requires soft audio and transcript

alignment [9]

The ASR and NLP models in Fig. 3 are based on the E2E
architecture, in which ‘raw’ data are directly fed to the input of
the network. The ASR covers encoding by mapping the input
speech sequence to a sequence of features, matching the latter
to the language and decoding the final classification results. As
all recognition stages are integrated into a single network, it
is often difficult to determine which part performs the particu-
lar subtask. The DNN directly maps acoustic signals to labels
without any intermediate states. Development of the individ-
ual approach is driven by the specificity of Polish language.
The system should be also able to retrain on newly delivered
and publicly available data, which imposes anonymization of
the voice recordings eliminating the threat of identifying speak-
ers. This requires constructing the problem-specific data sets
for training and testing the implemented algorithms. The pro-
posed methodology includes using the generally available data
sets (see Section 4) first, and then supplementing them with the
application-oriented sets. Construction of the system consists in
a sequence of steps:
a. Fine-tuning of the selected DNN models initially trained on

the more general sets of recordings.
b. Examining the efficiency, training and adaptation to new

tasks of the Polish language ASR models and systems out-
lined in the paper.

c. Based on the resulting transcription, training the NLP mod-
els to search for keywords (symptoms).

d. Implementing a method of automatically completing the
medical form based on the information filtered from the
transcript.

Fig. 3. Proposed architecture for a medical interview support system,
consisting of 3 modules: ASR, NLP and medical record filling. Each

module is a DNN model

The comparison of algorithms applicable in the system is
based on the Word Error Rate (WER). It is used widely in
literature and allows to assess the efficiency of ASR and to
compare results of different researchers. WER is the ratio of
incorrectly recognized words to the total number of words in
the transcription. So, the lower the WER, the more efficient
ASR and vice versa:

𝑊𝐸𝑅 =
𝐼 +𝐷 + 𝑆

𝑁
×100, (1)

where all symbols denote the number of words in the tran-
scription, respectively: 𝑆 – substitutions (incorrect words), 𝐷 –
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deletions (removed words), 𝐼 – insertions (added words) and
𝑁 – number of words in the reference transcription. The sub-
sequent sections present the state-of-the-art in the ASR domain
and justify the selected algorithms for the project.

3. CHARACTERISTICS OF THE POLISH LANGUAGE

Currently, the largest number of ARS solutions based on DNN
and E2E architecture is for English and Chinese [10]. These
languages are highly supported by a significant amount of data
to train AI models. As there are approximately 7 000 different
languages spoken by people worldwide [11], the need to build
ASR systems dedicated to them (or multilingual) is substantial.
The presented research concerns the Polish language, which is
complex due to its structure, grammar and spelling. The fol-
lowing section presents peculiarities of the language (especially
opposed to English), justifying the particular architecture of the
ASR system.

3.1. ASR for Polish language

The problem of the speech recognition can be thought of as an
attempt to transcribe an acoustic signal into distinct words. This
task is divided into three subtasks of modeling:
1. Acoustic speech patterns (predicting which phoneme is ut-

tered in a particular segment of the speech signal).
2. Language statistics (predicting the most probable word se-

quences).
3. Pronunciation (different variants for each word).
In a conventional ASR system (Fig. 1), these are performed by
acoustic (AM), language (LM) and pronunciation (PM) mod-
els [8] which are trained and optimized separately and exchange
information. The conventional ASR systems are most often built
on the basis of HMM, ANN or mixture of different approaches
(e.g. GMM-HMM, HMM-ANN [12], etc.). To train an AM
based on HMM, pairs ‘acoustic feature – phoneme (label)’ are
required. This demands the use of forced alignment (assignment
of corresponding graphical representations to each segment of
audio data). Preparation of the training data and training process
is time-consuming and requires an immense amount of work.
ML is commonly based on statistical models (e.g. n-grams, see
Section 3.3), because most ASR solutions were originally de-
veloped for a positional language (English) and later adapted
to other ones (including Polish with almost arbitrary sentence
formation). Conventional ASR systems are differentiated by the
acoustic features used, (e.g. formant frequencies or Linear Pre-
diction Coefficients (LPC) and others), when E2E mainly uses
spectrograms or/and MFCC (Mel Frequency Cepstrum Coef-
ficient – filter bank analysis and mel scale simulate nonlinear
frequency recognition across the audio spectrum by the human
ear [13]). Table 1 shows WERs for sample conventional Pol-
ish ASR systems. HMM-based AM achieves high efficiency for
short commands, but low for continuous speech. Enhancing the
system with DNN significantly improved recognition of Pol-
ish continuous speech, so the usage of DNN for Polish speech
recognition is effective.

In the considered support system (Fig. 3) all these stages are
performed by a single DNN. The NLP does not act as a language

Table 1
WER results for the Convenional Polish ASR based on literature
sources. All ASR systems in the table have HMM-based AM, LM
based on n-grams (except Skrybot, whose authors only report that LM
is based on statistical methods) and were created using datasets con-
taining recordings and transcriptions in Polish. The AM of the ARM-1
NG system was enhanced with DNN. CGI stands for Computer Game

Interface ASR system

Ref. System Speech WER Date

[14] Social robot short commands 3.9% 2016

[15] CGI short commands 0.7% 2021

[16] Skrybot continuous speech 27.2% 2021

[17] ARM-1 continuous speech 26.4% 2016

[18] ARM-1 NG continuous speech 4.84% 2021

component of ASR, but is a separate model processing the ASR
output sequence to perform data mining.

3.2. Acoustic modeling

In [19], Power Spectral Density (PSD) curves for Polish and
American English speech are compared – despite significant
differences between them, both curves have similar shapes and
contain several maxima and minima (in some cases occurring
in different frequency regions). The first maximum, at approx-
imately the same frequency for both languages, reflects the in-
fluence of the fundamental frequency on the speech spectrum,
while the remaining maxima represent the influence of vowel
formants. They occur at separate frequencies for both languages,
which is due to different phoneme systems and relative frequen-
cies for phonemes. In [20] fundamental frequency of the laryn-
geal tone (F0) levels for Polish and American male speakers are
compared. Small differences in fundamental speaking frequency
(FSF) were found between these groups. The long-term spec-
tral characteristics of Polish and English are similar in terms of
PSD levels and statistical distributions with Polish having a fixed
lexical accent location (on the penultimate syllable). Therefore
inclusion of accented vowel models in Polish ASR allows for
a reduction in verbal errors [21]. The set of phonemes present
within the Polish language is not obvious, and researchers adopt
two SAMPA conventions [22]. Both distinguish 37 phonemes
for Polish, but the former accepts the existence of the phonemes
‘ą’ and ‘ę’ (written as ‘o~’ and ‘e~’), while the latter questions
their distinction, including additional phonemes ‘ki’ and ‘gi’.
To represent the pronunciation of words from the phonetic dic-
tionary as accurately as possible and to train the AM optimally,
in [14] it was decided to combine these concepts, obtaining a set
of 39 phonemes used for the words’ representation. According
to [15], most phonemes (plosives, fricatives and affricates) oc-
cur in soundless-sonorous pairs. However, under certain circum-
stances, some of them become voiceless (so-called devoicing)
and vice versa: voiceless phonemes become sonorous. In the
prosody of Polish, the melody of a word (pitch contour) does
not affect its meaning. The melody of a sentence may carry
semantic information (e.g. a question, an emotion).
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3.3. Language modeling

There are key differences in LM structure for English and Polish.
Slavic languages are characterized by rich morphology – nouns,
pronouns, adjectives, counts and verbs conjugate depending on
the grammatical context. Inflectional forms are formed from
lemmas using prefixes, suffixes and/or core changes. This re-
sults in large dictionaries with hundreds of thousands of entries.
Sometimes suffixes differ by only one phoneme, so many forms
of words sound very similar. These languages also differ in the
level of gender lexicalization. In Polish, feminine nominal forms
are common, while in English most nouns have no gender des-
ignation. In Polish there are 3 types in the singular and 2 in
the plural [15, 23]. There are many other marked forms, such
as diminutives and augmentatives, which are rare or absent in
English [24]. Words have many forms, so the number of tokens
is greater than in English. Polish is characterized by a relatively
high morphological richness – there are four million inflectional
forms out of about 180 000 basic ones [25]. A larger number of
tokens results in rare data, where it is not possible to collect
a corpus allowing for the calculation of probabilities for every
sequence of a given length that may occur. There are sequences
for which there are no probability estimates [26]. The number
of permitted sentence forms is different: in English, sentences
are usually constructed according to the Subject-Verb-Object
(SVO) formation, while in Polish it is relatively unlimited and
has no significant impact on the meaning of the sentence, which
is resolved around compound inflection. The function of a word
(e.g., whether a noun is a subject or a complement) is deter-
mined by its form, not by its position in the sentence. Polish
sentences often lack a subject – it can be inferred from the
form of the verb, and there are no partitions preceding nouns
or other parts of speech [15, 25, 27]. A common approach is
to use n-grams in LM [28], with the effectiveness of a given
n-gram depending on the language. N-grams follow positional
logic in English, but are less effective in inflectional languages
such as Polish. N-grams are sequences of n words into which an
entire utterance is divided. The technique is based on predicting
subsequent words based on previous words and discovering the
meaning of an utterance based on the local context. A given
word is analyzed by taking into account neighboring words (e.g.
in most commonly used three-grams, the meaning of the middle
word is recognized on the basis of the single word preceding and
following it). In Polish, due to its free sentence formation and
complex inflection, knowledge of both local and global context
is essential for recognizing meaning.

3.4. Pronunciation modeling

Polish, like other Slavic languages, has a simple relationship
between orthography and pronunciation. With the help of basic
rules, a grapheme-phoneme conversion can be made. For ab-
breviations, a spelling-letter converter can be used. Care should
be taken regarding numerals and loanwords [29]. The rule of
simple relation between orthography and pronunciation applies
to vowels, but not to all consonants. Vowels are represented by a
phoneme with an identical symbol. For consonants followed by
the letter ‘i’ and a vowel, a softening symbol can be introduced

for the corresponding vowel [16]. There are also consonants
composed of more than one letter, which in pronunciation are
a single voice like: ‘cz’, ‘sz’, ‘dż’, ‘dź’, as well as sounds that
have two spellings, like: ‘ż/rz’, ‘h/ch’, ‘u/ó’. The exception is
‘ć/ci’, where the pronunciation depends on spelling. A signif-
icant difference between Polish and English is that the latter
has a large number of homophones and many combinations of
different words have similar pronunciation, while Polish has a
much smaller number of homophones. In English, an unstressed
vowel is usually pronounced as ’3’ , ’ı’ (phonemes with similar
sounds and spectrum) or ‘@’, so unaccented vowels are almost
indistinguishable [30].

4. DATASETS

Slavic languages are spoken by around 320 million people,
mainly in central, eastern and southern Europe. The largest
language is Russian (~160 million speakers), The next one be-
ing Polish (~50 million speakers) [31]. Despite this, the num-
ber of resources available to prepare ASR systems is still lim-
ited [27], so Polish is classified as a low-resource language [32].
There are both speech corpora containing only Polish e.g.: COR-
PORA [33] and multilingual dataset, including Polish, designed
to create and train E2E ASR systems. Since the presented re-
search is based on the E2E architecture, it was decided to use
two multilingual open-source dataset: Multilingual LibriSpeech
(MLS) [34] and Mozilla Common Voice (MCV) [35]. Also, the
application-oriented dataset must be prepared.

4.1. Mozilla Common Voice – MCV [35]

MCV contains MP3 recordings of speech and corresponding
text files for 112 languages, including Polish. Metadata includes
age, gender and accent. The Polish part of MCV is constantly
being expanded and currently contains 173 hours of speech
recordings (in version 14.0 – 163 hours validated, 3208 voices).
In MCV, the dataset for each language is divided into a training
(train), development (dev) and test set [36].

4.2. Multilingual LibriSpeech – MLS [34]

It is a multilingual version of the LibriSpeech [37] dataset,
originally developed only for English. The collection covers
read speech using publicly available LibriVox audiobooks and
Project Gutenberg text data. It contains 44 500 hours of En-
glish and a total of 6000 hours in 7 other languages, including
Polish. The dataset is decomposed into training, development
and testing parts. In the Polish set, the recordings are in subsets
of 103.65, 2.08 and 2.14 hours, respectively (female and male
voices).

4.3. Application-specific datasets

As the publicly available datasets do not consider all the re-
quirements of the planned research, there is the need to prepare
the individual collection of conversations. The requirements in-
clude specific topics of conversations (by different speakers)
and various sound degradation sources (e.g. the inclusion of
background noises, the use of different recording devices, etc.).

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e149818, 2024



A system dedicated to Polish automatic speech recognition – overview of solutions

The data set prepared for the mentioned medical interview sup-
port system should contain recordings of conversations between
a patient and a doctor where specific vocabulary is used (e.g.
names of drugs, symptoms of illness) and are aimed at various
groups of diseases. The interviews’ quality should be intention-
ally degraded to create the playground for the applied system.

The dataset created for the proposed system requires constant
extensions to include changing environmental conditions. So
far, 17 scenarios are considered, assigned to variety of speakers
(14 female and 15 male initially selected). The scenarios must be
repeated in different configurations of the patient-doctor voice,
in terms of gender. Recordings are made in various acoustic
conditions, including: an acoustic test chamber characterized
by a short reverberation time, an office, and a doctor-like room
(medium reverberation time). In medical applications, it is cru-
cial for speakers to have their mouths covered with a mask,
which is also covered in part of the recordings. Recordings in-
clude various bit resolutions (16 and 24 bits per sample) and
sampling rates (44.1kHz, 48kHz and 65.5kHz). Different po-
sitions of the recording equipment (orientations relative to the
doctor’s and the patient’s heads) must also be taken into ac-
count, sound recording devices of varying quality (different mi-
crophones varying in price, dynamics, frequency response and
characteristics and recorders). The scenarios are divided into
doctor-patient utterances and matched with the corresponding
recording.

Due to the fact that all the text is initially matched to the entire
recording, semi-automatic annotation of the recordings must be
performed on the utterances of a particular speaker (doctor or
patient). For this purpose, the recordings are initially segmented
using a speaker diarization method (separating the audio sig-
nal into segments based on who is speaking at a given time)
based on voice activity detection – Oracle-VAD diarization and
a deep neural model available in the open-source NeMo Toolkit.
This allows for the determination of speaker embedded in the
recording and speaker label timestamps. The output of the model
results in Rich Transcription Time Marked (RTTMS) files con-
taining details about recording. Considering that several E2E
ASR models are capable of handling recordings of limited du-
ration (e.g. Whisper up to 30 seconds), recordings and reference
transcriptions details about divided into fragments according to
the timestamp values of the speaker labels. Finally, the dataset
will be based on pairs: recording and corresponding transcrip-
tion. At this stage, the text is not further normalized, and a future
normalization must be adapted to specific E2E ASR models.

5. END-TO-END ASR

In the solution proposed in Section 2, we decided to use the
E2E architecture due to its simpler training procedure, lower
data requirements and higher recognition efficiency for Polish
continuous speech (WERs for E2E solutions tested for Polish
are in Table 2). This section covers the E2E architecture and its
variations. Here all recognition steps are performed by a sin-
gle network, trained for the ‘general’ task of recognizing words.
This calls for a global optimization for the network training. E2E

models use soft alignment: each audio frame corresponds to all
possible states with a defined probability distribution, which
does not require the forced alignment [6]. ASR E2E is based
on three types of DNNs: RNN, CNN and transformers. A pop-
ular solution used in E2E ASR is the Sequence-to-Sequence
(Seq2Seq [38], Fig. 2), in which one sequence (speech signal
features) is transformed into another one (strings – transcrip-
tion). Seq2Seq architectures consist of an encoder and a decoder
(Encoder-Decoder structure – ED). The role of the encoder is to
take the speech signal and transform it into vector of a high-level
representation (acoustic features) which is passed to the input of
the decoder, that outputs a probability distribution for the cur-
rent unit (e.g. a word). Finally, the most probable transcription
of the input audio signal is obtained. Below we describe the
most important solutions used in E2E ASR systems.

5.1. Recurrent Neural Networks – RNN

RNNs are suited for analyzing sequential data over time (such as
speech) – they can take a sequence of values at the input and re-
turn a sequence of values at the output, ‘remember’ previous val-
ues of the output. In the context of ASR, the advantage of RNNs
over conventional ASR is the absence of any prior knowledge of
data (only the choice of input and output representations). They
are also robust to temporal and spatial noise [39], but require
pre-segmented training data and post-processing (transforming
the results into labeled sequences). The real, often noisy input
signal is labeled with a sequence of discrete letters or words, and
speech represents connected units with unknown segmentation.
RNNs can only be trained to produce a set of separate label clas-
sifications. Although the RNN has access to the entire previous
sequence, the encoded hidden state information is usually rather
local [40]. In response to these problems, types of RNNs have
been developed specifically for ASR tasks: Connectionist Tem-
poral Classification (CTC), Recurrent Neural Network Trans-
ducer (RNN-T) and Attention-based Encoder-Decoder (AED).

5.1.1. Connectionist Temporal Classification – CTC

It is a type of network output and associated scoring function
for direct labeling of unsegmented sequences (see Fig. 4A) [41].
For a temporal classifier, no external post-processing is required,
as CTC directly outputs the probabilities of label sequences by
mapping the input speech sequence to the output label sequence.
Its training leads to predicting labels in any input sequence, as
long as the overall result is correct. Therefore there is no need
to pre-segment data and match labels to the input data. If the
length of the output labels is less than the length of the input
speech sequence, a blank label is inserted in the former to align
them. The utterance of each letter is characterized by a specific
duration. To match the CTC output sequence to this duration,
each letter in the output text is repeated, and the repetitions form
a single letter [42]. The procedure described in the last step is
the so-called ‘collapsing together’ of different paths into a single
designation: the probability of some designation is calculated
as the sum of the probabilities of all paths mapped to it by a
many-to-one function (e.g. F(c-ar-) = F(-c-aa-r) = ‘car’). This
is possible because the paths are mutually exclusive. This is
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what makes it possible to skip data segmentation in CTC – this
procedure allows the network to predict a label without prior
knowledge of where it occurs. Thus, one may think that CTC
is not a good model for problems in which the location of the
label must be determined. However, it has been proved in ex-
periments that CTC predicts labels in an approximate position
relative to the input sequence [9, 42]. The CTC mechanism can
also be combined with other networks (such as CNNs) as a loss
function (CTC loss) in learning mapping input sequences to
output sequences, even if they are of different lengths. Such a
process involves performing backward calculations to identify
all possible output sequences corresponding to a given input
sequence. Losses are then calculated based on their probabili-
ties. The Softmax activation function in Fig. 4 is currently the
standard output layer component for making decisions:

Softmax = 𝑠(𝑥𝑖) =
𝑒𝑥𝑖

𝑛∑︁
𝑗=1
𝑒𝑥 𝑗

. (2)

Softmax transforms real numbers (from preceding parts of
the network) into a probability vector. Here 𝑥 is the softmax
input vector (containing 𝑛 elements for 𝑛 possible categories).

Fig. 4. Simplified CTC (A) and AED (B) structure [9]. The AED struc-
ture shows additional blocks of the attention mechanism and decoder,

as well as added recursive paths

5.1.2. Recurrent Neural Network Transducer – RNN-T

RNN-T is an extended CTC model, in which information con-
text learning is added (see Fig. 5). It is used in ASR as AM,
while the additional long short-term memory network (LSTM,
type of RNNs with additional memory cells [43]) is LM. Such a
joint network combines language and acoustic features through
a combination of high-level acoustic and language represen-
tations. In the CTC model, each recognition is conditionally
separated, which is not the case for RNN-T. This allows them
to be used in streaming recognition [9]. The performance of the
RNN-T model can be explained based on four basic steps:

1. The role of the encoder is the same as that of the CTC model:
generation features from an audio recording.

2. The prediction network generates a high-level representation
based on the previous output of the whole model.

3. Based on the high-level representation joint network, which
is usually a feed-forward network, combines the outputs of
the decoder and the prediction network [44].

4. The output vector of step 3 is fed into a softmax layer to
determine the output prediction of the whole model.

Fig. 5. Simplified RNN-T structure [9]

5.1.3. Attention-based Encoder-Decoder – AED

AED solves a problem present in traditional ED architecture, in
which the context vector is created only based on the last hidden
state of the encoder, which can lead to limitations for long input
sentences. The reason is that in an RNN, old information can be
forgotten after propagation over many time steps and attention
is scattered throughout the sequence (there is no obvious word
alignment during decoding) [45]. The AED architecture (see
Fig. 4B) solves this problem, as the encoder is a bidirectional
RNN, while the decoder is an RNN working on the input from
the previous state and a dynamic context vector. The latter is
created by the attention layer located between the encoder and
decoder. It accesses all the hidden states of the encoder and
every part of the input sequence (word in the sentence) at the
same time. The AED model is autoregressive at every step. It
uses previously generated symbols as extra data of input during
the generation of further ones. The performance of the AED
model can also be explained based on four basic steps:
1. The encoder network has the same function as in CTC.
2. Taking the output representations of the encoder, the decoder

outputs the sequence one element at a time.
3. The attention layer calculates attention weights between the

previous decoder output and the encoder output of each
frame with the attention function, then a context vector – the
weighted sum of the encoder outputs – is generated.

4. The previous output label is given to the decoder input to-
gether with the context vector. Based on this, the decoder
output is generated.

The attention mechanism (Fig. 6) gives each input a weight to
evaluate its importance compared to other inputs. The attention
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weights between the previous decoder output and the encoder
output of each frame are calculated using the attention func-
tion. Then a context vector – the weighted sum of the encoder
outputs – is generated. The attention mechanism introduces the
exploration of context relations in sequences to E2E systems. It
simulates the human attention mechanism and allows the net-
work to focus on important parts of the input data rather than
the irrelevant ones [46].

Fig. 6. Attention mechanism used in AED structure

5.2. Convolutional neural networks – CNN

Although RNNs are well suited for classifying temporal se-
quences, their learning speed is slow for long input sequences
due to iterative multiplications over time. Another approach to
building E2E ASR models is to use CNNs. They are feedfor-
ward networks with convolution layers represented by a series
of filters (matrices with numbers), each recognizing a particular
pattern [47]. There are solutions fully based on CNNs such as
described in [48]. CNNs in combination with CTC, or RNN-
T layers can be found in the NVIDIA family models, such as
Jasper [49], or its modifications, e.g. QuartzNet (described in
Section 6.1). CNNs are also part of transformer-based archi-
tectures, such as speech-transformer (see Fig. 7) and conformer
(see Fig. 8). They are consequently an integral part of most mod-
ern E2E ASR models. One reason for this is the widespread use
of acoustic features in the form of mel-spectrograms and mel-
frequency cepstrum coefficient (MFCC [13]) depiction, which
allows speech sounds to be represented as images and adapts
techniques originally used in the field of image recognition.
The ASR task requires the model to consider long-term de-
pendencies. According to [50], in CNNs of sufficient depth,
higher layer features are able to capture temporal dependen-
cies with relevant contextual information. By using small filter
sizes along the frequency axis of the spectrogram, the model
is adept at learning fine-grained localized features. Multiple
stacked convolution layers are robust to translational frequency
shifts (depending on age or gender of the speaker) [51]. In the
aforementioned fully convolutional ASR, the model architec-
ture is divided into four parts: a CNN front-end, CNN acoustic
model, CNN language models and a beam-search decoder. The
paper describes the equivalents of the techniques used for image
processing and the process of adapting CNNs to speech signal
(e.g., the pre-processing layer uses logarithmic compression and
normalization of the mean variance per channel – the equiva-

lent of the instance normalization layer used in CNN image
processing [52]).

5.3. Transformer

Similar to AED, this network is based on ED, an attention
mechanism, and is used to process sequential input data, but
in transformer the input data is not processed sequentially. Hid-
den states can be computed in parallel, which reduces learning
time. Transformer can also be self-supervised, so no labeling is
required [53,54]. The no-data labeling requirements and parallel
input access to all hidden states are attributes of the transformer
that make it suitable for the ASR task. This section describes
two major transformer-based ASR architectures: the speech-
transformer and the conformer.

5.3.1. Speech-transformer

Speech-transformer is transformer adapted to ASR by replacing
the embedding layer of the encoder with convolution layers,
before passing features to transformer layers (see Fig. 7) [55].
Additional CNN layers in speech transformer reduce differences
in dimensions of the input and output sequences. This is due to
number of frames in the audio signal being greater than the
number of output tokens (text) [55]. As in any ED-based ASR
architecture, the encoder’s task is to change the input speech
sequence into a sequence of high-level representations – acoustic
features. The decoder takes them with previously generated 𝑦𝑖−1
character and returns the next one 𝑦𝑖 [56]. In this architecture
is the stack of M optional modules to extract more expressive
representations (e.g. extra encoder blocks).

The ‘Linear’ transformation is done on the flattened output
of the feature map. This allows for obtaining vectors of the

Fig. 7. Example of E2E ASR model in speech-transformer architec-
ture [55], contains convolutional layers at the beginning, followed by

transfromer layers with a multihead self-attention mechanism
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correct dimension (‘input encoding’). The sum of the input and
positional encoding is fed into the encoder. It contains a MH
attention [55] and a position-wise feed-forward network (FNN).
The attention extracts contents from a set of queries 𝑄 and keys
𝐾 of dimension 𝑑𝑘 and values 𝑉 of dimension 𝑑𝑣 . The retrieval
function is driven by similarities between queries and keys and
returns a weighted sum of values:

Attention(𝑄,𝐾,𝑉) = Softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉. (3)

The FNN is applied individually to each position in the se-
quence. Layer normalization and residual connections are im-
plemented in each sub-block to achieve efficient training. Each
decoder contains three sub-blocks: masked MH attention, MH
attention with keys and values derived from the encoder out-
puts, and queries from the outputs of the previous sub-block,
FNN. Masking ensures that predictions for a given position can
only depend on known outputs in smaller positions. Decoder
outputs are transformed into output class probabilities using lin-
ear projection and softmax function. The positional encoding
mentioned above adds sequence information to each element of
the sequence. This is necessary because the self-attention layer
does not distinguish the order of the elements in the sequence.

5.3.2. Conformer

Conformer is a convolution-augmented transformer for speech
recognition (see Fig. 8) [57]. The structure includes an Con-
former encoder and a LSTM-based decoder. The former is sim-
ilar to a standard AM, taking input attributes x, and mapping

Fig. 8. Simplified structure of the conformer type encoder [57]. On the
left is shown an simplified structure of the encoder using conformer
blocks. The SpecAugment [59] block shown in the diagram refers to an
augmentation method that operates on the logarithmic mel-spectrogram
of the input audio, rather than the raw audio itself, treating it as a
visual rather than an audio problem. Layer convolutional subsampling
allows to reduce the dimensions of feature maps in CNN layers [61].
A dropout [60] layer protects the deep model from overfitting. On
the right is shown the detailed structure of conformer blocks, which
includes both layers of multi-headed attention and convolution layers

them to high-level features. The decoder takes these and, given
the context extracted by the encoder, outputs a probability distri-
bution for the current entity (a word) [58]. Conformer encoder
is based on the idea of transformer, but with added convolu-
tion. In its architecture ‘SpecAugumentation’ refers to the data
augmentation method for ASR from [59] and ‘Dropout’, is used
to prevent overfitting [60]. Conformer encoder structure uses
additional layers of CNNs to capture global and local context.
The combination of CNN and transformer enables learning local
position-dependent features and exploiting global content-based
interactions. At the same time, this combination extends self-
attention with relative position based information that maintains
uniformity.

6. E2E DNN MODELS SELECTED FOR RESEARCH

For the considered ASR system (Fig. 3) we selected five E2E
ASR models adapted for Polish ASR. Their performance for
continuous speech is higher than conventional methods. E2E
ASR is easier to design and train with lower data segmentation
requirements (or absence thereof) and lack of forced alignment.
Due to the limitations of RNNs mentioned in Section 5.1, we
chose models mainly CNN and transformers-based. The goal is
to compare their WER and use either as the standalone approach
or the ensemble. In Table 2 we present WER values for selected
models, based on the literature reports. The table also provides
results for three previously undescribed datasets: Polish Parlia-
mentary Corpus [62] (PPC) – a collection of documents from
the proceedings of the Polish Parliament analyzed linguistically
([63] describes the use of recordings from the Polish Parlia-
ment to test ASR E2E models); Europarl-st [64] (E) – contains
translations from publicly available video recordings of Euro-

Table 2
WER results for the investigated models based on literature sources.
The abbreviations used are as follows: Arch. – ASR architecture, Net-
work – type of network used, TF – transformer, CF – conformer, T –

RNN-transducer

Ref. Model Arch. Network Data. WER Date

[66] QuartzNet BxR CNN MCV 14% 2023

[67] FastConf. ED CF-T-CTC MCV 5.99% 2023

[68] ESPnet2 ED CF MCV 2.6% 2020

[68] ESPnet2 ED TF MCV 15.1% 2020

[69] Whisper ED CNN-TF MCV 6% 2023

[70] Wav2Vec 2.0 ED CNN-TF MCV 9.8% 2021

[71] Wav2Vec 2.0 ED CNN-TF MCV/E 7.6% 2022

[72] Wav2Vec 2.0 ED CNN-TF MLS 17.2% 2020

[73] Whisper ED CNN-TF MLS 5% 2022

[63] Wav2Vec 2.0 ED CNN-TF PPC 32.1% 2023

[63] Whisper ED CNN-TF PPC 32.5% 2023

[70] Wav2Vec 2.0 ED CNN-TF VP 7.1% 2021
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pean Parliament debates for nine languages (including Polish),
recordings and transcriptions; is divided into Training, Devel-
opment and Test parts; VoxPopuli [65] (VP) – a multilingual
speech corpus based on recordings from European Parliament
events from 2009–2020.

6.1. QuartzNet

NVIDIA QuartzNet [66] model architecture (see Fig. 9) based
on Jasper [49] with CNN trained using CTC loss function. The
BxR architecture includes B blocks, each with R convolution
sub-blocks, which allows for efficient implementation on the
GPU. It uses spectrograms as input speech features. The main
extension in the QuartzNet architecture is the replacement of 1D
convolutions with 1D Time-Channel Separable Convolutions
(1DTCSC). The input is the number of dimensions of the input
data, while the output is the number of feature maps produced
by a convolution filter. Here, ‘time’ refers to one-dimensional
data. The filter moves along the time axis and the convolution is
divided into time-wise and channel-wise operations. The former
uses separate convolution filters for each data point in time. This
allows us to analyze temporal data from different perspectives
and detect patterns and relationships. The channel-wise oper-
ation consists in applying convolution to the resulting data to
extract features in multiple channels. The 1DTCSC minimizes
the model, reducing the number of network parameters, compu-
tational efficiency and preventing over-fitting [74]. The selected
QuartzNet15x5 (available in the NVIDIA NeMo toolkit [75])
contains 15 CNN blocks multiplied 5 times. We use fine-tuned
model from English to Polish: it exploits the encoder from the
English version of QuartzNet, while the decoder was changed
to output Polish alphabet characters and tuned using the Polish
part of MCV [76]. The applied character coding scheme and
text transcription is the standard character set available in the
Polish part of the MCV dataset. The ‘Conv-BN-ReLU’ block

Fig. 9. Architecture of QuartzNet model [74]. Its structure mainly in-
cludes CNN layers, with a CTC layer at the output of the entire model

applies one-dimensional convolution, batch normalization [77]
and ReLU function [78]. The ‘TCSDConv-BN-ReLU’ block
applied 1DTCSC, batch normalization and ReLU function.

6.2. FastConformer Transducer – CTC

The model uses a FastConformer with joint transducer and CTC
decoder loss [67]. To speed up the encoder, the down-sampling
rate was increased (from 4× to 8×), reducing the sequence length
of the speech features and the computational cost of subsequent
attention layers [79]. The model uses a hybrid decoder, i.e. a
combination of RNN-T and CTC (Transducer-CTC) [80]. It is
available in the NVIDIA NeMo Toolkit [75] and was adapted
to Polish using the MCV, MLS and VP. It also uses the Google
SentencePiece Unigram tokenizer [81], transcribes text in up-
percase and lowercase letters of the English alphabet together
with spaces, periods, commas, question marks and several other
characters.

6.3. Wav2Vec 2.0 XLSR-53

It is a framework developed by Facebook AI for self-supervised
learning of speech representations, using a CNN and a trans-
former. The raw speech waveform is fed to the input of the CNN
encoder, with output receiving hidden speech representations.
They are then fed to the input of transformer encoder whose out-
put is processed by a quantization module to represent targets
for self-supervised learning. The model builds context repre-
sentations on continuous speech [82]. [72] shows the use of the
Wav2Vec 2.0 framework for unsupervised learning of the ASR
XLSR-53 multilingual model. It covers 53 languages, including
Polish. Tuning the model to the new languages was done by
training with CTC loss and using MCV, MLS and Babel [83]
datasets. The [63] tested the capabilities of the Whisper and
Wav2Vec 2.0 models to detect keywords in the child abuse do-
main. A list of keywords for detection was defined and obtained
from a set of open documents. All documents were searched
and preprocessed by lemmatizing and removing stop words,
numbers and date units.

6.4. Whisper

This is OpenAI’s open-source, general-purpose, multilingual
ASR model, based on the transformer ED with two CNN layers
at the top of the encoder structure (speech-transformer), support-
ing 57 languages (including Polish [69]). The Whisper model
exists in several versions: tiny, base, small, medium and large.
It maps utterances and their transcription by predicting the raw
text of the transcription without significant standardization or
preprocessing [73]. This allows for skipping the separate step of
reverse normalization of the text to obtain the correct transcrip-
tion. The Whisper model was trained on an extensive dataset of
audio and transcriptions from the Internet. It was varied in sound
and transcription quality. While diversity in audio quality can
help train the model to be robust to speech signal quality, diver-
sity in transcription quality is not similarly beneficial. Because
of this, automatic methods were used to filter transcriptions to
improve their quality. Heuristics based on punctuation, capital-
ization and other features were also used to detect and remove
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machine-generated transcriptions from the training dataset

6.5. ESPnet

This is an open source Toolkit for E2E speech processing,
includes DNN-based models described earlier such as: CTC,
AED, BLSTM, RNN-T, hybrid CTC/attention, AED/BLSTM
and transformer/conformer ASR (supports streaming) [84] and
a pre-trained multilingual model with available Polish [85].
In [68] to test the implementation of the conformer architec-
ture in the ESPnet toolkit, the corpora used were subjected to
the same data preparation procedure as in Kaldi [86].

7. CONCLUSIONS

The paper presents the current state of ASR methodology for
Polish language. The aim of the analysis was to identify the
main tools and algorithms applicable to ASR and to identify
those that could potentially be adapted to conversations con-
ducted with impaired acoustic signal transmission. First, the
available approaches were categorized and compared. We an-
alyzed the performance of conventional and E2E systems. The
best conventional ASR achieved a low WER for short com-
mands or continuous speech with HMM enhancement by DNN
(ARM-1 NG). The best E2E model considered is Whisper [73],
with a WER of 5%, so it can provide a baseline for evaluating
the quality of such models. The WERs for ARM-1 NG (4.84%)
and Whisper (5%) are similar, but the second one is an open-
source project that uses state-of-the-art ASR technology, making
it easier to tune for a new task. It should be noted, that the low
WER for the Whisper model was achieved for the most popular
datasets (MCV and MLS) in developing and testing E2E ASR
models. Tests of this model, on a less popular dataset, showed a
significant drop in its performance (WER of more than 30% for
the PPC dataset). Therefore, it can be assumed that the MCV and
MLS datasets were used in training Whisper, results from the
model fitting to the data. To determine the actual performance of
the Whisper model, it is necessary to conduct tests of the model,
for data that we know for sure were not involved in the train-
ing. Model over-fitting to data is one of the main problems of
DNN-based solutions. In addition, such models have very high
computational requirements. This is a significant challenge for
these models, so scaling is important in the upcoming work.
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