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Abstract
This paper presents the results of a study of three methods for estimating the respiratory wave (RW) and
respiratory rate (RR) using the electrocardiogram (ECG). There were applied methods from different groups:
amplitude modulation ECG-Derived Respiration (EDR), frequency modulation Respiratory Sinus Arrhythmia
(RSA) and Baseline Wander (BW) processing with the Savitzky–Golay filter (S–G). The theoretical aspects
of the methods were presented in the Part 1 of the publication which was entitled: “Three Methods for the
Determination of the Respiratory Waves from ECG Part I”. RR parameter estimation was performed for all
the three methods for 12 subjects. The research concerning the influence of the parameters: Body Mass Index
(BMI), Tidal Volume (TV) -, Forced Expiratory Volume in 1 second (FEV1) and – Forced Vital Capacity
(FVC) on the errors of the estimated parameter RR. Moreover, all 12 signals, which were acquired with the
help of a 12-lead Holter ECG were taken into consideration. The results indicate a preliminary dependence
of respiratory parameters and BMI on the Respiratory Wave and, further, on the RR estimation errors.
Consequently, the type of method and ECG Holter leads depend on the BMI and respiratory parameters.
Studies with larger numbers of objects to definitively confirm these relationships are planned. In addition, an
optimal selection of S–G filter parameters was carried out. Finally, a proprietary reference embedded system
for recording RW and calculating RR was demonstrated.
Keywords: respiratory rate, respiratory wave, ECG-derived respiration, respiratory sinus arrhythmia, Savitzky–
Golay filtration.

1. Introduction
One of the important parameters used in cardiac diagnostics is respiratory rate (RR). Typically,

ECG recording devices (e.g., Holter ECG) do not monitor this parameter. Additional devices are
used for this purpose. However, it has been noted that it is possible to obtain information on the
chest movement from the ECG waveform itself. This makes it possible to determine the respiratory
waveform RW, from which the parameter RR is estimated.
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Estimating RR from electrocardiographic signal was pioneered by George B. Moody of the
Massachusetts Institute of Technology [1,2]. Although Professor Moody died as a result of the
Covid’19 disease in 2021, he left behind a tremendous legacy related to electrocardiographic
signal processing having co-founded the freely available biomedical data library PhysioBank [3].
Currently under development are also the George B. Moody PhysioNet Challenges, where new
algorithms are being developed for medical purposes. In addition, an artificial medical intelligence
research foundation is being established and a collaboration between Google Health and PhysioNet
has been formed.

There are many methods for estimating the RR parameter from ECG waveforms. They can be
divided into the following groups: amplitude modulation methods (AM), frequency modulation
methods (FM) and baseline wander modulation methods (BM). These methods make it possible
to create a respiratory wave (RW). In the last method, unlike the others, the breathing wave is
obtained by low-pass filtering. Because such an RW carries the effects of skeletal muscle activity,
it is a more accurate representation of the effect of chest rise. Analysis of such a signal, in addition
to estimating the RR parameter, can provide additional diagnostic information.

The cardiovascular system is closely linked to the respiratory system [4, 5]. Diagnostics of
respiratory processes are very important for both the respiratory and cardiac systems [6–13].
The study of the relationship between respiratory parameters obtained from spirometry, body
mass index (BMI) and the error in determining RR from the ECG signal is a novel approach.
Respiratory parameters recorded during the spirometry examinations reflect disorders in the
respiratory system that result in changes in the dynamics of RR and, in particular, in the frequency
and amplitude of respiration. The most frequently marked parameters include: functional residual
capacity (FRC), expiratory reserve volume (ERV), forced expiratory reserve volume in 1sec
(FEV1) and total lung capacity (TLC). In addition to respiratory diseases, the dynamics of
breathing is also affected by obesity, which is determined on the basis of body mass index
(BMI) [14–17]. Impairment of the respiratory function is associated with fat deposits on the
diaphragm, abdomen and intercostal muscles. Obesity is a significant factor associated with
respiratory disorders, particularly obstructive sleep apnea and obesity hypoventilation syndrome
(OHS). The condition affects outcomes in acute respiratory distress syndrome (ARDS) and chronic
obstructive pulmonary disease (COPD). (Ananalysis of the influence of the BMI parameter (in
addition to age and gender) on the measurement of RR appeared in the 2021 publication by
Aravind Natarajan [18]). For this reason, there is a high probability that a relationship between
BMI and respiratory disorders (as represented by spirometry parameters) affects the accuracy of
determining RW from electrocardiogram signal.

The publication aims to present and compare the ability to create RW and evaluate the
estimation errors of the RR parameter obtained using three methods, which are representative
of the AM method – ECG-Derived Respiration (EDR), the FM method - Respiratory Sinus
Arrhythmia (RSA) and BW method. The last method used Savitzky–Golay filtering (S–G), which
is typically used to improve the signal-to-noise ratio in ECG signals. In the authors’ approach, it
was used to separate the baseline wander and consequently determine the respiratory waveform
RW. This approach is a new solution, in which a waveform with a larger number of samples is
obtained, which can, compared to other methods, increase the diagnostic value of the method. In
addition, a proprietary embedded system, using pressure measurement, in a cuff surrounding the
chest, was used as a reference device to verify the results obtained.

The theoretical aspects of the issues were presented in the first part of the publication, in
the paper entitled: “Three Methods for Determining the Respiratory Waves from the ECG (part
I)” [19]. In the current, second part, the selection of optimal S–G filter parameters to enable
baseline wander extraction from the ECG signal will be carried out, and the effect of ECG lead
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number selection on RR estimation error for each method will be investigated. In addition, a
study will be undertaken to answer the question of whether physiological parameters: BMI and
respiratory parameters (TV, FEV1 and FVC) affect the RR estimation error of each analysis.

2. Respiratory parameters TV, FEV1 and FVC

Tidal volume is the amount of air that moves in or out of the lungs with each respiratory cycle.
Normally, this value is about 500 ml and depends on the size of the individual and its metabolic
status [20]. An example of a spirometry test with basic lung parameters is presented in Fig. 1 [21].

Fig. 1. Graph showing recorded changes in lung volume during a spirometry test. Tidal Volume (TV); Inspiratory Capacity
(IC); Inspiratory Reserve Volume (IRV); Vital Capacity (VC); Expiratory Reserve Volume (ERV).

Spirometry also offers two more respiratory parameters: FEV1 and FVC [22,23]. FEV1 is the
volume of air that the patient is capable of exhaling from in one second of forced exhalation. This
parameter depends on the volume of the lungs. The FVC parameter determines the total amount of
air that the subject can exhale from the deepest inhalation to the maximum exhalation.

TV, FEV1 and FVC parameters were measured for all subjects using a Spirobank II by MIR.
Subsequently, the influence of the resulting parameters on the determination of respiratory waves
and respiratory rates from the ECG signal was analysed.

3. Research methodology

3.1. Participants

The study was carried out on a group of 12 apparently healthy subjects in the age between
25 and 69 years. The research protocol was approved by the local Ethics Committee and the
study was conducted in accordance with the Declaration of Helsinki. The research carried out and
its statistical analysis is a continuation of the research by our research group on the processing
of biomedical signals [24, 25]. The scope of the study included recording breathing at rest and
ECG testing using a 12-lead Holter ECG. Respiratory wave plots were recorded by the reference
device when subjects were in the sitting position. The initial stage of examination included the
measurement of the Body Mass Index (BMI) and a spirometry test, the result of which took
the form of the registration of the following parameters: FEV1 (Forced Expiratory Volume in 1
second), FVC (Forced Vital Capacity) and TV (Tidal Volume). Table 1 contains a summary of the
results of spirometry tests for individual subjects.
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The BMI ranges offered the classification of subjects into 3 groups: 18–20 (underweight),
20.1–25 (normal weight) and 25.1–35 (overweight and obese). For TV, it measures around 500 ml
in an average healthy adult male and approximately 400 ml in a healthy female. However, the
achieved values of TV parameters are higher than expected. This is most likely caused by taking
measurements of respiratory parameters after recording ECG signals, during which the subjects
performed specific breathing series.

Table 1. Subjects of the study.

Subject Gender Age BMI Number of
breaths

FEV1 [l] FVC [l] Tidal
Volume

/ (% pred) / (% pred) (l)
6 F 25 18.03 21 3.28 / (111) 3.57 / (105) 1.11
10 M 30 18.52 16 5.41 / (118) 6.74 / (122) 0.98
2 F 36 19.61 32 3.78 / (118) 4.34 / (113) 0.52
5 M 36 20.52 23 4.43 / (118) 4.71 / (104) 1.09
9 M 29 22.64 19 5.03 / (106) 6.43 / (113) 1.68
7 F 61 24.80 15 3.01 / (122) 3.74 / (122) 1.28
11 F 29 25.65 14 4.86 / (147) 5.09 / (130) 1.7
8 M 68 26.58 21 4.07 / (109) 5.67 / (120) 1.48
12 M 32 27.08 16 6.64 / (161) 7.27 / (147) 1.96
1 M 45 29.22 26 4.63 / (104) 5.34 / (97) 1.41
3 M 33 29.35 34 4.4 / (102) 6.92 / (132) 1.24
4 M 41 32.11 28 4.29 / (119) 4.44 / (110) 1.2

3.2. Measurement laboratory stand

The laboratory stand includes: an AsPEKT 812 v. 201 – Holter ECG by ASPEL S.A, a
spirometer – Spirobank II by MIR (software version 2.5), a proprietary reference embedded
respiratory waveform recorder system, and a PC computer with the LabVIEW environment. Fig. 2
shows the laboratory stand.

Fig. 2. Laboratory stand for recording the respiratory waveform, ECG and spirometry tests (A: reference embedded system
for recording the respiratory waveform, B: synchronization system for Holter ECG and reference embedded system, C:
chest pressure cuff of the reference embedded system, D: spirometer, E: Holter ECG, F: computer with the LabVIEW

environment).
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The main parameters of the Holter ECG:
– number of leads: 12,
– analog-to-digital converter resolution: 16 bits,
– sampling rate: 128 Hz,
– frequency response: 0.05 Hz – 80 Hz,
– input impedance: > 10 MΩ,
– common mode rejection ratio CMRR: > 80 dB.
The reference embedded system for recording respiratory waveforms, using the measurement

of the pressure of the cuff surrounding the chest, allows recording of the signal with a resolution
of 10 bits and a user-settable sampling rate (standard: 128 Hz). The technical data of the PC-28
pressure sensor installed in reference embedded system for recording respiratory waveform are as
follows:

– accuracy: 0.3%,
– thermal error: typically 0.3% / 10°C; max 0.4% / 10°C,
– hysteresis, repeatability: 0.05%,
– response time < 120 ms,
– output signal 4 . . . 20 mA,
– error due to supply voltage changes 0.005%/V,
– damaging overpressure: 200 kPa.
The ECG and respiratory waveform signal synchronizer allow temporal synchronization of

signals obtained from the reference embedded system and the ECG Holter with an accuracy of 1
sample.

The spirometer used allows for respiratory function tests, including TV, FEV1, and FVC
parameters, taking into account factors such as age, sex, weight, height, and race/ethnicity [22].
The main features of the MIR Spirobank II Advanced spirometer are presented below:

– flow sensor bi-directional digital turbine,
– volume accuracy ±2.5% or 50 ml,
– flow range ±16 l/s,
– flow accuracy ±5% or 200 ml/s,
– dynamic resistance < 0.5 cm H2O/l/s.
The laboratory workstation is also equipped with a PC with the LabVIEW environment and

additional modules installed: Digital Signal Processing and Biomedical Toolkit. Data exchange
between the reference embedded system and the computer is carried out using an RS232/USB
terminal, allowing time-sensitive recording.

3.3. Measurement procedure

The following measurement procedure has been implemented:
– spirometry examination and calculating of following parameters of each subject: BMI, TV,
FEV1, FVC [26],

– respiratory waveform and ECG recordings for each subject:
• connecting of a reference embedded system for WR and RR registration,
• connecting of 12-lead Holter ECG,
• beginning of recording using a reference embedded system and a Holter ECG,
• performing a specific breathing cycle, consisting of a series of inhalations and exhalations
(details in Part I of the publication),

– post-processing in the LabVIEW environment of signals obtained from:
• a reference embedded system,
• a Holter ECG with implementation of (for each of 12 leads): S–G filtration, EDR, RSA
method.
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4. Research results

4.1. Determination of the measurement error

The correlation between reference and extracted respiratory signal was performed. The quality
criteria of the method are related to relative measurement error Re [24].

The relative error Re was calculated to the following equation:

Re =
|Vme − Vre| · 100 [%]

Vre
, (1)

where:
Re – relative error [%],
Vme – measured value of RR,
Vre – real value of RR.
The results of the tests conducted to determine the number of breaths with the methods: S–G,

EDR and RSA are presented in Tables 4, 5, 6 respectively. The tables show the breath detection
results for each of the 12 patients during the 106 second measurement sessions.

4.2. Testing Savitzky–Golay filter parameters

For S–G filtration, the results of estimating local extremes using wavelet analysis (biorthogonal
wavelet bior3_1) for various filter settings are summarized and presented in Table 2.

Table 2. Results for detection of local extremes in V6 ECG lead for 9 breaths with variable S–G filter parameters.

Number Polynomial
order Side points Number of detected local

extremes (breaths)
Number of incorrectly

detected breaths

1 1 1 9 2

2 1 2 9 2

3 1 4 9 2

4 1 16 10 1

5 1 32 9 1

6 1 64 9 0

7 1 128 7 2

8 1 256 5 4

9 2 1 9 2

10 2 2 9 2

11 2 4 9 2

12 2 16 9 2

13 2 32 10 1

14 2 64 9 2

15 2 128 9 0

Continued on next page
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Table 2 – Continued from previous page

Number Polynomial
order Side points Number of detected local

extremes (breaths)
Number of incorrectly

detected breaths

16 2 256 7 2

17 3 2 9 2

18 3 4 9 2

19 3 16 9 2

20 3 32 10 1

21 3 64 9 2

22 3 128 9 0

23 3 256 6 3

A conclusion was made on the basis of the results of breath detection from the ECG signal
for different S–G filter settings that the three various settings offered correct results. Therefore,
another measurement of RR was performed. The results of breath detection are shown in Table 3.

Table 3. Results for detection of local extremes in V6 ECG lead for 6 breaths with variable S–G filter parameters.

Number Polynomial
order Side points Number of detected local

extremes (breaths)
Number of incorrectly

detected breaths

1 1 64 6 0

2 2 128 7 1

3 1 4 7 1

The largest number of detected breaths from the ECG signal was determined in the case of
S–G filtration: side points 64 and polynomial order 1. Therefore, all respiratory rate waveform
analyses will be performed for these filter settings. In addition, the computational complexity is
the least for this order.

4.3. Results for the S–G, EDR and RSA methods

The small number of subjects included in the study prevented the researchers from executing a
comprehensive statistical analysis based on the probability distribution along with the presentation
of hypotheses. Therefore, the S–G, EDR, and RSA methods were compared in terms of median
relative error for each lead. Table 4, Table 5 and Table 6 show, respectively, the results of
calculations of the RR error expressed by (3) for: S–G, EDR and RSA methods, taking into account
each of the 12 leads that provided ECG inputs. The number of breaths for each subject in a given
test was different, therefore, the relative error was adopted as the outcome of the effectiveness of
estimating the number of breaths in relation to the measurement made by the RR recorder. For
leads I, II, III, aVL, aVR, aVL, V1 to V6, the numbering of L1 to L12 was adopted, respectively.
Table 7 contains a summary of the median, mean, and standard deviation values for all subjects for
leads L1–L12.
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Table 4. Results for relative errors in respiratory waves designating using S–G filtration.

Subject
Relative error [%] using S–G filtration

Number of the ECG lead:
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

1 19.23 38.46 42.31 46.15 61.54 26.92 50.00 57.69 42.31 46.15 11.54 34.62

2 62.50 46.88 46.88 62.50 46.88 50.00 53.13 68.75 40.63 50.00 46.88 37.50

3 29.41 29.41 38.24 35.29 35.29 32.35 50.00 44.12 44.12 38.24 41.18 41.18

4 25.00 14.29 14.29 21.43 25.00 10.71 42.86 14.29 14.29 32.14 28.57 0.00

5 34.78 13.04 17.39 13.04 8.70 17.39 17.39 52.17 13.04 13.04 17.39 17.39

6 14.29 19.05 14.29 23.81 4.76 19.05 14.29 0.00 14.29 9.52 23.81 9.52

7 53.33 26.67 26.67 0.00 6.67 26.67 33.33 40.00 53.33 6.67 0.00 6.67

8 28.57 14.29 23.81 19.05 14.29 19.05 14.29 19.05 14.29 4.76 19.05 19.05

9 5.26 5.26 5.26 10.53 5.26 5.26 0.00 5.26 5.26 0.00 10.53 10.53

10 12.50 12.50 12.50 6.25 18.75 12.50 18.75 18.75 18.75 12.50 31.25 43.75

11 14.29 7.14 14.29 0.00 7.14 14.29 0.00 21.43 14.29 0.00 7.14 21.43

12 25.00 12.50 31.25 12.50 31.25 25.00 18.75 12.50 18.75 6.25 6.25 6.25

Table 5. Results for relative errors in respiratory waves designating using the EDR method.

Subject
Relative error [%] using the ECG-derived respiration method

Number of the ECG lead:
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

1 3.85 50.00 26.92 15.38 19.23 26.92 3.85 3.85 0.00 46.15 11.54 19.23

2 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13

3 5.88 2.94 2.94 14.71 97.06 11.76 2.94 5.88 8.82 2.94 8.82 8.82

4 17.86 14.29 17.86 7.14 17.86 14.29 25.00 32.14 14.29 25.00 39.29 17.86

5 0.00 17.39 30.43 21.74 26.09 43.48 34.78 17.39 17.39 26.09 26.09 26.09

6 14.29 61.90 38.10 57.14 33.33 38.10 0.00 19.05 9.52 23.81 9.52 4.76

7 6.67 20.00 120.00 66.67 100.00 273.33 73.33 33.33 93.33 353.33 166.67 6.67

8 66.67 28.57 28.57 47.62 38.10 19.05 23.81 38.10 0.00 23.81 0.00 4.76

9 26.32 31.58 36.84 21.05 63.16 26.32 63.16 63.16 47.37 10.53 15.79 10.53

10 106.25 87.50 93.75 81.25 112.50 93.75 75.00 75.00 68.75 50.00 62.50 62.50

11 21.43 164.29 200.00 157.14 142.86 150.00 121.43 92.86 100.00 100.00 85.71 192.86

12 206.25 237.50 225.00 212.50 175.00 225.00 168.75 37.50 18.75 187.50 250.00 212.50

5. Discussion

5.1. Research of effectiveness of determination of ECG signal derived respiratory rate for S–G
filtration, EDR and RSA methods for all leads

The boxplots delivered in Fig. 3 present information about errors in determining the RR
for each algorithm depending on the ECG lead. The charts were prepared based on the data in
Tables 4–7.
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Table 6. Results for relative errors in respiratory waves designating using the RSA method.

Subject
Relative error [%] using the RSA-derived respiration method

Number of the ECG lead:
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

1 15.38 23.08 19.23 11.54 7.69 11.54 19.23 15.38 23.08 19.23 23.08 3.85

2 6.25 3.13 3.13 3.13 0.00 3.13 3.13 3.13 3.13 6.25 3.13 12.50

3 29.41 26.47 26.47 26.47 41.18 26.47 26.47 26.47 26.47 29.41 32.35 23.53

4 50.00 17.86 10.71 7.14 3.57 17.86 0.00 7.14 7.14 3.57 3.57 21.43

5 4.35 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 4.35

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 40.00 33.33 126.67 40.00 53.33 53.33 33.33 40.00 26.67 33.33 33.33 20.00

8 14.29 9.52 14.29 14.29 9.52 9.52 4.76 14.29 14.29 14.29 14.29 9.52

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 81.25 12.50 12.50 12.50 12.50 12.50 6.25 12.50 12.50 0.00 12.50 12.50

11 7.14 7.14 7.14 7.14 14.29 7.14 7.14 14.29 7.14 7.14 7.14 14.29

12 81.25 56.25 56.25 93.75 62.50 56.25 56.25 68.75 100.00 68.75 56.25 156.25

Table 7. Results for mean and median calculation of relative errors for the three methods.

S–G filtration EDR method RSA method

Number of the
ECG lead

Median
[%]

Mean
[%]

SD
[%]

Median
[%]

Mean
[%]

SD
[%]

Median
[%]

Mean
[%]

SD
[%]

L1 26.79 28.49 17.98 16.73 23.05 37.03 14.84 24.09 26.37

L2 16.67 21.98 13.1 21.24 28.04 20.43 11.01 13.46 11.47

L3 20.60 24.16 14.08 24.81 28.06 18.63 11.61 22.17 37.65

L4 20.24 23.81 19.22 25.45 32.18 26.79 10.12 12.38 12.47

L5 16.52 22.71 19.5 18.76 20.87 16.57 8.19 13.65 18.47

L6 19.05 21.99 12.8 17.19 24.36 27.64 10.53 14.30 15.93

L7 26.04 29.40 18.82 1.56 8.04 12.47 5.51 10.19 11.98

L8 29.52 32.01 23.63 12.22 19.64 21.83 10.60 12.76 12.5

L9 16.52 26.03 17.05 12.58 20.03 20.13 10.60 12.20 10.29

L10 12.77 21.30 18.47 14.50 23.31 17.66 7.47 11.48 12.29

L11 21.43 23.02 14.39 14.29 18.07 12.82 10.60 13.09 12.62

L12 18.22 22.02 15.9 19.82 23.79 17.73 11.01 10.77 8.76

The box plots shown in Fig. 3 are used to visually summarize and compare groups of data. A
box plot uses the median, approximate quartiles and lowest and highest data points to convey the
level, spread and symmetry of the distribution of data values [27,28]. The parameters shown in
Fig. 3d denote: the upper and lower whisker – the maximum and minimum value, the upper and
lower quartile – Q1 and Q3, median – Q2, the quartile group – the set of data between quartiles.

The smallest value of the median of the relative error was recorded for the RSA method in
lead number L7 and it is equal to 6.70%. For the EDR method, the lowest value of the median of
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(a) (b)

(c) (d)

Fig. 3. Box plot of relative errors in determining the respiratory waves by (a) S–G filtration; (b) EDR method; (c) RSA
method and (d) introduction to box plot.

the relative error was recorded for lead L12 and amounts to 14.19%, although the measurement
errors are undoubtedly highest for subject no. 12. For subjects 1-10, the best results are obtained
from leads L7 and L8. In the case of S–G filtration, the smallest relative error occurs for lead L10
with a median of 11.01%. For -G filtration, the median value of the relative error is 18.75%

5.2. Research of effectiveness of determination of ECG signal derived respiratory rate for the
S–G, EDR and RSA methods in relation to the BMI parameter

In the next stage, the dependence of the effectiveness of estimating the RR from the ECG on
the BMI and TV parameters was checked. The first parameter is closely related to abdominal fat,
whereas TV is related to the lung volume. The median of the relative errors for all respectively
subjects of each lead in relation to the BMI parameter is shown in Fig. 4.

On the basis of the analysis of the influence of the BMI parameter on the effectiveness of
determining the RR using the ECG, the graphs presented in Fig. 4 show that lead L10 provides
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(a)

(b)

(c)

Fig. 4. Graphical presentation of statistical data for BMI with measurement results for medians of relative errors for the
following methods: (a) S–G, (b) EDR, (c) RSA.
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a suitable source for use in the S–G algorithm. Errors for individual BMI ranges: 18-20; BMI:
20.1–25; BMI: 25.1–35 are equal to: 12.5%; 6.7% and 19.2%, respectively. For this method, the
correct value of the BMI parameter gives the highest efficiency of estimating the RR (although for
BMI: 25.1–35, the smallest relative error was recorded in lead L2). In the case of the EDR method,
no clear influence of the BMI value on the relative error was observed. The median value of the
lowest relative error for BMI: 18-20 was observed for lead L7 and it is equal to 3.13%. For BMI:
20.1–25, the lowest median value was recorded for lead L1 and it is 6.67%. For BMI: 25.1–35, the
median value of the relative error is the lowest for lead L9 and amounts to 11.55%. For the RSA
method, a direct influence of the BMI value on the value of the relative error can be observed. The
greater the value BMI also involves the greater degree of error. The smallest median values of
relative errors for BMI: 18-20 occurred for leads L5 and L10 and they are equal to 0%. For BMI:
20.1–25, the smallest error value was recorded in leads L1 and L12–4.35% and for BMI: 25.1–35,
the smallest value occurred for lead L5–11.90%.

5.3. Research of effectiveness of determination of ECG signal derived respiratory rate for the
S–G, EDR and RSA methods in relation to TV, FEV1 and FVC parameters

Parameter ranges for BMI, TV, FEV1 and FVC were selected empirically. Fig. 5 presents the
dependence of the effectiveness of determining breath from the ECG, taking into account the TV
parameter.

For S–G filtration, we can observe that the higher TV value, the smaller values of the relative
error. In the case of the TV range: 0.5–1, the smallest relative error occurs for L2, L3 and L9 and
it is equal to 29.69%.

In the range of TV from 1.01 to 1.3, the smallest relative error is obtained for the L5 lead and
it is 8.7%. For the range of TV: 1.31–2, the smallest relative error occurs on the L10 lead and is
4.76%. In the EDR method, the lowest value of the relative error occurs for the L10 lead for the
TV range: 0.5–1 and it is 26.56%. For the TV range: 1.01–1.3, the lowest value of the relative
error is also for the L1 lead and it is equal to 6.27%. In the range of TV parameter: 1.31–2, the
lowest value of the relative error was recorded for the L11 lead and it is 15.79%. In the case of the
RSA method for the range of TV: 0.5–1, the lowest value of the relative error is 3.13% and occurs
for the L10 lead. In the range of TV: 1.01–1.3, the lowest value occurs, among others, for L4, L5,
L7– L11 and it is 8.70%. In the range of TV: 1.31–2, the lowest relative error is observed for lead
L7 and it is 7.14%.

Figure 6 shows the relation of effectiveness of determining respiration rate based on the ECG,
taking into account the FEV1 parameter.

In the case of S–G filtration, the smallest error was recorded in the FEV1 parameter for the
range from 4.66 to 7 for lead L10 and it was equal to 2.38%. Within this range, the median error
for leads L1–L12 was the smallest and amounted to 12.55%. In the case of the range 4.01–4.65,
the median error was higher and amounted to 26%, and for the range 3–4 it was 28.07%. For the
EDR method, the smallest error occurred in leads L1 and L7 and it was in the range of FEV1:
4.04 to 4.65 and is 3.85%. For this range, the average lead error is also the smallest and amounts
to 16.24%. For the range 3–4 the median error was 56.46% and it occurred for the range 4.66–7 it
was 78.89%. In the RSA method, the smallest error occurred in the FEV1 range: 4.01 to 4.65 in
lead L7 and it was 3.13%. In the case of this range, the median error recorded in leads L1–L12
was the smallest and was equal to 6.22%. For the range 3–4, the median of the error was 29.02%,
and in the range 4.66–7, it was 10.42%.

Figure 7 illustrates the dependence of the effectiveness of determining respiration rate on the
basis of the ECG, taking into account the FVC parameter.
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(a)

(b)

(c)

Fig. 5. Graphical presentation of statistical data for Tidal Volume parameter with measurement results for medians of
relative errors for the following methods: (a) S–G, (b) EDR, (c) RSA.
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(a)

(b)

(c)

Fig. 6. Graphical presentation of statistical data for the FEV1 parameter with measurement results for medians of relative
errors for the following methods: (a) S–G, (b) EDR, (c) RSA.
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(a)

(b)

(c)

Fig. 7. Graphical presentation of statistical data for FVC parameter with measurement results for medians of relative errors
for the following methods: (a) S–G, (b) EDR, (c) RSA.
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In the case of S–G filtration, the smallest error was recorded for lead L10 in the FVC range: 6
to 8 and was 5.51%. Also for this range, the median of the error from leads L1–L12 was the lowest
and was equal to 15.11%. In the range of FVC: 3 to 4, the median of the leads was 30.78% and in
the range of 4.01–6 it is 21.07%. For the EDR method, the smallest error occurred in the FVC
range: 3 to 4 and amounted to 6.27%, while the smallest error from all leads L1-L12 occurred in
the range of 4.01–6 and was equal to 27.59%. For the FVC1: 6 to 8 range, the average error across
all leads was 33.29%. In the case of the RSA method, the smallest error occurred in lead L7 in the
FVC range: 4.01 to 6 and it was 4.69%. For this range, the average error of all leads L1–L12 is
8.05%. For the FVC range: 3–4, the error was 36.44% and for the FVC range: 6–8 it was 9.94%.

5.4. Bland-Altman Plot

The correlation test between the estimated RR obtained by the reference method and the tested
methods: S–G filtration, EDR and RSA, was performed using Bland-Altman (B&S) plots.

The B&A chart was conducted to validate clinical measurement [29–31]. The purpose of this
study is to evaluate the compatibility of different methods for determining respiratory rate from
the ECG with the traditional method, that is, counting breaths by observing chest movements. It is
important to see to what extent these results differ. The differences between the results for each
method are expected to be small. The B&A chart introduces the parameters: BIAS and lower
and upper "limits of agreement" (LOA). BIAS is the mean differences. The 95 percent LOA is
calculated as the average of two values, minus and plus 1.96 standard deviations. The result of the
calculation is a scatter plot of the variables using the X axis (mean) and Y axis (difference).

Due to the generally smallest Re values for all 12 subjects (not taking into account physiological
parameters), the L7 lead was chosen for B&A analysis. The results of the analyses are shown in
Fig. 8 for S–G filtration (Fig. 8a), EDR (Fig. 8b) and RSA (Fig. 8c), respectively.

The B&A chart indicates that the S–G filtration (Fig. 8a) method yields lower results than
the reference method by an average of 5.55 breaths/107 seconds. The span of the compliance

(a)
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(b)

(c)

Fig. 8. Bland-Altman Plot of the (a) S–G filtration, (b) EDR method, and (c) RSA method (H-B – differences between
reference and investigated methods, LOA – limits of agreement, BIAS – mean difference between reference and investigated

methods).

interval is as high as 29.59 breaths/107 seconds of measurement, which translates into a large
measurement error. In the case of the EDR method (Fig. 8b), the BIAS is higher by 8 breaths/107
seconds relative to the classical breath count method (reference method). In this case, the limits of
agreement are very large at 33.43 breaths/107 seconds. In Fig. 8c, it can be seen that the BIAS
between the value obtained by the RSA method and the classic value is equal to 0, and the limits
of agreement is the lowest for all 3 methods at 17.53.
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6. Conclusions

The conducted research presents the possibility of using the ECG waveform to create a
respiratory wave (RW) and estimate the respiratory rate (RR) parameter. In particular, it is possible
to use the Savitzky–Golay filtering (S–G) method to extract the RW from the ECG waveform
with a larger number of samples, compared to the other methods. The optimal values of the
S–G filter parameters were selected. This method shows significant research potential, allowing
the determination of a parameter that corresponds to chest activity during breathing over time.
Besides, there are indications that it may not be susceptible to cardiovascular arrhythmias, which
differentiates it from the other two methods.

It is also noted that there is a correlation between the RR estimation error and the parameters
BMI (Body Mass Index), TV (Tidal Volume), FEV1 (Forced Expiratory Volume in 1 second) and
FVC (Forced Vital Capacity). Nevertheless, further studies with a larger number of patients are
needed to categorically confirm the above correlations.

In addition, the investigated methods (ECG-Derived Respiration – EDR, Respiratory Sinus
Arrhythmia – RSA and S–G) feature different RR estimation errors depending on the choice of
ECG leads. It is possible to select the optimal lead depending on the method. By using a study
group of 12 subjects with different criteria (BMI, TV, FEV1 and FVC), it can be stated that further
studies are warranted. This study should lead to the determination of the optimal ECG lead, in the
context of the listed parameters.

An embedded system using an air cuff surrounding the chest with an integrated piezoresistive
sensor was applied as a reference device to enable the registration of the respiratory wave and
determining the RR. In the next version of the device, a sensor executed in the MEMS technology
will be used.

The information regarding the RR and the recording of the RW during sleep or sport will allow
medical personnel to perform a diagnosis sooner. Using digital signal processing methods and
implementing an artificial neural network, it will offer the means to establish the abnormalities in
the ECG signal faster and generate a representative respiratory signal combined with determining
its pattern.
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[8] Rybak, A., Zając, A., & Kukwa, A. (2023). Measurement of the upper respiratory tract aerated space
volume using the results of computed tomography.Metrology andMeasurement Systems, 26(2), 387-401.
https://doi.org/10.24425/mms.2019.128366

[9] Slama, A. B., Lentka, Ł., Mouelhi, A., Diouani, M. F., Sayadi, M., & Smulko, J. (2018). Application of
statistical features and multilayer neural network to automatic diagnosis of arrhythmia by ECG signals.
Metrology and Measurement Systems, 25(1), 87–101. https://doi.org/10.24425/118163

[10] Valavan, K. K., Manoj, S., Abishek, S., Gokull Vijay, T. G., Vojaswwin, A. P., Rolant Gini, J.,
& Ramachandran, K. I. (2021). Detection of obstructive sleep apnea from ECG signal using
SVM based grid search. International Journal of Electronics and Telecommunications, 67(1), 5–
12. https://doi.org/10.24425/ijet.2020.134021

[11] Polak, A. G., Wysoczański, D., & Mroczka, J. (2006). A multi-method approach to measurement of
respiratory system mechanics. Metrology and Measurement Systems, 13(1), 3–17.

[12] Jabłoński, I., & Mroczka, J. (2007). A station for the respiratory mechanics measurement by the
occlusion techniques. Metrology and Measurement Systems, 14(2), 229–240.
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