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Abstract.. This research presents an advanced control approach for battery management in Battery Electric Utility Vehicles

(BEUV) operating in indoor logistics environments. The proposed approach utilizes a combination of Proportional-Integral (PI), 
Fuzzy  PI,  and  Interval  Type  2  Fuzzy  PI  (IT2FuzzyPI)  control  structures  to  augment  the  state  space  model  for  battery 
management. The state space model incorporates the voltage and current of each battery cell as state variables and considers the 
current demand from the electric motor as an input. By integrating fuzzy logic with PI control and considering uncertainty, the 
IT2FuzzyPI structure offers improved control recital and system robustness in the occurrence of nonlinearities, uncertainties, 
and turbulences. The outcomes of the simulation validate the effectiveness of the proposed scheme in managing the battery pack 
system's state of charge and controlling the rates of charging and discharging. The IT2FuzzyPI control significantly improves 
the overall proficiency and longevity of the battery system, making it suitable for battery electric utility vehicles in logistics 
environments. This research contributes to the field of battery management systems, providing a valuable tool for designing and 
evaluating high-performance electric vehicles with enhanced control capabilities.

Keywords: Fuzzy Network, Battery Electric Utility Vehicle, State-Space, Battery Management Systems, Interval

Type 2 Fuzzy.

1. INTRODUCTION 

Electric vehicles (EVs) [1] have arisen as a promising solution 

aimed at sustainable transportation [2], offering reduced 

emissions and energy consumption compared to conventional 

vehicles. In indoor logistics environments, EVs are crucial in 

the efficient transportation of goods within warehouses and 

distribution centers. However, effective battery management 

[3] is essential to ensure reliable operation, extended battery 

life, and optimal performance of these vehicles [4]. 

Effective battery management systems (BMS) [5] are 

integrated into these electric vehicles to ensure efficient 

operation and extend the lifespan. The BMS [6] monitors and 

controls various parameters such as current, voltage, 

temperature, and state of charge for each battery cell. Proper 

battery management [7] is essential for uninterrupted vehicle 

operation, cost-effectiveness, and environmental sustainability. 

One crucial aspect of battery management is regulating the 

charging and discharging processes. The widely adopted 

control algorithm in battery management systems is the PI 

controller [8]-[10], which holds a significant position in 

regulating system performance. The PI controller is responsible 

for adapting the control output by considering the error and 

integrating the error over time, guaranteeing the battery's 

operation within safe and optimal boundaries. The 

incorporation of the PI controller into the overall battery 

management system, alongside techniques like state-of-charge 

(SOC) assessment [11], wavelet neural network and BP neural 

network, charging of electric vehicles [12], battery volume 

estimation, and thermal management, leads to the establishment 

of a comprehensive system for managing electric vehicles 

(EVs) in indoor logistics environments [13], [14]. 

Apart from the utilization of the PI controller, there has been 

growing interest in the application of fuzzy logic control 

methods within battery management systems [15], [16]. Fuzzy 

logic controllers utilize linguistic variables to capture expert 

knowledge and emulate human-like decision-making 

processes. The inclusion of fuzzy logic alongside the PI 

controller in the form of the Fuzzy PI controller [17] leads to 

improved control performance and robustness, specifically in 

dealing with the uncertainties and nonlinearities present in 

battery systems. To tackle the uncertainties that arise in 

conventional fuzzy logic controllers, a promising approach 

recognized as Interval Type 2 Fuzzy Logic (IT2-FL) has gained 

attention [18]. IT2-FL goes beyond traditional fuzzy logic by *e-mail: arunkumarsrivas1986@gmail.com 
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integrating the notion of uncertainty through the utilization of 

upper and lower membership functions [19]. This enhancement 

enables better modeling and control capabilities, especially in 

complex systems like battery management in EVs operating in 

indoor logistics environments. 

The impartial of this work is to create an enhanced state space 

model for battery management in electric vehicles operating in 

indoor logistics environments, using Interval Type 2 Fuzzy PI 

(proportional-integral) control [20]. The proposed approach 

combines the benefits of Interval Type 2 Fuzzy Logic with PI 

control to effectively address the challenges of battery 

management in these specific operational conditions. By 

effectively capturing and handling uncertainties, the model 

aims to enhance the reliability, efficiency, and safety of EVs in 

indoor logistics operations. 

Through comprehensive simulations and experimental 

validations, this research seeks to exhibit the efficacy of the 

Interval Type 2 Fuzzy PI Enhanced State Space Model for 

Battery Management. The study will investigate the model's 

performance in terms of accurate state estimation, optimal 

control of charging and discharging processes, and overall 

battery health management. The outcomes of this research will 

make significant contributions to the advancement of battery 

management systems for Battery Electric Utility Vehicles 

(BEUVs), facilitating their extensive usage in indoor logistics 

environments and encouraging the adoption of environmentally 

friendly transportation practices. 

The subsequent sections will present the state space modeling, 

fuzzy-based controller design, Implementation in Battery 

Electric vehicles, results, and discussions of the proposed IT2 

Fuzzy PI Enhanced State Space Model for Battery Management 

in BEUVs operating in indoor logistics environments. 
 
2. BATTERY ELECTRIC UTILITY VEHICLE (BEUV) IN 
INDOOR LOGISTICS ENVIRONMENT 

Battery Electric Utility Vehicles (BEUVs) serve as 

indispensable assets within indoor logistics, facilitating the 

seamless movement of goods and materials through confined 

spaces. With their electric powertrain operating at 24V, BEUVs 

provide smooth acceleration and precise control, ensuring 

compatibility with indoor infrastructure. These vehicles boast a 

payload capacity of up to 600 kg, making them adept at 

efficiently transporting various materials. Their compact 

dimensions, typically around 1.1 meters wide, enable agile 

navigation through narrow aisles and congested areas. 

Equipped with advanced safety features such as collision 

detection sensors and emergency braking systems, BEUVs 

prioritize operator safety and bystander protection. 

Additionally, ergonomic design elements, including 

comfortable seating and intuitive controls, enhance operator 

comfort and productivity during extended use. Integration of 

connectivity and telematics systems enables remote monitoring 

and fleet management, while a sophisticated Battery 

Management System (BMS) ensures optimal performance and 

longevity of the battery pack [21]. 

To ensure the optimal performance and longevity of the battery 

system in BEUVs, a sophisticated Battery Management System 

(BMS) is essential. The BMS is responsible for monitoring the 

health and status of individual battery cells, managing charging 

and discharging processes, and implementing safety protocols 

to prevent overheating, overcharging, and other potential 

hazards. Our research focuses on developing an advanced BMS 

tailored specifically for BEUV applications. By integrating 

state-of-the-art monitoring and control algorithms, we aim to 

maximize the efficiency, reliability, and safety of the battery 

system, thereby enhancing the overall performance of BEUVs 

in indoor logistics operations. 

In our research, we utilize a 24V battery system to power the 

Battery Electric Utility Vehicles (BEUVs) employed in indoor 

logistics operations. This battery pack comprises 8 lithium-ion 

cells, providing the necessary voltage and energy capacity to 

operate the vehicles efficiently within indoor environments. To 

ensure optimal performance and longevity of the battery pack, 

a comprehensive Battery Management System (BMS) is 

essential. 

A 12V 12000mAh LiFePO4 (Lithium Iron Phosphate) battery 

typically comprises four cells, with each cell contributing 3.2 

volts to the overall voltage of the battery pack. When these cells 

are connected in series, their voltages add up to provide the 

desired 12.8 V output. LiFePO4 chemistry offers advantages 

such as high energy density, long cycle life, and enhanced 

safety, making it a popular choice for various applications, 

including electric vehicles, renewable energy storage, and 

portable electronic devices. 

To meet the 24V requirement for battery electric utility vehicles 

(BEUVs) in indoor operations, eight cells are needed. Each cell 

typically has a nominal voltage of 3.2 volts, commonly found 

in LiFePO4 batteries. When eight cells are connected in series, 

their voltages add up to provide a total voltage of 25.6 volts, 

effectively meeting the 24V requirement for the BEUV.  

For charging the eight LiFePO4 cells connected in series to 

achieve a total voltage of 25.6 volts (to meet the 24V 

requirement for the BEUV), the typical charging voltage range 

would be between 30.4V to 31.2V. This range ensures that each 

cell receives sufficient voltage for charging while avoiding 

overcharging. The specifications of the LiFePO4 battery are 

listed in Table 1. 

This configuration ensures that the BEUV receives the 

necessary power supply to operate its systems efficiently within 

indoor environments. LiFePO4 batteries are often preferred for 

such applications due to their high energy density, long cycle 

life, and enhanced safety characteristics. 

 
TABLE 1 

LifePo4 Battery Specifications 

Parameters Value 

Type LifePo4 Battery 

Charging voltage 14. 6 V 

Current  12 A 

Nominal Voltage 12.8 V 

Capacity/Nominal Current 12000mAh 

Dimensions(L x W x H) 150 mm x 98 mm x 94 mm 

Weight 1450gms 
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2.1 State Space Modeling of Battery Pack Unit 

A comprehensive state-space model for the battery pack used 

in BEUVs has been derived in this section. This model captures 

the dynamic behavior of individual lithium-ion cells and their 

interactions within the pack, allowing for accurate prediction 

and control of key parameters such as state of charge, and 

voltage. 

Equations (1), (2), and (3) elucidate the electrical characteristics 

and behavior of an individual cell denoted as i. These equations 

mathematically capture the dynamic interactions and 

relationships among different variables within the cell. 

Additionally, Fig. 1 provides a visual representation of these 

electrical dynamics, facilitating a clearer understanding and 

visualization of the system. 

 

𝑆𝑜𝐶𝑖
̇ (𝑡) = −𝐼(𝑡)/𝑄𝑖    () 

 

Equation (1) relates the rate of change of the state of charge 

(SoC) of cell i to the current flowing through it (I(t)) and the 

cell's capacity 𝑄𝑖 . 

 

𝑉1𝑖
̇ (𝑡) = −

1

𝑅1𝑖𝐶1𝑖
∗ 𝑉1𝑖(𝑡) +

1

𝐶1𝑖
∗ 𝐼(𝑡) () 

 

Where 𝑉1𝑖
̇ (𝑡) is the time derivative of the voltage across the 

capacitor 𝐶1𝑖 of cell i, 𝑉1𝑖(𝑡)  is the voltage across the capacitor 

𝐶1𝑖, 𝑅1𝑖 and 𝐶1𝑖 represent the polarization resistance and cell i 

capacitance, respectively, and the current flowing through cell 

i is 𝐼(𝑡) 

 

𝑉𝑇𝑖(𝑡) = 𝑉𝑜𝑐𝑖(𝑆𝑜𝐶𝑖) − 𝑉1𝑖(𝑡) − 𝐼(𝑡)𝑅0𝑖 () 

 

 

where 𝑉𝑇𝑖(𝑡) is the overall voltage of cell i, 𝑉𝑜𝑐𝑖(𝑆𝑜𝐶𝑖) is the 

open circuit voltage of cell i at the assumed SOC, 𝑉1𝑖(𝑡) is the 

voltage through the capacitor 𝐶1𝑖, 𝐼(𝑡) is the current flowing 

over cell i, and 𝑅0𝑖 is the series resistance of cell i. 

These equations describe the electrical dynamics of a single cell 

in the battery pack. The dynamics of the entire battery pack can 

be modeled by applying Kirchoff's voltage law to the series-

connected cells. 

Eight lithium-ion cells are connected in series to create a 24V 

battery module with a nominal voltage of 25.6V, which is 

modeled as a lithium-ion battery pack to power BEUVs in 

Indoor Logistics using KVL based on Equations (1), (2), and 

(3). 

 

𝑉𝑇1(𝑡) + 𝑉𝑇2(𝑡) + ⋯ . +𝑉𝑇8(𝑡) = 𝑉𝑝𝑎𝑐𝑘(𝑡)                     () 

 

where 𝑉𝑝𝑎𝑐𝑘(𝑡) is the voltage across the entire battery pack. By 

applying suitable initial and boundary conditions, the electrical 

dynamics of the eight-cell battery pack using R and C elements 

are simulated. By incorporating the equations specific to each 

cell and employing Kirchhoff's voltage law for the cells 

connected in series, it is possible to derive the state-space model 

for the eight-cell battery pack. The state variables are described 

in Eq. (5). 

 

𝑥1 = 𝑆𝑜𝐶1(𝑡), 𝑥2 = 𝑉11(𝑡),  𝑦 = 𝑉𝑝𝑎𝑐𝑘(𝑡), 𝑢 = 𝐼(𝑡)     () 

 

Then, the state space prototypical for the eight-cell battery pack 

is given by: 

 

𝑥1𝑖̇ =  −
1

𝑄𝑖
 𝑢     () 

 

𝑥2𝑖̇ =  −
1

𝑅1𝑖𝐶1𝑖
∗  𝑥2𝑖 +

1

𝐶1𝑖
∗  𝑢   () 

 
 

𝑦 =  ∑ (𝑉𝑜𝑐𝑖𝑥1𝑖 − 𝑥2𝑖 − 𝑢(𝑅0𝑖 + 𝑅𝑡𝑜𝑡𝑎𝑙)8
𝑖=1 )               () 

 
where 𝑥1,̇ 𝑥2̇ denote the time derivative of the state variables 

𝑥1, 𝑥2 respectively, 𝑦 denotes the output of the battery pack and 

𝑢 is the current smoothing over the cells. Simulating the 

electrical dynamics of the eight-cell battery pack and devising 

control algorithms for the system can be accomplished by 

utilizing the state space model. The matrix custom of the state 

space prototypical is utilized to express it concisely and 

systematically. 

 

 

 

Fig. 1. Circuit diagram of a single-cell 
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Fig. 2.  Open loop battery pack response with SoC 

 

𝐴 =  [

𝐴11 0 … 0
0 𝐴22 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝐴88

], 𝐵 =  [

𝐵1

𝐵2

⋮
𝐵8

]            ()  

 

 
   𝐶 =  [𝐶1 𝐶2 … 𝐶8] 

𝐷 =  [

𝐷11 𝐷12 … 𝐷18

𝐷21 𝐷22 … 𝐷28

⋮ ⋮ ⋱ ⋮
𝐷81 𝐷82 … 𝐷88

]  () 

 

 

Where, 
 

𝐴𝑖𝑖 =  [
0 0

0
−1

𝑅𝑖𝑖𝐶𝑖𝑖

] , 𝐵𝑖 =  [

−1

𝑄𝑖

1

𝐶1𝑖

]              () 

 

𝐶𝑖 =  [𝑉𝑜𝑐𝑖   − 1] 
 

 𝐷𝑖𝑖 =  [−(𝑅0𝑖 + 𝑅𝑡𝑜𝑡𝑎𝑙)]                  () 

 

 
TABLE 2 

 Single Cell Specifications 

Parameters Values 

𝑅11 0.02 ohm 

𝐶11 500 F 

𝑄1 12000 mAh 

𝑉𝑜𝑐1  12.8 V 

𝑅01 0.2 ohm 

 

Open-loop simulations are performed based on the battery 

specifications enumerated in Table 2 and it is exposed in Fig. 2. 

The system is controllable and observable, but it is unstable in 

open-loop system analysis. 

2. PI-BASED BATTERY CONTROLLER DESIGN 

The PI controller can be designed to measure the battery voltage 

and current [22] and use this information to adjust the charging 

and discharging currents accordingly. The proportional 

component of the controller allows for fine-tuning the charging 

or discharging current based on variations in the battery voltage. 

On the other hand, the integral component helps rectify any 

persistent discrepancies in the battery voltage, ensuring 

accurate regulation during steady-state conditions. The PI 

controller can be incorporated into the state equations by 

modifying the input vector u. In the state space model with PI 

controller, the input vector u is: 

 

𝑢 = [𝐼, 𝑢1]     () 

 

 

where 𝐼 is the input current and 𝑢1 the yield of the PI controller. 

 

The PI controller output 𝑢1 can be calculated as: 

 

𝑢1 = 𝑘𝑝𝑒(𝑡) +  𝑘𝑖 ∫ 𝑒(𝑡) = 𝑘𝑝𝑒 +  𝑘𝑖𝑒𝑖𝑛𝑡  () 

 

where 𝑘𝑝 and 𝑘𝑖 are the proportional and integral gains of the 

PI controller, 𝑒 = 𝑒(𝑡) is the error amid the anticipated and real 

yield voltage, and 𝑒𝑖𝑛𝑡 = ∫ 𝑒(𝑡)  is the integral of the error. 

 

The modified state space model with the PI controller 

incorporated can be expressed as: 
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State variables 

 𝑥 = [𝑆𝑜𝐶𝑖; 𝑉1𝑖;  𝑒; 𝑒𝑖𝑛𝑡] = [𝑥1𝑖 , 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖]                  () 

 

State Equations: 

 

�̇�1𝑖 = − 
1

𝑄𝑖
 𝑢1                                

�̇�2𝑖 =  −
1

𝑅1𝑖𝐶1𝑖
 𝑥2𝑖 +

1

𝐶1𝑖
 𝑢1 + 𝑘𝑖𝑥3𝑖                        

�̇�3𝑖 = 𝑒                  

�̇�4𝑖 = 𝑒𝑖𝑛𝑡        () 
 

Output Equations: 

 

𝑦 = ∑ (𝑉𝑜𝑐𝑖𝑥1𝑖
8
𝑖=1 −  𝑥2𝑖) − 𝑢1(𝑅0𝑖 + 𝑅𝑡𝑜𝑡𝑎𝑙) − 𝑘𝑝𝑒     () 

 

Where 𝑥1𝑖 , 𝑥2𝑖 , 𝑥3𝑖 , 𝑎𝑛𝑑 𝑥4𝑖 represents the state of charge, the 

voltage across the capacitor, error, and the integral of the error 

term for cell i respectively. 𝑄𝑖 , 𝑅1𝑖 , 𝐶1𝑖𝑎𝑛𝑑 𝑉0𝑖 are the 

parameters specific to each cell. e is the error between the 

desired and actual output voltage, 𝑒𝑖𝑛𝑡 is the integral of the 

error. 𝐼 is the input current, 𝑢1 is the control signal for the PI 

controller, and 𝑘𝑝 and 𝑘𝑖 are the proportional and integral 

gains, correspondingly. 

An additional state variable 𝑒𝑖𝑛𝑡 has been added to represent the 

integral of the error signal, and it has been included in the state 

vector 𝑥. The corresponding input 𝑘𝑖 has been added to the 

input matrix B. 

When using a PI controller for battery pack control, the 

controller adjusts the output voltage to maintain a constant 

voltage level. During the charging process, the controller will 

raise the voltage to uphold the desired set point, while during 

discharging, the controller will lower the voltage to sustain the 

set point. This ensures that the battery operates within safe 

limits and that the performance is optimized. However, if the 

voltage is maintained at a constant level for too long, it can lead 

to a decrease in the state of charge (SOC) of the battery. This is 

because the constant voltage prevents the battery from fully 

charging or discharging, leading to a lower SOC over time. 

Hence, regular set point adjustments of the PI controller are 

crucial to guarantee complete charging and discharging of the 

battery, besides preventing a gradual decline in the state of 

charge (SOC) over time. 

3. FUZZY PI-BASED BATTERY CONTROLLER DESIGN 

The Fuzzy PI controller structure, illustrated in Fig. 3, offers a 

fundamental and effective solution for battery pack 

management. To enhance the voltage regulation of a battery 

pack, it is possible to integrate a fuzzy PI controller [23]-[25] 

into the state space model. This integration consents for real-

time alteration of the proportional and integral gains, 

considering the current error and its rate of change. By adapting 

to variations in load and other disturbances, the fuzzy PI 

controller can provide a more efficient response, ensuring better 

overall performance. The control accomplishment of the fuzzy 

PI regulator can be assimilated into the overall structure model 

by altering the effort matrix, B, and the yield matrix, C, of the 

state space model. 

The input matrix 𝐵 (11) represents the effect of the control input 

u on the state variables. To incorporate the regulator 

accomplishment of the fuzzy PI controller, input Matrix 𝐵 is 

modified by multiplying it with the control action equation (14). 

Then the modified input matrix 𝐵′ is represented in the equation 

(18). 

 

𝐵′ = 𝐵 [𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡]   () 

 

The modified input matrix B' is dogged by the specific 

configuration of the fuzzy PI governor equation and how the 

control action is linked to the state variables in your control 

strategy. This customization ensures the alignment of the input 

matrix with the control approach, accounting for the interplay 

between control actions and the system's state variables. 

The output matrix C (12) relates the state variables to the yield 

of the structure. To integrate the control action, the output 

matrix C is modified to include the effect of the control action 

𝑢1 on the output. One possible modification is to add a term that 

represents the influence of 𝑢1 on the output voltage. The 

modified output matrix 𝐶′ can be formulated as: 

 

𝐶′ =  [𝑉𝑜𝑐1 −1 𝑉𝑜𝑐2 −1 … … 𝑉𝑜𝑐8   − 1   𝑢1]    () 

 

The adjustment of the output matrix depends on how the control 

action is related to the output variable within your control 

strategy. The specific modification is tailored to ensure 

compatibility and appropriate mapping between the control 

action and the system's output variable. With this modification, 

the behavior of the battery pack with the fuzzy PI controller can 

be simulated, and the performance in terms of regulating the 

output voltage can be evaluated. 

 

 

Fig. 3.  Fuzzy PI Control Structure 

 

A. Fuzzy Logic Tuner Design  

The inference structure centered on Mamdani's fuzzy sense 

methodology is a regulator that utilizes rules and input values 

to calculate the control output. Fuzzification involves 

transforming crisp input data into association values by likening 

them to fuzzy sets, thereby capturing the degree of membership 

to each set. This involves assigning degrees of membership to 

each fuzzy set based on the similarity between the effort rate 

and the faces of the uncertain set. 

In this Fuzzy PI controller, both fuzzy logic and the 

Proportional-Integral (PI) governor procedure are used to 

generate the control output. The fuzzy controller employs fuzzy 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



  6 

 

logic and membership functions to handle system 

nonlinearities. On the flip side, the PI controller employs 

integral control through the integration of the error signal over 

the period, which enables the eradication of steady-state errors 

and boosts the system's performance during steady-state 

conditions. 

The regulator yield of the Fuzzy PI structure is obtained by 

combining the outputs of both the fuzzy logic controller and the 

PI controller. The fuzzy logic controller provides linguistic  
 

TABLE 3 

 Fuzzy Rule Matrix for Fuzzy PI Structure 

C\DC NgL NgS ZE PoS PoL 

NgL Diminution Diminution Diminution Retain Retain 

NgS Diminution Diminution Retain Retain Upsurge 

ZE Diminution Retain Retain Upsurge Upsurge 

PoS Retain Retain Upsurge Upsurge Upsurge 

PoL Retain Upsurge Upsurge Upsurge Upsurge 

decision-making and handles complex system behaviors, while 

the PI controller contributes integral control to improve steady-

state performance. By combining these two components, the 

Fuzzy PI controller achieves a balance between precise control 

action and the ability to handle system uncertainties and 

nonlinearities. 

The Mamdani-based Fuzzy PI controller [26] utilizes a rule 

matrix based on expert knowledge, which incorporates five 

Gaussian-shaped membership functions: Negative Large 

(NgL), Negative Small (NgS), Zero (ZE), Positive Small (PoS), 

and Positive Large (PoL). This rule matrix allows for the 

effective mapping of input variables and facilitates the fuzzy 

inference process. The error input range is configured to span 

from -15 to 50, while The range of response variation is set from 

-7.5 to 25. The output range, on the other hand, is defined from 

-25 to 50. 

To execute fuzzy inference within the Mamdani inference 

system, the Max-Min strategy is employed. This strategy entails 

identifying the minimum membership value for the antecedent 

of each rule and subsequently aggregating them to compute the 

complete degree of instigation for every rule. For 

defuzzification, the Largest of Maximum (LOM) technique is 

utilized. This technique selects the output value with the highest 

membership degree among all the activated rules as the final 

control output. The rule matrix, which specifies the 

relationships between the linguistic variables and the control 

actions, is provided in Table 3. 

Within rule table 3, the charging level is denoted by the rows, 

while the discharging level is represented by the columns. The 

aforementioned linguistic rapports are employed to depict the 

fuzzy sets corresponding to the charging and discharging levels. 

The table entries represent the corresponding control output 

based on the combination of the charging level and discharging 

level. The control outputs are linguistic terms such as 

Diminution, Retain, and Upsurge. 

The Mamdani-based fuzzy inference system employs If-Then 

rules to execute learning-based thoughts for control behavior. 

The fuzzified response from the fuzzy PI controller is obtained 

using the Mamdani technique. To use it in the battery pack's 

state space model, the fuzzy output is de-fuzzified to obtain a 

crisp control response. 

In general, the Fuzzy PI improves the recital of the control 

scheme by capitalizing on the advantages of both fuzzy sense 

and PI control. It effectively manages nonlinearities and 

facilitates linguistic decision-making, while the PI controller 

offers integral control to rectify steady-state errors. 

 
4. INTERVAL TYPE 2 FUZZY PI (IT2 FUZZY PI) BASED 
      BATTERY CONTROLLER DESIGN 

 

By integrating indeterminacy into the membership utilities, the 

IT2 Fuzzy PI controller [27] extends the capabilities of the 

conventional Fuzzy PI controller. It allows for more robust 

control by considering the indeterminacy in the system and 

adjusting the control action accordingly, leading to improved 

adaptability. 

Indeterminacy is inherent in battery systems due to variations 

in parameters and operating conditions. The IT2 Fuzzy PI 

controller addresses this uncertainty through interval arithmetic 

or alpha cuts. Interval arithmetic considers the range of possible 

values for fuzzy membership degrees, while alpha cuts provide 

a more precise representation of uncertainty. 

The TSK (Takagi Sugeno Kang) model [28], [29] is a fuzzy 

rule-based approach utilized for modeling and control systems 

with a large number of variables. V2G Battery charging station 

using various techniques [30], [31], Fuzzy rubrics are 

employed, resembling an "IF this happens, THEN do that" 

structure. Instead of fuzzy consequents, the TSK model is 

distinguished by functional-type consequents. Despite utilizing 

a concise set of rules, the TSK (Takagi Sugeno Kang) model 

excels in accurately capturing intricate nonlinear systems. In 

contrast to the Mamdani fuzzy model, the TSK model provides 

enhanced versatility when representing complex relationships.  

TSk Fuzzy Rules are specified as: 

 

𝑅𝑢𝑙𝑒𝑖: 𝑖𝑓 𝑟1𝑖𝑠 𝑠𝑖1 𝑎𝑛𝑑 𝑟2 𝑖𝑠 𝑠𝑖2 𝑎𝑛𝑑 𝑟𝑘  𝑖𝑠 𝑠𝑖𝑘  

Then  funi( r1, r2, … . rk), where i = 1,2 … . n 

or 

Rulei: if ri  is  si Then  funi(r), i = 1,2 … n 
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Where, 

 

  
fun1, fun2 … . funn are functions 

 

r1, r2 … . rn are input variables, 
si1 , si2 , … … sin are designated fuzzy sets across  
input regions r1, r2 … . rn 

 

The rules are aggregated to obtain a unified function 

 

Rule(r) =
s1 (r) fun1(r)+s2 (r) fun2(r)+⋯ sn (r) funn(r)

s1 (r)+s2(r)+⋯ sn (r)
 () 

 

 

 

Fig. 4.  Functional Diagram of an Interval Type 2 Fuzzy Logic Diagram 

 

Fig. 5.  Interval Type 2 Fuzzy PI Control Structure 

 
TABLE 4 

Fuzzy Rule Matrix for IT2 Fuzzy PI Controller 

Error (Charging) \  

Change (Discharging) Slow Discharging Moderate Discharging Fast Discharging Rapid Discharging Peak Discharging 

Slow Charging Retain Diminution Diminution 

 

 

Diminution 

 

 

Diminution 

Moderate Charging 

 

Upsurge 
Retain Diminution 

 

Diminution 

 

Diminution 

Fast Charging 

 

Upsurge 
Upsurge Retain 

 

Diminution 

 

Diminution 

Rapid Charging 

 

Upsurge 

 

Upsurge 

 

Upsurge 
Retain Decrease 

Peak Charging 

 

 

Upsurge 

 

 

Upsurge 

 

 

Upsurge Upsurge Retain 
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Fig. 6.  The Membership function representing the error (charging) utilizes a trapezoidal shape  

  

Fig. 7.  The Membership function representing the change in error (discharging) employs a trapezoidal shape  

 

IT2 Fuzzy sets have membership values ranging from 0 to 1. To 

represent IT2-FLS and manage suspicions in the instruction, the 

3rd aspect of type-2 fuzzy sets is bounded by the constraints of 

whichever 0 or 1. IT2-FLS incorporates an additional form-

lessening procedure. The functional diagram of the IT2-FLS 

arrangement is prearranged in Fig. 4. 

The IT2-FLS toolbox [28] incorporates the TSK kind for 

intuitive operations, catering to all stages of control design. It is 

designed as an extension of the viable Fuzzy Logic Toolbox 

accessible in MATLAB, with the addition of new functions 

specifically tailored for the Type Reduction (TR) procedure. 

The structure of the IT2-FLS toolbox is denoted by the file 

extension '*.it2fis'. 

A. Type 2 Fuzzy Rubrics and Membership Utilities 

The IT2 Fuzzy PI control structure based on the TSK model 

utilizes a rule matrix derived from knowledge, incorporating ten 

membership functions. Out of 10, five membership functions 

for error (charging): Slow Charging, Moderate Charging, Fast 

Charging, Rapid Charging, Peak Charging, and other five 

membership functions for change (discharging): Slow 

Discharging, Moderate Discharging, Fast Discharging, Rapid 

Discharging, and Peak Discharging. The output membership 

functions are Upsurge, Diminution, and Retain. Membership 

functions in type 2 fuzzy logic are outlined by a lower 

membership function (LMF) and an upper membership 

function (UMF), which together form the Path of Uncertainty 

(POU).  

The type 2 trapezoidal membership functions are used to 

leverage suspicions. The error input spans a range of -15 to 50, 

the derivative of error varies from -7.5 to 25, and the regulator 

yield extends from -25 to 50. The K_p, K_i, K_a, and K_b  are 

the effort and yield ascending aspects, respectively. The IT2-

FLS structure is elevated with N =25 rules delivered in Table 4. 

The Enhanced Karnik Mendel (EKM) Procedure is employed 

as the technique for type lessening and defuzzification in this 

context. The parameter values for scaling in IT2 Fuzzy PID are 

set as K_p= 150, K_i = 15, K_a = 0.2, and K_b = 10 toward 

examining the effect of the Type Lessening tactic on the 

controller's accomplishment. 

The structure of the Interval Type 2 Fuzzy PI-controlled state 

space model of the battery package is exposed in Fig. 5. The 

membership functions of error (charging) and change 

(discharging) are depicted in Fig. 6 and 7, respectively, using 

type-2 trapezoidal shapes. Table 4 displays the Fuzzy Rule 

Matrix for the Interval Type 2 Fuzzy PI controller. 

 

5. IMPLEMENTATION OF IT2 FUZZY PI-BASED 
BATTERY CONTROLLER FOR BATTERY MANAGEMENT 
SYSTEM IN BEUVs OPERATING IN INDOOR LOGISTICS 
ENVIRONMENT 

 

An evaluation of the effectiveness of the Interval Type 2 Fuzzy  
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Fig. 8.  Simulink Model of Implementing Battery Management System (BMS) in Battery Electric Utility Vehicle  

 

PI (IT2FPI) centered battery controller for Battery Utility 

Electric Vehicles (BEUVs) in an indoor logistics environment 

is conducted through simulation using SIMULINK, as depicted 

in Fig. 8, within the Battery Management System (BMS). The 

imitation model encompasses a battery model that captures the 

battery's dynamic behavior, an indoor logistics environment 

with servo and regulatory conditions, and the IT2FPI battery 

regulator that syndicates interval type 2 fuzzy logic and PI 

mechanism. The simulation process includes battery 

initialization, indoor logistics environment simulation, 

computation of the SOC error amid the anticipated and real 

values, utilization of fuzzy logic control to determine the 

appropriate control action, adjustment of charging and 

discharging currents using the PI control algorithm, and 

subsequent update of the battery. 

 

6. SIMULATION RESULTS AND DISCUSSIONS 

This section aims to compare the recital of three different 

controllers: Proportional-Integral (PI), Fuzzy PI, and Interval 

Type 2 Fuzzy PI, in the context of battery management intended 

for BEU vehicles operating in indoor logistics environments. 

The objective was to evaluate their effectiveness in regulating 

the battery charging and discharging processes, with a 

particular emphasis on their servo and regulatory responses. To 

assess the performance of the controllers, several key metrics 

were considered, including the battery state of charge (SoC) and 

the integral of error, which reflects the cumulative error 

between the desired setpoint and the actual response. These 

metrics provide insights into the controllers' ability to track set 

points and maintain stable battery operation accurately. To 

meet the 24V requirement for the Battery Electric Utility 

Vehicle (BEUV), eight LiFePO4 cells are connected in series, 

resulting in a total voltage of 25.6 volts. For effective 

charging, the typical voltage range is between 30.4V to 31.2V, 

ensuring each cell receives sufficient voltage without the risk 

of overcharging. In steady-state conditions, the servo response 

of the Interval Type 2 Fuzzy PI-enhanced battery controller in 

a Battery Management System achieves 31.36V, the Fuzzy PI 

controller reaches 30.95V, and the PI controller attains 

30.71V. Based on these values, the Interval Type 2 Fuzzy PI-

enhanced battery controller demonstrates superiority in 

maintaining optimal charging voltage. 

The simulation results unequivocally indicated the superior 

recital of the Interval Type 2 Fuzzy PI over both the PI and 

Fuzzy PI controllers, as evidenced by its remarkable servo and 

regulatory responses. Fig. 9 presented a comprehensive 

comparison of the responses from all three controllers, allowing 

for a direct visual assessment of their performance. In terms of 

servo response, which measures how quickly and accurately the 
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controllers respond to changes in set points, the IT2 Fuzzy PI 

controller exhibited superior performance. It effectively tracked 

the desired set points, minimizing overshoot and settling time, 

and achieving faster and more precise responses compared to 

the other two controllers. 

Furthermore, in terms of regulatory response shown in Fig. 10, 

which evaluates how well the controllers maintain the system 

within desired operational limits, the IT2 Fuzzy PI controller 

again outperformed the other regulators. It demonstrated robust 

control, effectively minimizing deviations from the desired 

setpoints and maintaining stable battery operation over time. 

Fig. 9 and 10 also included the responses of the battery state 

of charge (SoC) and the integral of error for each controller. 

The IT2 Fuzzy PI controller consistently maintained the SoC 

close to the desired setpoint, with minimal fluctuations and 

deviations. Additionally, it exhibited the lowest integral of 

error, indicating better overall control performance and 

reduced cumulative error. 

These simulation results and discussions confirm that the IT2 

Fuzzy PI controller offers significant advantages in battery 

management for electric vehicles in indoor logistics 

environments. Its superior performance in both servo and 

regulatory responses demonstrates its effectiveness in 

accurately regulating the battery charging and discharging 

processes and maintaining stable battery operation. 

Fig. 11 represents the speed response of the BEU Vehicles 

Operating in an Indoor Logistics Environment using an 

Interval Type 2 Fuzzy PI-enhanced battery controller in a 

Battery Management System.  

 

 

 

 

Fig. 9.  Comparative Servo Response of three battery controllers including SoC and Integral of Error 
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Fig. 10.  Regulator response of IT2 Fuzzy PI-based battery control including SoC and Integral of Error 

 

Fig. 11.  Speed Response of the Battery Utility Electric Vehicles Operating in Indoor Logistics Environment 

 

7. CONCLUSION AND FUTURE SCOPE 

In conclusion, the Interval Type 2 Fuzzy PI Enhanced State 

Space Model presented in this work delivers an inclusive and 

effective approach for battery management in BEU vehicles 

operating in indoor logistics environments. By integrating 

interval type 2 fuzzy logic with the PI and state space modeling, 

the proposed model offers enhanced control performance, 

robustness to uncertainties, and accurate estimation of battery 

state variables. The model addresses the challenges of 

nonlinearities, uncertainties, and disturbances commonly 

encountered in battery systems. The outcomes of the simulation 

illustrate the model's capacity to enhance battery charging and 

discharging processes, optimize energy efficiency, and ensure 

the long-term durability of the battery pack. Furthermore, the 

model contributes to the development of sustainable 

transportation practices by promoting efficient battery 

management and reducing the environmental impact of electric 

vehicles. Imminent exploration can emphasize the practical 

implementation besides validation of the model in real-world 

scenarios, as well as exploring advanced optimization 

techniques and adaptive control strategies. Overall, the Interval 

Type 2 Fuzzy PI Enhanced State Space Model holds great 

promise for advancing battery management systems and 

optimizing the performance of Battery Electric Utility vehicles 

in indoor logistics environments. In the future, the cyber-related 

issues while charging the EVs will give better opportunities for 

designing charging stations in a good way.  
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