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Air humidity significantly affects the sound of wooden instruments. The sound quality decreases when
the instrument is exposed to low humidity for an extended period. Therefore, the instrument is treated with
a humidifier to improve sound quality. This study aimed to verify the effectiveness of the humidification process
by analyzing the quality of guitar sound with the methods used in signal complexity studies, such as Higuchi’s
fractal dimension (HFD), symbolic analysis, and empirical mode decomposition (EMD). The sound quality was
determined by the sound levels measured before, during, and after the guitars’ humidification. The methods
used consistently confirmed the improvement of the guitar sound quality after the humidification process.
Moreover, it was concluded that the sound quality changes irregularly during the humidification process.
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1. Introduction

Sound quality or the quality of an instrument is
an essential consideration for musicians and those in-
volved in instrument construction and maintenance.
In the case of musical instruments made primarily of
wood, the physical condition of this material is essen-
tial. It is described by some parameters, among which
moisture content is one of the most important. This
is because wood contains a high percentage of lignin,
which is very hygroscopic (Gordobil et al., 2021).
A change in wood moisture content causes a change
in acoustic parameters, e.g., density, Young’s modu-
lus, and other physical parameters. Changes also affect
the structure of the wood itself, as very dry wood may
crack easily (Rath, Staudinger, 2001). The problems
mentioned have a significant impact on the musical in-
strument sound and its overall condition.

The acoustic guitar is an instrument made primar-
ily of wood. The tree species used in the instrument are
primarily spruce, cedar, and mahogany (Gore, 2011).
Humidity affects not only the sound but also the tun-
ing of this instrument. When the wood is too dry, the

neck’s geometry changes, causing out-of-tune sounds
on the frets (Wrzeciono et al., 2018). In addition,
the moisture content of the wood in a guitar may vary
with the season. For example, in Poland, wood drying
is most noticeable during winter conditions (Wrze-
ciono et al., 2018).

Luthiers deal with this problem in different ways.
One solution is presented in the paper (Wrzeciono
et al., 2018), where a parametric analysis of guitar
sound before and after humidification was performed.
As a result, it was possible to determine several pa-
rameters, including the time of sustain, which varied
significantly depending on the instrument’s condition.
However, linking the audible change in the swell to the
measurement results remained a challenge. In this pa-
per, we present methods to solve the mentioned prob-
lem.

During the experiments, the evaluation of the in-
strument’s sound quality was carried out by its owner.
However, the humidification process was conducted
in the luthier’s workshop, where the instrument was
serviced due to excessively low wood moisture con-
tent. In such a situation, there is a possibility that
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the measured sound parameters do not support the
subjective assessment made by the instrument owner.
Conducting a double-blind test under such circum-
stances was impossible. So, measurements and ana-
lysis of the results had to be performed to deter-
mine whether a trend would correlate with the mu-
sicians’ perceptions. A detailed study of changes was
described in the paper by Wrzeciono et al. (2018).
Through this study it was found that the most sig-
nificant changes perceived in sound are related to the
sounding time.

The objective of our study closely aligned with the
evaluation procedures employed by musicians in as-
sessing the sound quality of an instrument, where in
normal operational conditions, musicians leverage the
phenomenon of mutual excitation of strings. Conse-
quently, it was necessary to conduct experiments with
all strings attached. Therefore, our study aimed not to
eliminate this phenomenon but to examine its quanti-
tative changes.

2. Materials and methods

In a pilot study related to the parametric analy-
sis of guitars, about 60 instruments were used before
proceeding to a systematic multi-day experiment. All
of the instruments tested had new strings attached.
The tuning process was carried out using a special-
ized luthier’s device that tunes an empty string to an
accuracy of 0.1 cents.

Typically, moisturizing a guitar usually takes
a week, and the effects of humidification are monitored
daily (Wrzeciono et al., 2018).

The measurement setup included a chamber sound
box isolating the guitar from its surroundings, along
with a microphone unit. The strings were excited by
a free-falling arm containing a handle to prevent the
arm from rebounding. Measurements of the sound
level obtained by striking the strings with the arm
were conducted with a set of microphones placed on
the axis of the sound hole, at a distance of 15 cm
from the guitar. The primary measurement was made
with a PreSonus PRM1 microphone calibrated with
a Sonopan KA-50 calibrator. In addition, the Rode
NT1 microphone was employed as the second one to
record guitar sounds with a low noise level.

The microphones were connected to a Focusrite
Scarlett 2i2 2Gen audio interface, and the measure-
ment system was calibrated with a signal from a 94 dB
acoustic calibrator (Sonopan KA-50). Then, a record-
ing of the guitar sound was made after striking the
strings with the arm. A single recording consisted of
ten strokes made every 60 seconds. The recordings were
made at a sampling rate of 96 kHz and a bit resolution
of 24 bits. Infrasound components were removed from
the calibration and measurement signals by the Octave
program’s digital filter. The signal from the PRM1

microphone was used as a reference to calculate the
sound level of the tested guitar. A detailed descrip-
tion of the measurement method and measuring in-
struments is presented in the paper by Wrzeciono
et al. (2018).

Several parameters describing the guitar sound
were also defined in that work. However, the sounding
guitar time, denoted as T40, was the most important
one. The T40 parameter is the interval of time in which
the sound level of the guitar, after impulse excitation,
drops by 40 dB. A time window of 10 ms was used
in the signal power calculation. In addition, infrasonic
components were previously removed from the signal.
However, the T40 parameter alone does not account for
the change in the decay’s nature (Wrzeciono et al.,
2018).

Therefore, further analytical work was undertaken
to reconstruct the auditory impression. The study in-
volved qualitative and quantitative analysis. Higuchi
fractal dimension (HFD) and symbolic analysis were
chosen as qualitative analysis, while empirical mode
decomposition (EMD) was selected as the quantitative
analysis.

Both HFD and symbolic method have been used
to analyze biomedical signals for medical diagnosis
and treatment evaluation efficacy (Gladun, 2020; Go-
molka et al., 2018; Pierzchalski et al., 2011; Sto-
jadinović et al., 2020). Therefore, using these meth-
ods to analyze a relatively uncomplicated signal, such
as the sound level of a guitar, should yield intriguing
results. The problem of evaluating the effectiveness of
the humidification process is analogous to assess the ef-
fectiveness of therapy. At its core, conditioning serves
as therapy for the instrument.

The fractal dimension and the characteristics of the
symbolic analysis allow, based on the analyzed signal,
to determine the state in which the system generat-
ing the signal is present, thus enabling the detection of
state changes. These methods allow to track changes in
long signals through the use of moving window tech-
nique. Since the waveforms of sound levels concern-
ing the registration of physiological signals are short,
global (for the whole signal) values of fractal dimen-
sion and symbolic parameter were calculated. These
calculated parameters give general information about
the changes in guitar sound.

On the other hand, EMD is currently used in a wide
range of topics in geophysics (Huang, Wu, 2008),
oceanology (Zhou et al., 2021), biomedicine (Khan,
Pachori, 2021; Li et al., 2021; Pierzchalski et al.,
2011), and engineering (Zheng et al., 2021). The de-
sign of the EMD method gives a broader picture of
the changes in the system under study. It is multi-
parametric and thus less synthetic than the previously
discussed methods. The original decomposition into
modes and the residue allow us to observe precisely
what occurs in the sound level signal.
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3. Signal processing

3.1. Brief introduction to methods of analysis

The humidification process significantly changes
the shape and complexity of the sound pressure level
(SPL) curve. Therefore, employing signal complex-
ity analysis methods is justified. Three methods have
been proposed and used here: HFD, symbolic analy-
sis, and EMD. They represent different approaches to
signal analysis. HFD is based on scaling law; symbolic
analysis uses statistics; EMD is an iterative decom-
position procedure. Thus, the convergence of results
obtained by these methods confirms the notion of SPL
analysis as a complex signal. Furthermore, the agree-
ment of these results with listening evaluations vali-
dates the use of these methods for automatic evalua-
tion and control of the humidification process.

HFD and symbolic measure are global. Their val-
ues allow determining only the level of complexity of
the signal. On the other hand, EMD analysis provides
more profound information about the changes that oc-
cur in the signal.

3.2. Higuchi’s fractal dimension

HFD of the signal curve (Higuchi, 1988) measures
the signal’s waveform complexity and should not be
confused with the fractal dimension in phase space
(Mandelbrot, 1967). HFD, denoted as Df , typically
ranges from 1.0 (for a straight line or straight Eu-
clidean curve) to 2.0 (for a curve with random am-
plitudes). The only parameter of Higuchi’s algorithm
is kmax. It is the maximal rescale (time delay) integer
parameter, which depends on the sampling frequency
and signal length (Spasić et al., 2005). In our study,
the optimal value of kmax has a value of eight, because
Df has the least variance at this parameter setting.

From sampled in time signal: X(1),X(2), ...,X(N),
the algorithm constructs k new series Xk

m: X(m),
X(m+k), ...,X (m+int((N−m)/k)k) for m = 1,2, ..., k,
where m is the initial time, k is the delay, and int(r)
is the integer part of a real number r.

For every k = 1,2, ..., kmax the difference between
shifted samples starting from the following m is calcu-
lated as:

Lm(k) =
1

k

⎛
⎜
⎝

int(N−mk )

∑
i=1

∣X (m + ik) −X (m + (i − 1)k)∣
⎞
⎟
⎠

⋅ N − 1

int (N−m
k
)k

, (1)

where N is the total number of samples.
Next, the mean of the k values Lm(k) for m = 1,

2, ..., k is calculated as:

L(k) = 1

k

k

∑
m=1

Lm(k). (2)

L(k) satisfies the scaling law:

L(k)∝ k−Df , (3)

where exponent Df is HFD. This relationship is re-
duced to linear form:

log (L(k))∝Df log (
1

k
). (4)

Hence, the value of the fractal dimension Df is calcu-
lated by a least-squares linear best-fitting procedure.

3.3. Symbolic analysis

The symbolic analysis uses the methodology ap-
plied in information theory (Stone, 2022), which de-
fines many parameters of signal complexity, i.e., en-
tropies and related measures (Ribeiro et al., 2012;
2017). However, in this paper, we propose to use a more
specific parameter whose mathematical description is
close to the average codeword length (Johnson Jr
et al., 2003).

The construction of the parameter uses the statis-
tical distribution of symbol sequence representing the
falling and rising slope of the signal (Stepien, 2011).
The general idea is to encode the changes in signal
between successive samples with symbols “0” and “1”:

c(i) = {
1 if X(i) ≥X(i − 1),
0 if X(i) <X(i − 1).

(5)

The symbol “1” denotes an amplitude increase,
while the symbol “0” denotes an amplitude decrease
between successive signal samples. Thus, rising edges
of the signal correspond to “1” sequences, and falling
edges to “0” sequences. In this way, the monotonic-
ity of the signal is encoded. Hence, sequences compris-
ing only “1” or “0” symbols are called mono-sequences
here. We denote the length of the mono-sequence cor-
responding to the rising slope by l({1}∗), while that
of the falling slope by l({0}∗).

To estimate the probabilities p (l({1}∗)) and
p (l({0}∗)) of occurrence of mono-sequences of consec-
utive lengths let us encode the signal according to the
rule (Eq. (5)). Then, count the encoded signal’s mono-
sequences according to their length and divide by the
total number of mono-sequences of a given type.

Our signal characteristic is the sum of mean values
of mono-sequences’ lengths in the coded signal, which
are calculated as:

L1 =
lmax

∑
l=1

p (l ({1}∗)) l ({1}∗),

L0 =
lmax

∑
l=1

p (l ({0}∗)) l ({0}∗).
(6)

Finally, we obtain a parameter called the sum of
mean lengths (SML), which measures the complexity
of the signal:

SML = L0 +L1. (7)
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The SML parameter is the sum of the mean values
and, as such, is an average measure. However, unlike
entropy per symbol, it is not a measure that directly
characterizes the source of the signal but rather a mea-
sure of the complexity of the signal itself and, indi-
rectly, its source.

In addition to providing overall signal characteris-
tics, this parameter can be used to track the evolution
of signal complexity, e.g., using the moving window
technique.

3.4. Empirical mode decomposition

EMD decomposes multi-component signals into
their mono-components, as proposed by Huang et al.
(1998). EMD is a data-driven algorithm that does not
depend on any predefined basis function. Such mono-
components are called intrinsic mode functions (IMFs).
An IMF is a signal that fulfills the following condi-
tions: the number of extrema and the number of zero
crossings of the IMF are either the same or their dif-
ference is 1; the signal has “zero mean” – meaning the
mean value of the envelope determined by the maxima
and the envelope defined by the minima is equal to 0
at every point.

The above conditions suggest that EMD – non-
stationary signal is decomposed into stationary, sym-
metric signals (modes) that are easy to analyze.

The crucial step of EMD is extracting extrema from
the original signal x(t) end creating the upper envelope
emax and the lower envelope emin by cubic spline inter-
polation (de Boor, 1978) of the maxima and minima,
respectively. Then, the mean value of the two envelopes
is computed as:

m(t) = emax − emin

2
. (8)

The value m(t) is subtracted from the primary sig-
nal x(t) resulting in:

imf1(t) = x(t) −m(t). (9)

This is called the sifting process (Fig. 1).
In an ideal case, imf1(t) could be the first mode

IMF1, but it usually remains an asymmetric signal. In
such a case, we need to repeat the above procedure,
treating imf1(t) as the input data for the subsequent
sifting process, so the mean valuem(t) of the envelopes
of imf1(t) is calculated, and this value is subtracted
from imf1(t):

imf1(t) ∶= imf1(t) −m(t). (10)

In Eq. (10), the sign “ ∶=” denotes “becomes,” that is,
in the programming loop, the right-hand side is substi-
tuted for the left-hand side. This procedure is repeated
until imf1(t) meets the conditions of an IMF signal

Start

End

Spline interpolation of
maximas: emax(t) and minimas: emin(t)

m(t)=
emax(t)−emin(t)

2

imf i(t):=imf i(t)−m(t)

m(t)≈0

r( t) :=r( t)−imf i( t)

r(t)≈0 i : = i+ 1

r ( t ) =x ( t ) ;  i= 1

imf i( t)=r( t)

imf i( t)

Legend:
x – original data
imf – table of IFM’s
r – residue
i – decomposition iteration

IMF’s decomposition loop

Sifting loop
True

True

False

False

Fig. 1. Block diagram of sifting process
(from (Pierzchalski et al., 2011)).

(m(t) ≈ 0). After the extraction of IMF1, the original
data is reduced by the ultimate value of imf1(t):

r(t) = x(t) − imf1(t). (11)

The residue r(t) is treated as input for extracting
the subsequent IMF (next sifting loop).
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Fig. 2. EMD decomposition: a) start; b) end of the decom-
position of the first IMF; c) start of the decomposition for

the second IMF (from (Pierzchalski et al., 2011)).
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The procedure is looped to obtain all IMFs (Figs. 1
and 2). Decomposition is finished when either the i-th
residue ri(t) = ri−1(t)−imfi(t) has less than three ex-
trema or all its points are equal to zero.

The sum of all IMF components (modes) and the
residue is equal to the original signal:

rn +
n

∑
m=1

IMFm(t) = x(t), (12)

where n is the number of modes.
In most analyzes using EMD, researchers focus

on the modes themselves, ignoring the residue, which
for many complex signals, has tiny amplitudes. How-
ever, in this study, the amplitudes of the residues
are much higher than the amplitudes of the modes.
Thus, the residues give the most crucial information
about the signal.

4. Results

The results presented here are for five guitars
that underwent the humidification process for nearly
a week. The guitar designations are random and do not
refer to any specific type or model of guitar. The ana-
lyzed data were obtained using the measurement and
processing methods described in (Wrzeciono et al.,
2018).

4.1. Analysis of sound level during sustain
by Higuchi’s fractal dimension

Table 1 shows the derived fractal dimension values
for the instruments before and after moisturizing. All
tested guitars exhibited a higher fractal dimension af-
ter the humidification process than before. This means
that the SPL curve for the instrument after humidifi-
cation is more complex than before.

Table 1. HDF for five guitars before and after
humidification.

The guitar ID Before moisturizing After moisturizing
110 2.12 2.18
111 2.08 2.17
112 2.01 2.2
113 2.08 2.12
114 2.19 2.22

It should be noted that the levels of fractal dimen-
sion values attained by guitars depend not only on
their initial condition but also on individual features
of their construction. For example, the fractal dimen-
sion value for guitar 110 before humidification is the
same as for the fractal dimension of guitar 113 after hu-
midification. However, after humidification, the fractal
dimension for guitar 110 reaches the level of this value
for guitar 114.

Moreover, it is observed that the level of increment
in fractal dimension depends on the guitar’s starting
condition and susceptibility to moisturizing. The most
significant increases in fractal dimension occurred for
guitars 112 and 111, while for guitars 113 and 114, the
increment was the smallest.

It is also intriguing that the fractal dimension val-
ues exceed the value of 2. This is probably due to the
properties of the curve of the sound level during sus-
tain, where a strong nonlinear trend is superimposed
on a rapidly varying oscillation. This trend is essen-
tial in interpreting how we hear the guitar sound. We
write about this further in the results section on EMD
analysis.

4.2. Symbolic analysis of sustain curve

The sum of the means lengths of mono-sequences
(SML), similarly to HFD, records the difference before
and after conditioning the instrument (Fig. 3). For this
parameter, we observe a decrease in value after condi-
tioning. This means that the amplitudes of the fast
oscillations are statistically shorter and become more
uniform after humidification. The complexity of sus-
tain curves grows after moisturizing, which agrees with
the results obtained with HFD.

110 111 112 113 114
2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5 Before humidification
After humidification

SM
L

Guitar

Fig. 3. Values of SML score for five instruments.

Using SML, we tracked the changes in guitars dur-
ing the humidification process. Figure 4 shows the evo-
lution of the SML scores for guitars from the first be-
fore conditioning to the last after an entire humidifi-
cation cycle.

The effect of the instrument humidification process
is irregular – improvement is followed by deterioration.
This agrees with listening observations. The evolution
during conditioning resembles a fading oscillation, in-
dicating that guitars are moving towards their charac-
teristic equilibrium points.
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Fig. 4. Evolution of SML scores during instrument
humidification.

4.3. EMD decomposition of the sound level in sustain

EMD decomposed the sound level during sustain
of the guitar before and during the moisturizing pro-
cedure. Figure 5 presents the decomposition of the SPL
curve for guitar 112 before and after the complete cycle
of moisturizing.

For guitar 112, the number of modes did not
change. However, evident changes can be seen in the
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Fig. 5. EMD decomposition of the SPL for guitar 112: a) before moisturizing; b) after moisturizing.

shape of the mode waveforms. Here, the shape of the
sustain signal is mainly affected by mode IMF5. The
bulges observed in the sustain signal of the guitar be-
fore the humidification process, audible as long ripples
of sound, are associated with mode IMF5.

In the seven decompositions, the final number of
modes was five; in two cases, it was six, and in one case,
it was four. Thus, for two guitars, after conditioning,
the number of modes increased from five to six (gui-
tar 111) and four to five (guitar 113, see Fig. 6); for
one guitar, it decreased from six to five (guitar 114).

Especially interesting are the results of the residue
decomposition of the signal. For example, residues of
SPL measurements before and after humidification for
guitar 110 are presented in Fig. 7.

Figure 8 shows the changes in the shapes of the
residue curves determined for the instruments during
the humidification process.

The shape of these curves matches the listening ex-
perience and confirms the irregular changes in instru-
ment sound quality during humidification. In addition,
an identical irregularity was observed for the previ-
ously determined SML parameter.

Through our investigation, we observed significant
alterations in the playability of instruments follow-
ing the humidification process, as indicated by all the
methods employed.
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Previously, a solution to the problem of objective
assessment of the influence of the humidification pro-
cedure on guitar sound quality was proposed together
with the original measurement procedure by Wrze-
ciono et al. (2018). Despite having an effective mea-
surement method, the problem turned out to be non-
trivial, and the methods of sound level analysis pro-
posed in (Wrzeciono et al., 2018) did not yield en-
tirely satisfactory results. As a result, only the sustain
time parameter T40 was suitable for guitar condition
evaluation. Unfortunately, the disadvantage of this pa-
rameter is its excessive sensitivity to changes in the

signal level cut-off moment. Therefore, in this work,
more global methods that use all measured points on
the sound level curve, or as in the case of EMD, gen-
erate curves containing deeper information, were used
to evaluate sound level changes.

5. Conclusion

The purpose of this study was to find parameters
for evaluating guitar humidification performance, and
we found that complexity parameters like HFD, sym-
bolic analysis, and EMD provide a consistent and clear
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depiction of the changes in guitar sound quality dur-
ing the humidification process. To the best of the au-
thors’ knowledge, this is probably the first application
of these methods to evaluate guitar humidification per-
formance.
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