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CONTROL, INFORMATICS AND ROBOTICS

The discrete, fractional order model
of a two-dimensional temperature field

using Grünwald-Letnikov definition
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Abstract. In the paper a new, fractional order, discrete model of a two-dimensional temperature field is addressed. The proposed model uses
Grünwald-Letnikov definition of the fractional operator. Such a model has not been proposed yet. Elementary properties of the model: practical
stability, accuracy and convergence are analysed. Analytical conditions of stability and convergence are proposed and they allow us to estimate
the orders of the model. Theoretical considerations are validated using experimental data obtained with the use of a thermal imaging camera.
Results of analysis supported by experiments point that the proposed model assures good accuracy and convergence for low order and relatively
short memory length.
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1. INTRODUCTION

Non-integer order or fractional order (FO) models of different
physical phenomena have been presented by many authors for
years. Fundamental results can be found e.g. in books and pa-
pers [1–3] (the heat transfer in an one dimensional beam), [4]
(fractional models of chaotic systems and ionic polymer metal
composites, among others). FO models of diffusion processes
are proposed by [5–7]. Results using new Atangana-Baleanu
operator are collected in [8]. This paper presents also the use
of FO approach to express of the FO blood alcohol model, the
Christov diffusion equation and fractional advection-dispersion
equation for groundwater transport processes.

Recently FO models are used to describe a spread of diseases,
among other things. This issue is considered e.g. in the papers
given by [9] (the modeling of the dynamics of COVID using
Caputo-Fabrizio operator), [10] (the modeling of a transmission
of Zika virus using Atangana-Baleanu operator).

The state space FO models of the one dimensional heat trans-
fer have been proposed in many previous papers of author, e.g.
[11–18]. These models used different FO operators: Grünwald-
Letnikov, Caputo, Caputo-Fabrizio and Atangana-Baleanu as
well as discrete operators: continuous fraction expansion (CFE)
and fractional order backward difference (FOBD). Each model
has been thoroughly theoretically justified and validated using
experimental results. In addition, each of them assures better ac-
curacy in the sense of square cost function than its IO analogue.
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The time-continuous, two-dimensional generalization of FO
models mentioned above is proposed in the papers [19, 20].
A discrete-time, FO model of this class of thermal processes
has no been proposed yet.

Models of temperature fields obtained with the use of ther-
mal cameras are discussed, e.g. in papers: [21, 22]. Analytical
solution of a two-dimensional, IO heat transfer equation is pre-
sented in the paper [23]. Numerical solving of partial differen-
tial equations has been discussed in many books (see e.g. [24]).
Fractional Fourier integral operators are analyzed by [25]. It is
important to note that a significant part of known investigations
deals only with a steady-state temperature fields with omitting
their dynamics.

This paper presents a new, discrete time model of the heat
transfer in the thin, two-dimensional metallic surface. The
model uses the fractional order backward difference (FOBD)
to describe the fractional operator. Such a model has not been
proposed yet. The model is proposed and analysis of its ba-
sic properties: practical stability, accuracy and convergence is
given. Theoretical considerations are verified by experimental
results.

The organization of the paper is following. Firstly elementary
ideas and definitions from fractional calculus are given. Next
the experimental heat system and its time-continuous model are
recalled. As the main result the discrete model using FOBD is
proposed and its basic properties: practical stability, accuracy
and convergence are discussed. Then parameters of the model
are numerically identified using data from real experimental
system and IAE cost function. Finally the practical stability,
accuracy and convergence of the identified model are exam-
ined.
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2. PRELIMINARIES

2.1. Basics of fractional calculus

Theoretical preliminaries of the fractional calculus can be found
in many books, e.g. in the section “Fractional Systems: Theo-
retical Foundations” of [26].

The non-integer-order, integro-differential operator is defined
as follows (see e.g. [1, 2, 26–28]):

Definition 1. (The elementary non-integer order operator) The
non-integer-order integro-differential operator is defined as fol-
lows:

𝑎𝐷
𝛼
𝑡 𝑓 (𝑡) =



d𝛼 𝑓 (𝑡)
d𝑡𝛼

𝛼 > 0,

𝑓 (𝑡) 𝛼 = 0,
𝑡∫

𝑎

𝑓 (𝜏) (d𝜏)𝛼 𝛼 < 0,

(1)

where 𝑎 and 𝑡 denote time limits for operator calculation, 𝛼 ∈ R
denotes the non-integer order of the operation. If 𝛼 ∈ Z, then the
operator (1) turns to classic integer order operator.

The fractional-order, integro-differential operator can be de-
scribed by definitions given by Grünwald and Letnikov, Rie-
mann and Liouville (RL) and Caputo (C). In this paper the C and
GL definitions are employed ( see e.g. [2], [27], [28], [1]), [29]):

Definition 2. (The Caputo definition of the FO operator)

𝐶
0 𝐷

𝛼
𝑡 𝑓 (𝑡) =

1
Γ(𝑀 −𝛼)

∞∫
0

𝑓 (𝑀 ) (𝜏)
(𝑡 − 𝜏)𝛼+1−𝑀 d𝜏, (2)

where 𝑀 − 1 < 𝛼 < 𝑀 is the fractional order of operation and
Γ(..) is the Gamma function.

Definition 3. (The Grünwald-Letnikov definition of the FO op-
erator)

𝐺𝐿
0 𝐷𝛼𝑡 𝑓 (𝑡) = lim

ℎ→0
ℎ−𝛼

[ 𝑡
ℎ
]∑︁

𝑙=0
(−1)𝑙

(
𝛼

𝑗

)
𝑓 (𝑡 − 𝑙ℎ). (3)

In (3)
(𝛼
𝑙

)
is a binomial coefficient into real numbers:

(
𝛼

𝑙

)
=


1, 𝑙 = 0
𝛼(𝛼−1) . . . (𝛼− 𝑙 +1)

𝑙!
, 𝑙 > 0

 . (4)

The GL definition is limit case for ℎ→ 0 of fractional order
backward difference, commonly employed to discrete FO cal-
culations:

Definition 4. (The fractional order backward difference)

(Δ𝛼𝑥) (𝑡) = 1
ℎ𝛼

𝐿∑︁
𝑙=0

(−1)𝑙
(
𝛼

𝑙

)
𝑥(𝑡 − 𝑙ℎ). (5)

Denote coefficients (−1)𝑙
(𝛼
𝑙

)
by 𝑑𝑙:

𝑑𝑙 = (−1)𝑙
(
𝛼

𝑙

)
. (6)

The coefficients (6) can be also calculated with the use of the
following, equivalent recursive formula (see e.g. [4], p. 12),
useful in numerical calculations:

𝑑0 = 1,

𝑑𝑙 =

(
1− 1+𝛼

𝑙

)
𝑑𝑙−1, 𝑙 = 1, . . . , 𝐿.

(7)

It is proven in [30] that:

∞∑︁
𝑙=1
𝑑𝑙 = 1−𝛼. (8)

From (7) and (8) it can be seen at once that:

∞∑︁
𝑙=2
𝑑𝑙 = 1. (9)

In (5) 𝐿 denotes a memory length necessary to correct approx-
imation of a non-integer order operator. Unfortunately good
accuacy of PSE approximation requires the use of high value of
𝐿 which can make difficulties in implementation.

The discrete, fractional order state equation using definition
(5) is written as follows (see for example [31]):{

(Δ𝛼
𝐿
𝑥) (𝑡 + ℎ) = 𝐴+𝑥(𝑡) +𝐵+𝑢(𝑡),

𝑦(𝑡) = 𝐶+𝑥(𝑡),
(10)

where 𝑥(𝑡) ∈ R𝑁 is the state vector, 𝑢(𝑡) ∈ R𝑃 is the control,
𝑦(𝑡) ∈ R𝑀 is the output. 𝐴+, 𝐵+ and 𝐶+ are state, control and
output matrices respectively. If we shortly denote 𝑘-th time
instant: ℎ𝑘 by 𝑘 , then equation (10) turns to (see e.g. [32]):{

(Δ𝛼
𝐿
𝑥) (𝑘 +1) = 𝐴+𝑥(𝑘) +𝐵+𝑢(𝑘),

𝑦(𝑘) = 𝐶+𝑥(𝑘),
(11)

where:

𝐴+ = ℎ𝛼𝐴, (12)

𝐵+ = ℎ𝛼𝐵, (13)

𝐶+ = 𝐶. (14)

The solution of state equation (11) takes the form:

𝑥(𝑘 +1) = 𝑃+𝑥(𝑘) −
𝐿∑︁
𝑙=2

𝐴+
𝑙 𝑥(𝑘 − 𝑙) + ℎ

𝛼𝐵+𝑢(𝑘), (15)

where:

𝑃+ = 𝐴+ +𝛼𝐼, (16)

𝐴+
𝑙 = 𝑑𝑙 𝐼𝑁×𝑁 . (17)
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2.2. The practical stability

An idea of the practical stability needs to be recalled next. It
was proposed by Kaczorek in [33] and it was considered also
in [30, 34]. It associates the stability of discrete FO system
described by state equation (11) to the asymptotic stability of its
approximated solution given by (15).

Definition 5. (The practical stability)
The fractional order system described by (11) is practically sta-
ble if its finite dimensional solution (15) is asymptotically stable.

An additional assumption about the positivity of the system
(11) allows to apply the simple practical stability conditions
given by [30, 34].

Here the Theorems 3 and 5 from paper [30] are employed.

Theorem 1. (Necessary and sufficient practical stability condi-
tion of positive system (11) for fixed memory length 𝐿)
The positive, FO system (11) with order 0 < 𝛼 < 1 is practically
stable iff the standard positive system:

𝑥(𝑘 +1) = (𝑃+ +
𝐿∑︁
𝑙=2

𝐴𝑙)𝑥(𝑘). (18)

is asymptotically stable.

Theorem 2. (Necessary and sufficient practical stability condi-
tion of positive system (11)) independently on memory length)
The positive FO system (11) with order 0 < 𝛼 < 1 is practically
stable for each memory length 𝐿 iff the standard positive system:

𝑥(𝑘 +1) = (𝐴+ + 𝐼)𝑥(𝑘). (19)

is asymptotically stable.

Both above theorems will be used to stability analysis of the
proposed model. This is presented in the next section.

Finally recall the final value thoerem (FVT). It allows to obtain
a steady-state value of a time function described by the Laplace
or the “z” transform. It is given beneath.

Theorem 3. (Final value theorem for continuous time) Let 𝑓 (𝑡)
is a function of time 𝑡 and 𝐹 (𝑠) is its Laplace transform. Assume
that 𝐹 (𝑠):
1) has no poles in the right part of the complex plane,
2) has maximally one pole on the imaginary axis: 𝑠 = 0.

Then:
lim
𝑡→∞

𝑓 (𝑡) = lim
𝑠→0

𝑠𝐹 (𝑠). (20)

Theorem 4. (Final value theorem for discrete time)
Let 𝑓 + (𝑘) is a discrete function of time, defined in 𝑘 time

moments and 𝐹+ (𝑧) is its 𝑧-transform. Assume that 𝐹+ (𝑧):
1) has no poles outside the unit circle,
2) has maximally one pole on the unit circle: 𝑧 = 1.

Then:
lim
𝑘→∞

𝑓 + (𝑘) = lim
𝑧→1

(𝑧−1)𝐹+ (𝑧). (21)

3. THE CONSIDERED HEATING SYSTEM AND ITS
TIME-CONTINUOUS, FO MODEL

The heating system is shown simplified in Fig. 1. This is the
PCB plate with the flat electric heater, denoted by 𝐻. Its coor-
dinates are described by 𝑥ℎ1, 𝑥ℎ2, 𝑦ℎ1 and 𝑦ℎ2 respectively. The
temperature of the whole PCB is monitored using an industrial
thermal imaging camera, the location and size of measurement
area are configurable. The size of camera sensor is 𝑋𝑠 ×𝑌𝑠 pix-
els (𝑋𝑝 > 𝑌 𝑝). During further considerations all lengths in the
model will be defined relatively with respect to 𝑋𝑝:

𝑋 = 1, 𝑌 =
𝑋𝑝

𝑌𝑝
. (22)

Measured

Area

Heater

Y

X

xs1,ys1

xs2,ys2

xh1,yh1

xh2,yh2

(0,0)

Fig. 1. The experimental system

The area of measurement is marked as 𝑆 and its coordinates are
denoted by 𝑥𝑠1, 𝑥𝑠2, 𝑦𝑠1 and 𝑦𝑠2 respectively. More details about
this experimental system are given in the section “Simulations
and experiments”. The heater and sensor functions are expressed
by the simple rectangular functions:

𝑏(𝑥, 𝑦) =
{

1, 𝑥, 𝑦 ∈ 𝐻,
0, 𝑥, 𝑦 ∉ 𝐻,

(23)

𝑐(𝑥, 𝑦) =
{

1, 𝑥, 𝑦 ∈ 𝑆,
0, 𝑥, 𝑦 ∉ 𝑆.

(24)

The time-continuous, FO model of the considered system is
presented with details in the papers [19, 20, 35]. Here recall its
crucial elements, necessary to present of main results.

The FO heat transfer equation takes the following form:

𝐶
0 𝐷

𝛼
𝑡 𝑄(𝑥, 𝑦, 𝑡) = 𝑎𝑤

(
𝜕𝛽𝑄(𝑥, 𝑦, 𝑡)

𝜕𝑥𝛽
+ 𝜕

𝛽𝑄(𝑥, 𝑦, 𝑡)
𝜕𝑦𝛽

)
−𝑅𝑎𝑄(𝑥, 𝑦, 𝑡) + 𝑏(𝑥, 𝑦)𝑢(𝑡),

𝜕𝑄(0, 𝑦, 𝑡)
𝜕𝑥

= 0, 𝑡 ≥ 0,
𝜕𝑄(𝑋, 𝑦, 𝑡)

𝜕𝑥
= 0, 𝑡 ≥ 0,

𝜕𝑄(𝑥,0, 𝑡)
𝜕𝑦

= 0, 𝑡 ≥ 0,
𝜕𝑄(𝑥,𝑌 , 𝑡)

𝜕𝑦
= 0, 𝑡 ≥ 0,

𝑄(𝑥, 𝑦,0) =𝑄0, 0 ≤ 𝑥 ≤ 𝑋, 0 ≤ 𝑦 ≤ 𝑌

𝑦(𝑡) = 𝑘0

𝑋∫
0

𝑌∫
0
𝑄(𝑥, 𝑦, 𝑡)𝑐(𝑥, 𝑦)d𝑥d𝑦.

(25)
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In (25) 𝛼 > 0 and 𝛽 > 0 denote fractional orders of derivatives
with respect to time and length, 𝑎𝑤 > 0, 𝑅𝑎 ≥ 0 are coefficients
of heat conduction and heat exchange, 𝑘0 is a steady-state gain
of the model, 𝑏(𝑥, 𝑦) and 𝑐(𝑥, 𝑦) are heater and sensor shaping
functions, described by (23) and (24).

The heat equation (25) can be expressed as an infinite dimen-
sional state equation:{

𝐶
0 𝐷

𝛼
𝑡 𝑄(𝑡) = 𝐴𝑄(𝑡) +𝐵𝑢(𝑡),

𝑦(𝑡) = 𝐶𝑄(𝑡),
(26)

where:

𝐴𝑄 = 𝑎𝑤

(
𝜕𝛽𝑄(𝑥, 𝑦)
𝜕𝑥𝛽

+ 𝜕
𝛽𝑄(𝑥, 𝑦)
𝜕𝑦𝛽

)
−𝑅𝑎𝑄(𝑥, 𝑦),

𝐷 (𝐴) = {𝑄 ∈ 𝐻2 (0,1) : 𝑄′ (0) = 0,
𝑄′ (𝑋) = 0, 𝑄′ (𝑌 ) = 0},

𝑎𝑤 , 𝑅𝑎 > 0,
𝐶𝑄(𝑡) = ⟨𝑐,𝑄(𝑡)⟩, 𝐵𝑢(𝑡) = 𝑏𝑢(𝑡).

(27)

The state vector 𝑄(𝑡) takes the following form:

𝑄(𝑡) =
[
𝑞0,0, 𝑞0,1, 𝑞0,2 . . . , 𝑞1,1, 𝑞1,2, . . .

]𝑇
. (28)

The state operator 𝐴 is as follows:

𝐴 = diag
{
𝜆0,0, 𝜆0,1, 𝜆0,2, . . . , 𝜆1,1, 𝜆1,2, . . . ,

𝜆2,1, 𝜆2,2 . . . , 𝜆𝑚,𝑛, . . .
}
. (29)

The shape of the heated plant (thin metallic surface) suggests
assuming the homogenous Neumann boundary conditions. Con-
sequently the eigenfunctions and the eigenvalues take the fol-
lowing form:

𝑤𝑚,𝑛 (𝑥, 𝑦) =



1, 𝑚,𝑛 = 0,

2𝑌
𝜋𝑛

cos
𝑛𝜋𝑦

𝑌
, 𝑚 = 0, 𝑛 = 1,2, . . .

2𝑋
𝜋𝑚

cos
𝑚𝜋𝑥

𝑋
, 𝑛 = 0, 𝑚 = 1,2, . . .

2
𝜋

1(
𝑚𝛽

𝑋𝛽
+ 𝑛

𝛽

𝑌 𝛽

) 1
𝛽

×cos
𝑚𝜋𝑥

𝑋
cos

𝑛𝜋𝑦

𝑌
, 𝑚, 𝑛 = 1,2, . . .

(30)

𝜆𝑚,𝑛 = −𝑎𝑤
[
𝑚𝛽

𝑋𝛽
+ 𝑛

𝛽

𝑌 𝛽

]
𝜋𝛽 −𝑅𝑎, 𝑚, 𝑛 = 0,1,2, . . . (31)

The main difference to the one dimensional heat transfer equa-
tion is that the eigenvalues (31) can be multiple. The analysis of
existence of multiple eigenvalues is discussed in the paper [19].

The control operator takes the following form [19]:

𝐵 =
[
𝑏0,0, 𝑏0,1, . . . , 𝑏1,0, 𝑏1,1, . . .

]𝑇
. (32)

where:

𝑏𝑚,𝑛 = ⟨𝐻,𝑤𝑚,𝑛⟩ =
𝑋∫

0

𝑌∫
0

𝑏(𝑥, 𝑦)𝑤𝑚,𝑛 (𝑥, 𝑦) d𝑥d𝑦. (33)

Taking into account (30) we obtain:

𝑏𝑚,𝑛 =



(𝑥ℎ2 − 𝑥ℎ1) (𝑦ℎ2 − 𝑦ℎ1), 𝑚, 𝑛 = 0,

1
ℎ𝑦𝑛

(𝑥ℎ2 − 𝑥ℎ1)𝑎𝑛ℎ𝑦 ,

𝑚 = 0, 𝑛 = 1,2,3, . . . ,

1
ℎ𝑥𝑚

(𝑦ℎ2 − 𝑦ℎ1)𝑎𝑚ℎ𝑥 ,

𝑛 = 0, 𝑚 = 1,2,3, . . . ,

𝑘𝑚,𝑛

ℎ𝑥𝑚ℎ𝑦𝑛
𝑎𝑚ℎ𝑥𝑎𝑛ℎ𝑦

𝑚, 𝑛 = 1,2,3, . . .

(34)

where:

ℎ𝑥𝑚 =
𝑚𝜋

𝑋
, ℎ𝑦𝑛 =

𝑛𝜋

𝑌
, (35)

𝑘𝑚,𝑛 =
2
𝜋

1

𝛽

√︂
𝑚𝛽

𝑋𝛽
+ 𝑛

𝛽

𝑌 𝛽

, (36)

𝑎𝑚ℎ𝑥 = (sin(ℎ𝑥𝑚𝑥ℎ2) − sin(ℎ𝑥𝑚𝑥ℎ1)) ,

𝑎𝑛ℎ𝑦 =
(
sin(ℎ𝑦𝑛𝑦ℎ2) − sin(ℎ𝑦𝑛𝑦ℎ1)

)
.

(37)

The output operator is as beneath [19]:

𝐶 =
[
𝑐0,0, 𝑐0,1, . . . , 𝑐1,0, 𝑐1,1, . . .

]
, (38)

where:

𝑐𝑚,𝑛 = ⟨𝑆,𝑤𝑚,𝑛⟩ =
𝑋∫

0

𝑌∫
0

𝑐(𝑥, 𝑦)𝑤𝑚,𝑛 (𝑥, 𝑦) d𝑥d𝑦. (39)

In (39) each element 𝑐𝑚,𝑛 is expressed analogically, as (34):

𝑐𝑚,𝑛 =



(𝑥𝑠2 − 𝑥𝑠1) (𝑦𝑠2 − 𝑦𝑠1) 𝑚,𝑛 = 0,

1
ℎ𝑦𝑛

(𝑥𝑠2 − 𝑥𝑠1)𝑎𝑛𝑠𝑦

𝑚 = 0, 𝑛 = 1,2,3, . . . ,

1
ℎ𝑥𝑚

(𝑦𝑠2 − 𝑦𝑠1)𝑎𝑚𝑠𝑥
𝑛 = 0, 𝑚 = 1,2,3, . . . ,

𝑘𝑚,𝑛

ℎ𝑥𝑚ℎ𝑦𝑛
𝑎𝑚𝑠𝑥𝑎𝑛𝑠𝑦

𝑚, 𝑛 = 1,2,3, . . .

(40)
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In (40) ℎ𝑥𝑚,𝑦𝑛 are expressed by (35) and:

𝑎𝑚𝑠𝑥 = (sin(ℎ𝑥𝑚𝑥𝑠2) − sin(ℎ𝑥𝑚𝑥𝑠1)) ,

𝑎𝑛𝑠𝑦 =
(
sin(ℎ𝑦𝑛𝑦𝑠2) − sin(ℎ𝑦𝑛𝑦𝑠1)

)
.

(41)

The dynamic system expressed by (29)–(39) is infinte-
dimensional. This implies that its explicit form cannot be em-
ployed in modeling and requires applying of a finite dimensional
approximation. Such an approximation is obtained via trunca-
tion of further modes of the decomposed model at 𝑀 × 𝑁-th
place (see [19]). In such a situation the state vector has the di-
mension 𝑀 ×𝑁 and operators 𝐴, 𝐵 and 𝐶 turn to matrices of
suitable size. The values of 𝑀 and 𝑁 ensuring the satisfactory
accuracy of the model can be estimated numerically or analyti-
cally.

3.1. The step and impulse responses of the model

The step response of the model we obtain using spectrum de-
composition property. It takes the following form (see [19]):

𝑦∞ (𝑡) =
∞∑︁
𝑚=0

∞∑︁
𝑛=0

𝑦𝑚,𝑛 (𝑡), (42)

where 𝑚,𝑛-th mode of response is as follows:

𝑦𝑚,𝑛 (𝑡) =
𝐸𝛼 (𝜆𝑚,𝑛𝑡𝛼) −1(𝑡)

𝜆𝑚,𝑛
𝑏𝑚,𝑛𝑐𝑚,𝑛. (43)

In (43) 𝐸𝛼 (..) is the one parameter Mittag-Leffler function,
𝜆𝑚,𝑛, 𝑏𝑚,𝑛 and 𝑐𝑚,𝑛 are expressed by (31), (33) and (39) re-
spectively.

During simulations the finite-dimensional sum needs to be
employed:

𝑦𝑀𝑁 (𝑡) =
𝑀∑︁
𝑚=0

𝑁∑︁
𝑛=0

𝑦𝑚,𝑛 (𝑡). (44)

The analysis of the external positivity requires the knowledge of
an impulse response of a system. It can be computed analogically
as the step response, using the decomposition of the spectrum
of the system.

The impulse response for a single mode of the system (26)-
(39) is as follows:

𝑔𝑚,𝑛 (𝑡) = 𝑡𝛼−1𝐸𝛼,𝛼
(
𝜆𝑚,𝑛𝑡

𝛼
)
𝑏𝑚,𝑛𝑐𝑚,𝑛 , (45)

where 𝐸𝛼,𝛼 (..) is the two-parameter Mittag-Leffler function,
the rest of parameters are the same as in (43).

Consequently the impulse response and its finite-dimensional
approximation are as beneath:

𝑔∞ (𝑡) =
∞∑︁
𝑚=0

∞∑︁
𝑛=0

𝑔𝑚,𝑛 (𝑡), (46)

𝑔𝑀𝑁 (𝑡) =
𝑀∑︁
𝑚=0

𝑁∑︁
𝑛=0

𝑔𝑚,𝑛 (𝑡), (47)

where 𝑔𝑚,𝑛 (𝑡) are the single modes expressed by (45).

The accuracy of both approximated responses (44) and (47)
is determined by the size of model expressed by 𝑀 and 𝑁 .
The convergence of the model is discussed in the paper [20].
The accuracy for the one-dimensional case was discussed in the
conference presentation [12].

4. MAIN RESULTS

4.1. The discrete FOBD model of the thermal system

The discrete model is obtained analogically as in the one-
dimensional case (see [16] and [36]). During further consid-
erations the upper index “+” denotes the discrete-time system.
The matrices (12) and (13) of the discrete state equation (11)
takes the following form:

𝐴+ = diag{𝜆+0,0, ..,𝜆
+
𝑚,𝑛},

𝐵+ = ℎ𝛼𝐵,

𝐶+ = 𝐶,

(48)

where:
𝜆+𝑚,𝑛 = ℎ

𝛼𝜆𝑚,𝑛. (49)

This yields the following form of the matrix (16) in the solution
of discrete state equation (15):

𝑃+ = 𝑑𝑖𝑎𝑔{𝑃+
0,0, . . . , 𝑃

+
𝑀,𝑁 }. (50)

where:
𝑃+
𝑚,𝑛 = 𝜆

+
𝑚,𝑛 +𝛼. (51)

Consequently the model (26) takes the discrete form (11):{
(Δ𝛼
𝐿
𝑄+) (𝑘 +1) = 𝐴+𝑄+ (𝑘) +𝐵+𝑢+ (𝑘),

𝑦+ (𝑘) = 𝐶+𝑄+ (𝑘).
(52)

The solution of the discrete system (52) takes the form as (15):

𝑄+ (𝑘 +1) = 𝑃+𝑄+ (𝑘) −
𝐿∑︁
𝑙=2

𝐴+
𝑙 𝑄

+ (𝑘 − 𝑙) +𝐵+𝑢+ (𝑘), (53)

where 𝑃+, 𝐵+ and 𝐴+
𝑙

are expressed by (50), (17) and (13)
respectively.

To the analysis of the stability the free solution, starting from
initial condition is more convenient. It is as follows:

𝑄+ (𝑘 +1) = 𝑃+𝑄+ (𝑘) −
𝐿∑︁
𝑙=2

𝐴+
𝑙 𝑄

+ (𝑘 − 𝑙). (54)

Next the elementary properties of the model: decomposition
of the system, positivity, stability and convergence need to be
discussed. The fundamental difference to the one-dimensional
system discussed previously is that two orders 𝑀 and 𝑁 describ-
ing both spatial coordinates need to be considered.
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4.2. The decomposition of the system

The state vector 𝑄+ (𝑘) of the discrete model (15) can be ex-
pressed as:

𝑄+ (𝑘) =

𝑞+0,0 (𝑘)
. . .

𝑞+
𝑀,𝑁

(𝑘)

 . (55)

The matrices 𝑃+ and 𝐴+
𝑙

describing the solution of the discrete
system (53) are diagonal matrices. Consequently this solution
can be decomposed into 𝑀𝑁 independent modes, associated
to 𝑚,𝑛-th state variable 𝑄+

𝑚,𝑛 (𝑘) and described by the 𝑚,𝑛-
th eigenvalue. The multiple of eignevalues, possible for two-
dimensional case does not matter.

The 𝑚,𝑛-th mode of free solution for fixed memory length 𝐿
takes the form as follows:

𝑞+𝐿𝑚,𝑛 (𝑘 +1) = 𝜆+𝑚,𝑛𝑞+𝑚,𝑛 (𝑘) −
𝐿∑︁
𝑙=2
𝑑𝑙𝑞

+
𝑚,𝑛 (𝑘 − 𝑙),

𝑚 = 0, . . . , 𝑀, 𝑛 = 0, . . . , 𝑁.

(56)

The 𝑚,𝑛-th mode of the forced response to control signal 𝑢+ (𝑘)
is as beneath:

𝑦+𝐿𝑚,𝑛 (𝑘) = 𝑐+𝑚,𝑛
(
𝑞+𝐿 + 𝑏+𝑚,𝑛𝑢+ (𝑘)

)
,

𝑚 = 0, . . . , 𝑀, 𝑛 = 0, . . . , 𝑁.
(57)

With each mode of solution (56) the following characteristic
polynomial 𝑤𝑚,𝑛 (𝑧−1) is associated:

𝑤𝐿𝑚,𝑛 (𝑧−1) = 1−𝜆+𝑚,𝑛𝑧−1 +
𝐿∑︁
𝑙=2
𝑑𝑙𝑧

−𝑙 . (58)

Using the forced solution (57) for the 𝑚,𝑛-th mode the transfer
function 𝐺𝐿𝑚,𝑛 (𝑧−1) between its input and output can be given:

𝐺𝐿𝑚,𝑛 (𝑧−1) =
𝑐+𝑚,𝑛𝑏

+
𝑚,𝑛𝑧

−1

1− 𝑧−1𝜆+𝑚,𝑛 +
𝐿∑︁
𝑙=2
𝑑𝑙𝑧

−𝑙

𝑚 = 1, . . . , 𝑀, 𝑛 = 1, . . . , 𝑁.

(59)

The standard system (18) for the 𝑚,𝑛-th mode is as follows:

𝑣𝐿𝑚,𝑛 (𝑘 +1) =
(
𝑃+
𝑚,𝑛 +

𝐿∑︁
𝑙=2

𝐴𝑙

)
𝑣𝐿𝑚,𝑛 (𝑘). (60)

For each memory length the free solution takes the following
form:

𝑞+∞𝑚,𝑛 (𝑘 +1) = 𝜆+𝑚,𝑛𝑞+𝑚,𝑛 (𝑘) −
∞∑︁
𝑙=2
𝑑𝑙𝑞

+
𝑚,𝑛 (𝑘 − 𝑙),

𝑚 = 0, . . . , 𝑀, 𝑛 = 0, . . . , 𝑁.

(61)

The 𝑚,𝑛-th mode of the forced response is as beneath: The
𝑚,𝑛-th mode of the forced response to control signal 𝑢+ (𝑘) is
as beneath:

𝑦+∞𝑚,𝑛 (𝑘) = 𝑐+𝑚,𝑛
(
𝑞+∞ + 𝑏+𝑚,𝑛𝑢+ (𝑘)

)
,

𝑚 = 0, . . . , 𝑀, 𝑛 = 0, . . . , 𝑁
(62)

and analogically the characteristic polynomial, transfer function
and standard system are following:

𝑤∞
𝑚,𝑛 (𝑧−1) = 1−𝜆+𝑚,𝑛𝑧−1 +

∞∑︁
𝑙=2
𝑑𝑙𝑧

−𝑙 , (63)

𝐺∞
𝑚,𝑛 (𝑧−1) =

𝑐+𝑚,𝑛𝑏
+
𝑚,𝑛𝑧

−1

1− 𝑧−1𝜆+𝑚,𝑛 +
∞∑︁
𝑙=2
𝑑𝑙𝑧

−𝑙

𝑚 = 1, . . . , 𝑀, 𝑛 = 1, . . . , 𝑁,

(64)

𝑣∞𝑚,𝑛 (𝑘 +1) = (𝜆+𝑚,𝑛 +1)𝑣∞𝑚,𝑛 (𝑘). (65)

Using (57) or (62) with 𝑢+ (𝑘) = 1(𝑘) allows us to calculate the
step response of the discrete system (52):

𝑦+𝐿,∞ (𝑘) =
𝑀∑︁
𝑚=0

𝑁∑︁
𝑛=0

𝑦+𝐿,∞𝑚,𝑛 (𝑘). (66)

The decomposition of the model presented above will be
also applied to analyze of basic properties of model: internal
positivity, practical stability, accuracy and convergence. This is
shown in the next subsections.

4.3. The positivity

The brief analysis of the positivity is necessary to apply the
stability conditions formulated by Remarks 1 and 2.

In the beginning it is important to note that the stability is
determined by the behaviour of the state 𝑄+ (𝑘) only. An input
and an output of the system, described by the operators 𝐵 and
𝐶 are not required to analyse. It can be at once noted that the
state operator 𝐴 of the time continuous system (29), (31) is
the Metzler matrix (definition of the Metzler matrix is given
e.g. in [30]). This implies that the time-continuous state of the
system under consideration is positive and asymptotically stable.

Next the positivity of the system after discretization described
by (48) and (49) should be tested. To do it the simple positiv-
ity condition given as equation (6) in the paper [30] can be
employed. It is as follows:

𝑃+ ∈ R+. (67)

Operator 𝑃+ expressed by (50) is diagonal. This implies that the
condition (67) turns to the following form:

∀𝑚 = 0, .., 𝑀, ∀𝑛 = 0, ..𝑁 𝑃+
𝑚,𝑛 > 0. (68)
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After application of (49) in (68) we obtain the following condi-
tion, possible to numerical tests for given set of parameters:

∀𝑚 = 0, .., 𝑀, ∀𝑛 = 0, .., 𝑁 :

𝑎𝑤

((𝑚𝜋
𝑋

)𝛽
+

(𝑛𝜋
𝑌

)𝛽)
<
𝛼

ℎ𝛼
−𝑅𝑎 .

(69)

Parameters presented e.g. in the paper [20] allow to conclude
that the condition (69) should be met in big part of real situations.

4.4. The practical stability

The time-continuous model of the heat transfer is stable due to
“natural” stability of this process. But wrong values of sample
time ℎ or memory length 𝐿 can cause the loss of the stability of a
discrete-time model. The presented stability analysis gives guid-
ance to proper selecting of these parameters to avoid problems
with a stability of the proposed model.

The stability conditions for the one-dimensional model using
FOBD have been proposed in the paper [16] and recalled by
the paper [36]. The fundamental result of stability was that too
high order 𝑁 of the one-dimensional discrete model can cause
its instability.

Here these results need to be adopted to the two-dimensional
case.

Notice that the practical stability or instability for the whole
considered system is determined by the asymptotic stability or
instability of its separated modes (56) or (61). This is described
by the following remarks.

Remark 1. (The practical stability of the discrete, decomposed
FO system)

The discrete non-integer order system (52) will be practically
stable for fixed memory length 𝐿 iff each mode of its solution
(56) is asymptotically stable.
The discrete non-integer order system (52) will be practically
stable for each memory length 𝐿 if and only if each mode of
its solution (61) is asymptotically stable.

Remark 2. (The instability of the discrete, decomposed FO
system)

The discrete non-integer order system (52) will be unstable
for fixed memory length 𝐿 iff there exists at least one unstable
mode of its solution (56).
The discrete non-integer order system (52) will be unstable
for each memory length 𝐿 iff there exists at least one instable
mode of its solution (61).

The practical stability can be explicitly tested using both above
remarks. This requires examining the localisation of roots of
each characteristic polynomial (58) for𝑚 = 1, .., 𝑀 , 𝑛 = 1, . . . , 𝑁 .
The degree of each polynomial is equal to 𝐿 + 1. It makes us
use numerical methods only and can be done with the use of
MATLAB. On the other hand it allows us to test the correctness
of analytical condition obtained using the standard systems (60)
and (65).

The decomposition of state equation and possibility of stabil-
ity testing by investigation of 𝑀𝑁 seperated, scalar, internally
positive systems allows us to formulate analytical stability con-
ditions. To do it the conditions (18) and (19) will be employed.

In practical application of the proposed model important is to
give the dependence of its stability on dimensions 𝑀 , 𝑁 , mem-
ory length 𝐿 and sample time ℎ. Here the approach presented in
the papers [16] and [36] will be used. The main complication is
caused by two dimensions of the model: 𝑀 and 𝑁 . To avoid it
assume that both dimensions are equal: 𝑀 = 𝑁 .

The maximum dimension 𝑁𝐿,∞ assuring the stability of the
model is described by the following propositions:

Proposition 1. (The maximum dimension of the model 𝑁𝐿 for
fixed memory length 𝐿)

Consider the discrete model (48)–(54). Assume that it meets
the assumption about internal positivity (69).

The maximum dimension 𝑁𝐿 of the model for fixed memory
length 𝐿 assuring its stability is as follows:

𝑁𝐿 <
𝑋𝑌

𝜋

(
𝑆𝐻

𝑋𝛽 +𝑌 𝛽

) 1
𝛽

, (70)

where:

𝐷𝐿 =

𝐿∑︁
𝑙=2
𝑑𝑙 ,

𝑆 =
𝛼+𝐷𝐿 − ℎ𝛼𝑅𝑎

ℎ𝛼𝑎𝑤
,

𝑆𝐻 = 𝑆 + 1
ℎ𝛼𝑎𝑤

.

(71)

For each memory length the maximum dimension 𝑁∞ is
described as follows:

Proposition 2. (The maximum dimension of the model 𝑁∞ for
each memory length)

Consider the discrete model (48)–(54). Assume that it meets
the assumption about internal positivity (69).

The maximum dimension 𝑁∞ of the model for each memory
length assuring its stability is as follows:

𝑁∞ <
𝑋𝑌

𝜋

(
𝑆∞

𝑋𝛽 +𝑌 𝛽

) 1
𝛽

, (72)

where:
𝑆∞ =

2− ℎ𝛼𝑅𝑎
ℎ𝛼𝑎𝑤

. (73)

Comparing conditions (70) vs (72) it can be observed that the
second is the limit case for the first one.

4.5. The accuracy

The accuracy 𝜖 of the proposed discrete model will be analyzed
analogically as in the one dimensional case given in [13,17,36].
It is defined as the difference between steady-state response of
the time-continuous system (25) 𝑦𝑠𝑠 and discrete system (52)
𝑦+𝑠𝑠 to the Heaviside function 1(𝑡). For fixed and each memory
length (denoted by ∞) it is expressed as follows:

𝜖𝐿,∞ = |𝑦𝑠𝑠 | − |𝑦+𝐿,∞𝑠𝑠 |, (74)
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where upper indices 𝐿,∞ denote the fixed and each memory
length respectively.

The steady state response of the time-continuous system is as
follows:

𝑦𝑠𝑠 = 𝐶𝐴
−1𝐵, (75)

where 𝐴, 𝐵 and 𝐶 there are state, input and output matrices of
the system respectively. With respect to (29), (32) and (38) it
turns to the following form:

𝑦𝑠𝑠 =

𝑀∑︁
𝑚=0

𝑁∑︁
𝑛=0

𝑏𝑚,𝑛𝑐𝑚,𝑛

𝜆𝑚,𝑛
, (76)

where 𝜆𝑚,𝑛, 𝑏𝑚,𝑛 and 𝑐𝑚,𝑛 are expressed by (31), (34) and (40)
respectively.

The steady-state responses for the discrete system can be
computed using final value theorem (21). Using it to (59) and
(64) yields:

𝑦+𝐿𝑠𝑠 =

𝑀∑︁
𝑚=0

𝑁∑︁
𝑛=0

𝑏+𝑚,𝑛𝑐
+
𝑚,𝑛

1−𝜆+𝑚,𝑛 +𝐷𝐿
, (77)

𝑦+𝐿𝑠𝑠 =

𝑀∑︁
𝑚=0

𝑁∑︁
𝑛=0

𝑏+𝑚,𝑛𝑐
+
𝑚,𝑛

2−𝜆+𝑚,𝑛
, (78)

where 𝑏+𝑚,𝑛, 𝑐+𝑚,𝑛, 𝜆+𝑚,𝑛 and 𝐷𝐿 are described by (48), (49) and
(71) respectively. It can be observed that:

𝑦+∞𝑠𝑠 = lim
𝐿→∞

𝑦+𝐿𝑠𝑠 . (79)

The accuracy (74) as a function of orders 𝑀 and 𝑁 can be esti-
mated numerically using (76) and (77) or (78). This is presented
in the next section.

4.6. The convergence

The convergence will be analyzed analogically as in the one-
dimensional case [36]. The rate of convergence (ROC) is defined
as the absolute value of the steady-state response of the 𝑚, 𝑛-th
mode, expressed as follows:

𝑅𝑂𝐶𝐿𝑚,𝑛 =

���� 𝑏+𝑚,𝑛𝑐
+
𝑚,𝑛

1−𝜆+𝑚,𝑛 +𝐷𝐿

���� , (80)

𝑅𝑂𝐶∞
𝑚,𝑛 =

����𝑏+𝑚,𝑛𝑐+𝑚,𝑛2−𝜆+𝑚,𝑛

���� . (81)

In practice it is important to know minimum orders of model
𝑀 , 𝑁 assuring required value of 𝑅𝑂𝐶. Such a condition can
be given for equal both orders: 𝑀 = 𝑁 . It is formulated as the
following proposition:

Proposition 3. (The minimum orders 𝑀 and 𝑁 assuring the
predefined value of 𝑅𝑂𝐶)

Consider the discrete model (48)–(54),
Assume that both orders of the model are equal: 𝑀 = 𝑁 and

required ROC is equal Δ.

The minimum dimension 𝑁Δ of the model for fixed mem-
ory length 𝐿 assuring the predefined 𝑅𝑂𝐶 = Δ is given by the
following inequality:

𝑁Δ >

(
ℎ𝛼𝑃

Δ

) 1
6

, (82)

where:
𝑃 =

64(𝑋𝑌 )2

𝜋6 (
𝑋−𝛽 +𝑌−𝛽 ) 2

𝛽

. (83)

Proof. The condition 𝑅𝑂𝐶 < Δ is expressed as:���� 𝑏+𝑚,𝑛𝑐
+
𝑚,𝑛

1−𝜆+𝑚,𝑛 +𝐷𝐿

���� < Δ. (84)

With respect to (13), (14), (37) and (41) for 𝑀 = 𝑁 > 0 the
expression 𝑏+𝑚,𝑛𝑐+𝑚,𝑛 can be estimated as follows:

𝑏+𝑚,𝑛𝑐
+
𝑚,𝑛 ≤ 16ℎ𝛼

(
𝑘𝑚,𝑛

ℎ𝑥𝑚ℎ𝑦𝑛

)2
. (85)

In further considerations the absolute value |..| can be omitted
due to the estimation (85) and the denominator of (84) are always
positive. The coefficients 𝑘𝑚,𝑛, ℎ𝑥,𝑚 and ℎ𝑦,𝑛 are expressed by
(35) and (36). This yields:

𝑃 =

(
𝑘𝑚,𝑛

ℎ𝑥𝑚ℎ𝑦𝑛

)2
, (86)

where 𝑃 is expressed by (83).
Next recall the form of the eigenvalue 𝜆+𝑚,𝑛 and introduce the

following symbols:

𝑅6 = 𝐷𝐿 +1+ ℎ𝛼𝑅𝑎,

𝑅𝛽 = ℎ
𝛼𝑎𝑤𝜋

𝛽
(
𝑋−𝛽 +𝑌−𝛽

)
.

(87)

Using (86) and (87) in (84) yields:

ℎ𝛼𝑃

𝑁6 (𝑅6 +𝑅𝛽𝑁𝛽)
< Δ ⇐⇒

⇐⇒ ℎ𝛼𝑃

Δ
< 𝑁6 (𝑅6 +𝑅𝛽𝑁𝛽).

(88)

For real, identified parameters of the model the coefficients (87)
can be estimated as: 𝑅6 ≈ 1 and 𝑅𝛽 ≈ 0. This gives:

ℎ𝛼𝑃

𝑁6 < Δ ⇐⇒ ℎ𝛼𝑃

Δ
< 𝑁6 ⇐⇒

(
ℎ𝛼𝑃

Δ

) 1
6

< 𝑁, (89)

The use of 𝑁 = 𝑁Δ in (89) gives directly the condition (82) and
the proof is completed. □

The above condition is “cautious” due to use of all proposed
simplifications. It can be applied together with the stability con-
dition (70) to estimate the range of orders ensuring both prac-
tical stability and required convergence of the model. This will
be shown in the next section.
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5. SIMULATIONS AND EXPERIMENTS

5.1. The construction of the experimental system

The experimental system is shown in Fig. 2. The size of the mea-
suring field expressed in pixels are equal: 𝑋𝑝 = 380, 𝑌𝑝 = 290.
The PCB is heated by the flat electric heater 170× 20 pixels,
attached in points: 𝑥ℎ1 = 100, 𝑦ℎ1 = 40. The maximum power
of this heater equals to 10 W. The temperature of the metal-
lic surface is read with the use of thermal camera OPTRIS
PI 450, connected to computer via USB and installed dedi-
cated software OPTRIS PI CONNECT. The range of measured
temperature is 0–250◦C, the sampling frequency is 80 Hz. The
control signal to heater is sent from computer via NI LabView,
NI MyRIO and amplifier. The maximum current from ampli-
fier equals to 400 [mA] and with a voltage of 12 V gives the
maximum power 4.8 W. The PCB plate is not isolated from
the environment. This implies that measurements are strongly
dependent on ambient temperature. The presented experiments
were done in hot summer. During experiments only basic filter-

NI myRIO

NI LabView, 

MATLAB

amplifier

camera

heater

plate

Fig. 2. The construction of the experimental system

Fig. 3. The steady-state temperature fields for nonheated (top) and
heated plate (bottom). The temperature strongly depends on ambient

temperature. The colour scale in each case is different

ing assured by camera software was sufficient (see Fig. 4). The
goal of the experiments was to obtain the step response. The
“zero” level denotes the heater switched off, the “one” level is
the full power of the heater. The temperature fields for both states
are shown in Fig. 3. This figure shows also the points of mea-
surement of the step response, marked as “Area 1–4”. Areas 1–3
are located in different places of the PCB, area 4 describes the
mean temperature of the whole heater. Coordinates of all places
of measurement are given in Table 1. All step responses are
collected in Fig. 4. During calculations all coordinates 𝑥.. and
𝑦.. are used in the relative form according to (22).
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Fig. 4. The step responses of temperature in all tested fields

Table 1
Coordinates of measuring areas (in pixels)

area 𝑥𝑠1 𝑦𝑠1 𝑥𝑠2 𝑦𝑠2

1 50 75 52 77
2 200 100 202 102
3 300 200 302 202
4 120 40 250 60

5.2. The identification of the model

To identify of both orders of the model 𝛼, 𝛽 and its parameters
describing the heat transfer and exchange: 𝑎𝑤 and 𝑅𝑎 the known
cost function IAE was applied. Its discrete version takes the
following form:

𝐼 𝐴𝐸 =
1
𝐾 𝑓

𝐾 𝑓∑︁
𝑘=1

��𝑦+ (𝑘) − 𝑦𝑒 (𝑘)�� . (90)

where 𝑦+ (𝑘) is the step response of the discrete model (52),
computed using (66), 𝑦𝑒 (𝑘) is the experimental step response
and 𝐾 𝑓 is the amount of samples.

The parameters of the model were identified via numerical
minimization of this function with the use of MATLAB function
fminsearch. This function was used because the step responses
presented in Fig. 4 are rather smooth. Results for all tested areas
are given in Tables 2–5. Comparison of step responses of model
vs experiments is shown in Fig. 5. Step responses presented in
this figure were computed with the use of data marked by (F) in
the tables.
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Fig. 5. Step responses of model 𝑦+ (𝑘) vs experiments for all areas. Pa-
rameters of each model are marked by (F) in Tables 2–5. Experimental
responses are marked in blue, responses of the model are marked in red

Table 2
Identified parameters of the model – area 1

𝐿 𝑀,𝑁 𝛼 𝛽 𝑎𝑤 𝑅𝑎 𝐼 𝐴𝐸

100 3 0.9986 3.1803 0.0017 0.0100 0.0561
100 5 0.9994 2.2933 0.0021 0.0106 0.0716
100 7 0.8188 0.0000 0.0061 0.0156 0.0875
200 3 1.0004 2.9121 0.0024 0.0100 0.0566
200 5 0.9976 2.7013 0.0007 0.0111 0.0838
200 7 (F) 0.9954 2.3994 0.0001 0.0090 0.0396

Table 3
Identified parameters of the model – area 2

𝐿 𝑀,𝑁 𝛼 𝛽 𝑎𝑤 𝑅𝑎 𝐼 𝐴𝐸

100 3 0.9936 2.7149 0.0013 0.0114 0.1123
100 5 0.7392 0.0000 0.0017 0.0155 0.1517
100 7 0.7354 0.0000 0.0007 0.0149 0.1506
200 3 0.8866 1.5793 0.0014 0.0140 0.1223
200 5 (F) 0.8656 1.3517 0.0074 0.0154 0.1023
200 7 0.8290 1.4826 -0.0000 0.0183 0.1313

Table 4
Identified parameters of the model – area 3

𝐿 𝑀,𝑁 𝛼 𝛽 𝑎𝑤 𝑅𝑎 𝐼 𝐴𝐸

100 3 0.9980 2.7340 0.0021 0.0059 0.2110
100 5 (F) 0.9981 0.8586 0.0020 0.0060 0.2085
100 7 0.7029 2.0866 0.0014 0.0056 0.1606
200 3 0.9993 3.0075 0.0018 0.0059 0.2106
200 5 0.9993 0.0011 0.0004 0.0058 0.2151
200 7 0.5750 2.3299 0.0006 0.0374 0.5963

Table 5
Identified parameters of the model – area 4

𝐿 𝑀,𝑁 𝛼 𝛽 𝑎𝑤 𝑅𝑎 𝐼 𝐴𝐸

100 3 0.0823 1.3325 0.0103 0.5895 0.3547
100 5 0.5385 1.7443 0.0019 0.0010 0.2983
100 7 0.5045 1.6037 0.0028 0.0069 0.2974
200 3 0.6873 0.0006 0.0774 0.0301 0.2321
200 5 (F) 0.7789 0.0012 0.0643 0.0216 0.1867
200 7 0.7319 1.8458 0.0023 0.0263 0.2409

The analysis of Tables 2–5 and diagrams 5 allows us to con-
clude that the quality of the model in the sense of the cost func-
tion (90) is strongly determined by the point of measurement: it
is the best for area 1, and weak for the area 3. Simultaneously,
the good accuracy is obtained for relatively low orders of model
𝑀 , 𝑁 and memory length 𝐿.
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Interesting observation is the value of the order 𝛽 for area 4,
described by row (F) in Table 5. Its value, close to zero points that
in this place (heater) the distributed-parameter model reduces
to the lumped parameter model.

5.3. Practical stability

The condition of the practical stability (70) can be examined
using parameters described in the previous section. As an ex-
ample consider the parameters given in the row (F) in Table 3.
The sample time was equal: ℎ = 1[𝑠]. The use of conditions (70)
and (72) gives the upper estimation of maximum orders assuring
the practical stability of the model. They are equal: 𝑁𝐿 < 9.2516
and 𝑁∞ < 10.2969.

Next for all modes𝑚,𝑛 = 0, . . . , 𝑁, 𝑁 roots of all characteristic
polynomials (58) and roots of all standard systems (60) were
numerically computed for two values of 𝑀 , 𝑁: “stable”: 𝑀 =

𝑁 = 8 and “unstable”: 𝑀 = 𝑁 = 15. Results are illustrated by
Figs. 6 and 7. The main conclusion about the practical stability of
the considered model is that the increasing of orders 𝑀 , 𝑁 leads
to loss of stability. This is analogical to the one-dimensional
case (see [16,36]). This results directly from (31) and (12). For
the time-continuous model increasing of orders 𝑀 , 𝑁 moves
eigenvalues left in the complex plane, but for the discrete time
this causes the “migration” of eigenvalues outside of the unit
circle. Next, the increasing of the memory length 𝐿 allows to a
little bit increase the maximum value of orders, but this causes
a significant increase in computational complexity with a slight
improvement in accuracy (see next subsection).
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Fig. 6. Roots of characteristic polynomials and standard systems
for “stable” dimensions of model: 𝑀 = 𝑁 = 8
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Fig. 7. Roots of characteristic polynomials and standard systems
for “unstable” dimensions of model: 𝑀 = 𝑁 = 15

5.4. Accuracy and convergence

The accuracy was tested for the worst case, appearing in area 3.
To tests the parameters from row (F) in Table 4 were used. The
accuracy (74) as a function of orders 𝑀 and 𝑁 is shown in
Fig. 8. The diagram 8 allows to conclude that the accuracy of
the proposed discrete model does not depend on the memory
length 𝐿, but it is determined by the dimensions of model 𝑀
and 𝑁 . Next, for both orders greater than 7 the improvement in
accuracy is slight.
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Fig. 8. Accuracy (74) for area 3, 𝐿 = 100 and each memory length

The convergence of the proposed model was tested using
relations (80) and (81). The ROC as a function of the number
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of mode for fixed and each memory lenghts are shown in Fig. 9.
Calculations were done using parameters of the model from row
(F) in Table 2.
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Fig. 9. Rate of Convergence for area 1, 𝑀 = 𝑁 = 7, 𝐿 = 200 and each
memory length and the required value Δ

Next consider the required value of ROC equal Δ = 5𝑒− 07.
The use of condition (82) gives the minimum value of both
orders 𝑁Δ > 5.6289. This is also illustrated by Fig. 9.

From Fig. 9 it can be also concluded that the convergence
of the proposed model is stronger determined by the orders
of the model 𝑀 , 𝑁 than by the memory length 𝐿. For each
memory length the ROC is a little bit smaller than for fixed
memory length, but for orders greater than 7 the the difference
is negligible.

Summarizing, the use of both conditions of practical sta-
bility and convergence allows to obtain the permissible range
of orders 𝑀,𝑁 of the model. These orders lie in the interval
[𝑁Δ;𝑁𝐿]. For the conisdered numerical example this is the in-
terval: [5.6289;9.2516] and really gives the values of 𝑀 , 𝑁
from 6 to 9.

6. FINAL CONCLUSIONS

The main conclusion from the paper is that the proposed, dis-
crete time, fractional order model can properly describe thermal
processes in the two-dimensional thin metallic surface. The good
accuracy in the sense of the IAE cost function is achieved for
low orders of the model and relatively short memory length 𝐿.

The proposed conditions of stability and convergence are con-
tradictory, because the better convergence requires the increas-
ing of orders, what leads to instability of the model. However,
both condtions applied together allow to obtain precise estima-
tion of orders allowing to keep both stability and good conver-
gence.

The spectrum of the further investigations of the presented
issue is broad. It covers u.a. analysis of the numerical complexity
of the proposed model as well as its verification with the use of
various experimental data.

An another important issue is to consider the uncertainty of
the parameters of the model, because such a situation is typical
during use of thermal imaging cameras.

Next, the identification of the model can be also done using
biologically inspired methods, e.g. Particle Swarm Optimization
(PSO) or Grey Wolf Optimization (GWO).

Finally, the internal and external positivity of this model need
also be analysed.
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