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Abstract: In this paper, a robust fault-tolerant control with dynamic event-triggered mechanism based on observer is proposed 

for nonlinear switched system with faults, external disturbances and uncertainties. A first-order filter is utilized to equate sensor 

faults to actuator faults, and the augmented system is constructed. An adaptive observer with H∞ performance is designed based 

on the augmented system. The condition that the state error and fault error of the adaptive observer are uniformly bounded is 

given. In order to save communication resources and reduce the transmission of unnecessary information, an improved dynamic 

event-triggered mechanism is designed by introducing a fixed threshold and defining a sampling error function based on the 

observed state and the actual state. This mechanism can further expand the triggering time interval and effectively avoid the 

Zeno behavior. According to the observed state and real-time fault estimation information at the triggering moment, a fault-

tolerant controller for switched system based on the dynamic event-triggered mechanism is proposed, and the conditions for 

asymptotic stability of the closed-loop system are provided. Finally, the validity of the proposed method is verified by application 

simulation for the variant aircraft switched system. 
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1. INTRODUCTION 

With the increasing complexity of industrial systems, actuator 

or sensor faults are inevitable during operation. It will lead to a 

degradation or deterioration in the performance of the control 

system. This makes the need for reliability, security and 

stability of the system more and more urgent. Fault-tolerant 

control aims to design and implement control strategies that can 

maintain stable system operation in the event of faults. It is of 

great significance to design the fault-tolerant controller that can 

stabilize the system when a fault occurs [1-4]. In[1], an adaptive 

state feedback control method is proposed for uncertain 

nonlinear switched systems based on backstepping technique, 

and the global stability of the closed-loop system in case of 

actuator fault is achieved. An adaptive neural fault-tolerant 

control strategy is proposed in [2] by means of a command filter 

approach for a class of nonlinear switched systems. By using a 

neural network, the unknown nonlinear function of the system 

under consideration is approximated while its unmeasurable 

states are estimated by building a switched observer. In [3], a 

fault-tolerant control scheme is proposed for a class of 

nonlinear systems with unmatched disturbance and actuator 

faults. The output tracking error is asymptotically converged to 

zero by constructing a sliding mode control law method. 

Currently, the study for fault-tolerant control mainly focuses on 

dealing with actuator faults, while most of the investigation for 

fault-tolerant control on sensor faults focuses on the field of 

linear systems. The nature of sensors makes it difficult to 

accurately diagnose the fault magnitude. Therefore, the 

research on fault-tolerant control for nonlinear switched 

systems is more challenging. In [4], an indirect adaptive 

approach is proposed to investigate the problem of fault-

tolerant control in the presence of actuator faults. An adaptive 

controller is designed to compensate for faults and 

disturbances, ensuring that the system remains asymptotically 

stable under both normal and fault conditions. 

In recent years, observer-based fault estimation has received 

extensive attention from scholars [5-7]. The main objective in 

[5] is to design controllers and observers in an integrated 

manner. The state and fault observers are designed to estimate 

the state and actuator faults. The fault tolerant controllers are 

developed based on the observers to stabilize the system. In [6], 

a sliding mode observer (SMO) is designed to generate residual 

signals and compare them with a given threshold to detect 

whether a fault occurs in the system or not. In [7], an adaptive 

fault observer based on approximation technique of fuzzy logic 

systems is designed to estimate both faults and states 

simultaneously. Based on the estimated information, an 

observer-based fault-tolerant controller is designed. 

Switched systems, as a class of hybrid systems consisting of a 

series of subsystems and switching rules between subsystems, 
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have been widely used in practical engineering, such as robot 

power systems, DC/DC converters, aircraft control systems [8-

11], and many other fields. Investigations on switched systems 

have focused on the stability analysis of the system. Even if 

there is an unstable subsystem, the system stability can still be 

ensured by designing suitable switching control signals [12-15]. 

For switched systems under arbitrary or constrained switching 

signals, the common Lyapunov function, multiple Lyapunov 

functions, and the average dwell time method have been 

proposed to study the system stability [16-18]. With the rapid 

development of computer network technology, network control 

system has become an extremely important research topic in the 

control field. Most of the switched systems rely on the network 

for information transmission. Therefore, for the switched 

system, the introduction of event-triggered mechanism is very 

necessary. 

The event-triggered mechanism can effectively reduce 

communication and computation resources and avoid 

redundant data transmission. Currently, the application of 

event-triggered mechanisms has been studied by many 

researchers, such as fault diagnosis [19-20], system control [21-

24], and filtering [25]. Compared to static event-triggered 

mechanisms, the dynamic event-triggered mechanisms have 

also made great progress in recent years [26-29]. In [27], the 

problem of adaptive event-triggered fault-tolerant consistency 

for general linear multi-agent systems is studied. The self-

regulation of the event-triggered mechanism is improved by 

introducing an adaptive function into the trigger function, 

which makes the trigger threshold function dependent on both 

state and time. In [28], the system stabilization with time-delay 

based on dynamic event-triggered intermittent control is studied. 

A dynamic event-triggered intermittent control scheme with 

input delay is proposed based on the minimum activation time 

rate related to time delay. A dynamic event-triggered 

mechanism for fault-tolerant control of linear systems is 

proposed in [29], where the dynamic threshold consists of the 

instantaneous and mean errors and their boundaries. 

Compared with static event-triggered mechanisms, dynamic 

event-triggered mechanisms often have larger trigger intervals 

and fewer triggering times while ensuring system performance. 

However, there are relatively few research results on fault-

tolerant control for switched systems under dynamic event-

triggered mechanisms. In [30], the robust fault-tolerant control 

of nonlinear switched systems with actuator faults and 

disturbances under static event-triggered control strategies is 

investigated. The effect of actuator faults is eliminated by an 

adaptive estimation of an unknown upper bound on the 

uncertain parameters. The designed controller ensures that the 

signals for the closed-loop switched system are uniformly 

bounded. However, the control method will no longer be 

applicable if the sensor fault occurs. On the basis of the above 

analysis, in this paper, robust fault-tolerant control of nonlinear 

switched systems based on dynamic event-triggered 

mechanisms is investigated. The main contributions are 

summarized as follows: (1) For the nonlinear switched system 

with actuator faults, sensor faults, and external disturbances, a 

first-order filter is used to equate sensor faults to actuator faults, 

and an adaptive observer with H∞ performance is designed. The 

asymptotic estimation of the system fault is achieved by the 

adaptive fault algorithm. The conditions which the state error 

and fault error for the adaptive observer are uniformly bounded 

are given. (2) An improved dynamic event-triggered 

mechanism is designed by introducing a fixed threshold and 

defining a sampling error function based on the observed state 

and the actual state. This triggering mechanism can further 

expand the triggering time interval and effectively avoid Zeno 

behavior. (3) Based on the observed state and real-time fault 

estimation at the triggering moment, the design of the fault-

tolerant controller for the switched system based on the 

dynamic event-triggered mechanism is proposed, and the 

conditions for the asymptotic stabilization of the closed-loop 

system are given. Finally, the validity of the proposed method 

is verified by application simulation of a variant aircraft 

switched system. 

The paper is structured as follows: the problem description is 

given in Section 2. The adaptive observer design is presented in 

Section 3. Dynamic event-triggered mechanism with robust 

fault-tolerant controller design for nonlinear switched system is 

presented in Section 4. Simulation results are given in Section 

5 to illustrate the effectiveness of the approach. Finally, 

conclusion is presented in Section 6. 
2. Problem Description 

Consider the following nonlinear switched system: 

( ) ( ) ( ) ( ) ( , ) ( )

( ) ( ) ( )

a

f

x t A x t B u t E S t f x t D t

y t C x t M S t

    

 

= + + + + 


= +
 (1) 

where, : {1,2, , }R N n+ →  is the switched law, which is a 

piecewise constant function that depends on the state or time.

( ), ( ), ( ), ( ), ( )a fy t u t x t S t S t and ( )t represent output vector, 

input vector, state vector, actuator faults, sensor faults, and 

external disturbances in the system, respectively.

, , , ,A B C D E     and M  are matrices of known real 

constants with appropriate dimension. 

Assumption 1 The time-varying fault function and external 

disturbances are bounded and satisfy: 

|| ( ) ||

|| ( ) ||

|| ( ) ||

f f

a a

S t S

S t S

t





  

 

Assumption 2 For any given N , f is a known nonlinear 

function that satisfies the global Lipschitz condition, for all 

0t  , there is 

1 2|| ( , ) || || ||f x t x x   −  

where,   is the known Lipschitz constant. 

Assumption 3 ( , )A B  is controllable, ( , )A C  is observable. 

Lemma 1[31]: for any matrices A and B with appropriate 

dimensions, the following inequality holds: 

1T T T TA B B A A A B B+   +


 

The new state variable ( )t is chosen as a first-order low-

pass filter for the output signal: 

( ) ( ) ( )f ft A t A y t = −  +                        (2) 
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where, ( )t  is the filter state vector and fA  is the symmetric 

positive definite filter matrix. Bringing the output equation 

in Eq.(1) into Eq.(2), one can get 

( )= ( ) ( ) ( )f f f ft A t A C x t A M S t  −  + +              (3) 

Next, the Lipschitz nonlinear switched system (1) is combined 

with Eq.(3) to obtain the augmented system, defined as 

follows: 

 
( ) ( ) ( ) ( ) ( , ) ( )

( ) ( )

x t A x t B u t E S t f x t D t

y t C x t

    



 = + + + + 


=

     (4) 

where, 

( )
( )

( )

x t
x t

t

 
=  

 
,

0

f f

A
A

A C A







 
=  

− 
, 

0

B
B





 
=  
 

,
0

0 f

E
E

A M







 
=  
 

, 

( )
( )

( )

a

f

S t
S t

S t

 
=  
 

,
( , )

( , )
0

f x t
f x t





 
=  
 

, 

0

D
D





 
=  
 

,  0C C 
=  

Remark 1: Due to the fact that sensors are often located in the 

feedback channel in the control loop, they cannot rely on 

feedback mechanisms to regulate disturbances like 

components in the forward channel. Moreover, when an 

observer is designed, the inputs and outputs of the system are 

usually needed to observe the state, and the outputs are often 

measured by sensors, so the true state cannot be observed if 

the sensors fail. Therefore, in this paper, sensor faults are dealt 

with here by equating sensor faults to actuator faults by 

utilizing a form of first order filter. 

Assumption 4 The fault signal ( )S t  and its derivative of the 

augmented system are bounded 

1

|| ( ) ||

|| ( ) ||

S t S

S t S





，
 

Lemma 2[32] For the scalar   and symmetric positive definite 

matrices 0G  , the following inequality holds: 

11
2     ,T T Tx y x Gx y G y x y R− + 


 

3. Adaptive observer design 

For the augmented system (4), the structure of the adaptive 

observer is defined as： 

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( , ) ( ( ) ( ))

ˆ( ) ( )

x t A x t B u t E S t f x t L y t y t

y t C x t

   



 = + + + + −


=

(5) 

where, ˆ( )x t and ˆ( )y t represent the state and output vectors of 

the observation, ˆ( )S t denotes the observed fault, ˆ( , )f x t

denotes the Lipschitz nonlinear function associated with the 

observed state ˆ( )x t , and L is the observer gain matrix to be 

designed. 

Define the state error function, the fault error function, and the 

output error function, respectively. 

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

x

f

y

e t x t x t

e t S t S t

e t y t y t

= −

= −

= −

 

Taking the derivative of the error function ( )xe t  with respect 

to time and substituting into Eq.(1) and Eq.(5) yields: 

( ) ( ) ( ) ( )

ˆ( , ) ( , ) ( )

x fe t A LC e t E e t

f x t f x t D t

  

  

= − +

+ − +                   
(6) 

Theorem 1 Under the Assumption 1to Assumption 4, for a 

given constant 0 0  , if the adaptive observer (5) is 

introduced into system (4), and there exists a symmetric 

positive definite matrix 1 1 0TP P=  , scalar 1 0  , and 

symmetric  matrix 1H , the following conditions hold: 

1 1

1 1

2

0

0

* 0 0
0

* * 0

* * *

P PD

H

I

I

  
 


  = 
 −
 

− 

                 (7) 

1 1

TR C E P =                                 (8) 

where, 

1 1 1( ) ( )T TA LC P P A LC C C I      = − + − + + , 

2 1 1 1

1 max ( )S H− − − =     

Adaptive fault estimation algorithm: 

1
ˆ( ) ( )yS t R e t=                               (9) 

where, is the adaptive law. Then, the adaptive observer (5) 

can ensure that ( )xe t and ( )fe t are uniformly bounded, and the 

H∞ performance index is not greater than 0 . 

Proof: Choose a Lyapunov function: 
1

1( ) ( ) ( ) ( ) ( )T T

i x x f fV t e t Pe t e t e t−= +            (10) 

If the ith subsystem is in the activated state, one can get 
2

0

1 1

1 1

T

1

              ( ) ( ) ( ) ( ) ( )

             ( )[( ) ( )] ( )

ˆ             2 ( ) ( ) 2 ( ) [ ( , ) ( , )]

             2 ( ) ( )+2 (t)

T T

i y y

T T

x i i i i x

T T

x i f x i i

T

x i f

V t e t e t t t

e t A LC P P A LC e t

e t PE e t e t P f x t f x t

e t PD t e

+ −   

 − + −

+ + −

+  -1

2

0

(t)

              + ( ) ( ) ( ) ( )

f

T T

y y

e

e t e t t t−   

  (11) 

According to Eq.(8), one can get 
2

0

1 1

1 1

1

                ( ) ( ) ( ) ( ) ( )

                ( )[( ) ( )] ( )

ˆ                2 ( ) ( ) 2 ( ) [ ( , ) ( , )]

                2 ( ) (

T T

i y y

T T

x i i i i x

T T

x i f x i i

T

x i

V t e t e t t t

e t A LC P P A LC e t

e t PE e t e t P f x t f x t

e t PD

+ −   

 − + −

+ + −

+  T -1 T

1

2

0

)+2 (t) (t) 2 (t) ( )

                 + ( ) ( ) ( ) ( )

f f y

T T

y y

t e S e R e t

e t e t t t

 −

−   

 (12)  

T

1 12 ( ) ( ) 2 (t) ( )T

x i f f i xe t PE e t e R C e t=              (13) 

By Assumption 2 

1

2

1 1

ˆ2 ( ) [ ( , ) ( , )]

( ) ( ) ( ) ( )

T

x i i

T T T

x x x x

e t P f x t f x t

e t P Pe t e t e t

−

  +              
 (14) 

From Lemma 1 
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1

2

1 1 02

0

2 ( )

1
( ) ( ) ( ) ( )

T

x i

T T T

x i i x

e PD t

e t PD D Pe t t t



 +   


       (15) 

From the Assumption 4 and the Lemma 2, one can obtain 
2

T -1 1 1 11

1 1 1

1

2

1 1 11

1 1 max 1

1

2 (t) (t) ( ) ( )

           ( ) ( ) ( )

T

f f f

T

f f

S
e S e t H e t H

S
e t H e t H

− − −

− − −

   +  


  +   


    (16) 

Bringing the Eqs.(13-16) into Eq.(12) yields 
2

0

1 1

2

1 1

2

1 1 02

0

1

        ( ) ( ) ( ) ( ) ( )

          ( )[( ) ( )] ( )

           ( ) ( ) ( ) ( )

1
           ( ) ( ) ( ) ( )

           (

T T

i y y

T T

x i i i i x

T T T

x x x x

T T T

x i i x

T

f

V t e t e t t t

e t A LC P P A LC e t

e t P Pe t e t e t

e t PD D Pe t t t

e

+ −   

 − + −

+  +

+ +   


+
2

1 1 11

1 max 1

1

2

0

) ( ) ( )

            + ( ) ( ) ( ) ( )

f

T T T

x i i x

S
t H e t H

e t C C e t t t

− − −+   


−   

       (17) 

 

The matrix M is defined as follows: 

1 1

2

1 1 1 1

1 12

10

1

1 1

     ( )[( ) ( )] ( )

       ( ) ( ) ( ) ( ) ( ) ( )

1 1
        + ( ) ( ) ( ) ( )

( ) 0
        

( ) 0

T T

x i i i i x

T T T T

x x x x f f

T T T T

x i i x x i i x

T

x

f

e t A LC P P A LC e t

e t P Pe t e t e t e t H e t

e t C C e t e t PD D Pe t

e t e

e t H

 = − + −

+  + +

+ + 


   
=    

   1

( ) 1

( )

x

f

t

e t

 
+  
 

   (18) 

where 

( )
( )

( )

x

f

e t
t

e t

 
 =  

 
,

1

1 1

0

0
H

H

 
=  

 
, 

1 1 1

2

1 1 1 12

0

( ) ( )

1

T

i i i i

T T T

i i i i

A LC P P A LC

P P PD D P C C I

 = − + −

+ + + +


 

Eq.(18) can be written as 

1

1
( ) ( )TQ t H t=   + 


                         (19) 

Based on the Schur complement, the matrix H is equivalent 

to 

1 1

1 1

2

0

0

* 0 0

* * 0

* * *

P PD

H

I

I

  
 


  =
 −
 

− 

                     (20) 

When H<0, then 2 2

1 max ( ) || ||H  −  −  . Based on 

Lyapunov stability theory, it follows that ( ) ( ) ( )T

i y yV t e t e t+

2

0 ( ) ( ) 0T t t−    , and for the initial condition (0) 0,iV =

( ) 0iV   , by sorting and integrating, we can obtain Eq. (21). 

2

0
0 0

( ) ( ) ( ) ( )
t t

T T

y ye t e t dt t t dt                 (21) 

Then the state and fault estimation errors ( ( ), ( ))x fe t e t are 

uniformly bounded, and the H∞ performance index is not 

greater than 0 . 

Remark 2 According to the fault estimation algorithm (9), the 

change rate of fault estimation depends on the output error and 

adaptive law  .For different application scenarios, adjusting 

the adaptive law   can reasonably estimate different faults. 
4. Dynamic event-triggered robust fault-tolerant 

controller design 

In this section, dynamic event-triggered conditions are given, 

and inspired by [26], an internal dynamic variable is designed 

based on the static event-triggered mechanism to obtain a 

longer triggering time interval compared to the static event-

triggered mechanism. The specific scheme adopted is as 

follows: 

0

1 0 1

0,

inf{ | ( ) ( || ( ) || || ( ) ||) 0}k k

t

t t t t r x t e t+

=

=   + +   − 
      (22) 

where, 00, 0r   . 

The dynamic variable ( )t  is defined as: 

1( ) ( ) || ( ) || || ( ) ||t t x t e t = − +  −                (23) 

Initial conditions 0(0) ,0 1      . 

Define the event-triggered error based on the observed state: 

ˆ( ) ( ) ( )k ke t x t x t= −                               (24) 

where, kt is the event-triggered transient. 

Remark 3  describes the attenuation rate of filtering. The 

smaller   is, the more filtered signals will be. Therefore, 

should be as small as possible. 1 reflects the tightness of the 

event triggering. A larger 1  will result in greater tolerance for 

error ( )e t , which will result in a smaller number of triggers. 

Consider applying (22) to the robust fault-tolerant controller 

that will be designed. Assuming that n samples occur on the 

interval 1[ , )i it t + , then 

1

1 1 2

1

( ), [ , )

( ), [ , )
( )

( ), [ , )

k i k

k k k

k n k n i

u t t t t

u t t t t
u t

u t t t t

+

+ + +

+ + +





= 


 

                     (25) 

Next, the fault-tolerant controller is designed by utilizing the 

observed state and real-time fault estimation information 

obtained in Section 3. 

Assumption 5 ( , ) ( )rank B E rank B= ,i.e., there exists a 

matrix such that 

( ) 0I BB E+− =  

The following fault-tolerant controllers based on observation 

information are considered: 

ˆ ˆ( ) ( ) ( )u t Kx t B E S t+

 = − −                   (26) 

where K is the control gain and B +


is the generalized right 

inverse of matrix B
. 

Bringing Eq. (26) into the augmented system (3) yields 
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ˆ ˆ( ) ( ) ( ) ( ) ( )

( , ) ( )

ˆ( ) ( ) ( ) ( )

( , ) ( ) ( )

( ) ( ) ( ) ( )

( , ) ( )

f

x f

x t A x t B Kx t E S t E S t

f x t D t

A x t B Kx t B Kx t B Kx t

f x t D t E e t

A B K x t B Ke t E e t

f x t D t

   

 

   

  

   

 

= − − +

+ + 

= − + −

+ +  +

= − + +

+ + 

          (27) 

Let 

( ) ( ) ( ) ( ) ,

   

T
T T T

x fd t e t t e t

M B K D E  

 =  

 =  

 

Then Eq.(27) can be rewritten as 

( ) ( ) ( ) ( ) ( , )x t A B K x t Md t f x t  = − + +          (28) 

Theorem 2 For the closed-loop system (28), if there exists a 

symmetric positive definite matrix 2 2 0TP P=  , scalars 

2 0  , 0   and a control gain matrix K such that 

2 2 2 2 2

2

2

2

2

* 0 0 0

0* * 0 0

* * * 0

* * * *

n

b

e

c

P B K P D P E P

I

I

I

I

  
  
 

− 
  −
 

− 
 − 

        (29) 

Then the closed-loop system is asymptotically stable and has 

an H∞ performance index  , that is 

2

0 0
( ) ( ) ( ) ( )

t t
T Ty t y t dt d t d t dt                  (30) 

where 

2 2 2 2( ) ( )T TP A B K A B K P C C      = − + − + +  

Proof: Choose a Lyapunov function: 

2( ) ( ) ( )T

iV t x t P x t=                            (31) 

where, 2 2 0TP P=  . If the ith subsystem is in the activated 

state, one can get 
2

2 2

2 2

2

     ( ) ( ) ( ) ( ) ( )

        ( )[( ) ( )] ( )

        2 ( ) ( , ) 2 ( ) ( )

        ( ) ( ) ( ) ( )

T T

i

T T

i i i i

T T

i

T T

V t y t y t d t d t

x t A B K P P A B K x t

x t P f x t x t P Md t

y t y t d t d t

+ − 

= − + −

+ +

+ − 

  (32) 

By Assumption 2 and Lemma 2, one has 

2

2

2 2 2

2

2 ( ) ( , )

   ( ) ( ) ( ) ( )

T

i

T T T

x t P f x t

x t P P x t x t x t


 +


     (33) 

Substituting Eq.(5) and Eq.(33) into Eq.(32), one obtains 
2

2 2

2

2 2 2

2

2

2

( ) ( ) ( ) ( ) ( )

  ( )[( ) ( )

    ] ( ) ( ) ( )

    2 ( ) ( ) ( ) ( )

     

T T

i

T T

i i i i

T T T

i i

T T

V t y t y t d t d t

x t A B K P P A B K

P P x t x t C C x t

x t P Md t d t d t

+ − 

 − + −


+ + +


+ − 

 

2 2

2

2 2 2

2

2

2

  ( )[( ) ( )

     ] ( )

     2 ( ) ( ) ( ) ( )

T T

i i i i

T T

i i

T T

x t A B K P P A B K

C C P P x t

x t P Md t d t d t

 − + −


+ + +



+ − 

 

11 2

2

( ) ( )

( ) ( )*

T

s

x t x tP M

d t d tI

    
=     

−    
             (34) 

where 

s n b e= + + , 

11 2 2

2

2 2 2

2

( ) ( )

 

T

i i i i

T T

i i

A B K P P A B K

C C P P

 = − + −


+ + +



 

11 2

2* s

P M

I

 
 =  

− 
                             (35) 

2 2 i i iP M P B K PD PE =                    (36) 

Through Eq.(36), 0  can be rewritten as 

11 2 2 2

2

2

2

* 0 0
0

* * 0

* * *

i i i

n

b

e

P B K P D P E

I

I

I

 
 

−  
 −
 

−  

            (37) 

Based on Schur complement, the above inequality is 

equivalent to: 

2 2 2 2 2

2

2

2

2

* 0 0 0

0* * 0 0

* * * 0

* * * *

i i i

n

b

e

c

P B K P D P E P

I

I

I

I

  
 

− 
  −
 

− 
 − 

      (38) 

where  

2 2 2 2( ) ( )T T

i i i i i iP A B K A B K P C C = − + − + +  

Eq.(38) holds, i.e., 2( ) ( ) ( ) ( ) ( ) 0T T

iV t y t y t d t d t+ −   . Similar 

to Theorem 1, the fact that this inequality holds implies that 

the closed-loop system (28) is asymptotically stable and has 

an H∞ performance index  .Therefore, Eqs.(29) and (30) 

hold. 

Theorem 3 For any 0, 0, 0x      , all positive real 

numbers k, there exists a strict positive lower bound on the 

minimum triggering interval min , i.e., 1 mink kt t+ −   , for 

each solution in (4), || (0) || ,|| ||xx      , then the lower 

bound of the minimum interval is given by the following 

equation: 

min


 


                                  (39) 

where 

1

2 3

1 2 3

               , max || ||,

              max || ||, max || ||,

|| ( ) || || ( ) || || ( ) || || ( ) || || ||

x i i

i i

x f x

A LC

E D

e t e t e t e t

 =   = −

 =  =

 =   + + + 

  

Proof: According to Assumption 1 and Assumption 2, at the 

triggering interval 1[ , )k kt t + ,there is: 
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1 2 3

|| ( ) || || ( ) ||

ˆ|| ( ) ( ) ( ) ( , ) ( , ) ( ) ||

|| ( ) || || ( ) || ( ) || ||

x

i i x i f i i i

x f x

e t e t

A LC e t E e t f x t f x t D t

e t e t e t

=

= − + + − + 

  + + + 

  

(40) 

According to Theorem 1, ( )xe t and ( )fe t  are uniformly 

bounded and have H∞ performance index 0 , thus 

1 2 3

|| ( ) ||

|| ( ) || || ( ) || || ( ) || || ||x f x

e t

e t e t e t



 + + +  =     
(41) 

Integrating the inequality (41) with the initial condition 

( ) 0ke t =  yields 

|| ( ) || ( )ke t t t  −                            (42) 

On the trigger interval 1[ , )k kt t + , according to the dynamic 

event-triggered scheme (23), the next event will be triggered 

under the following conditions 

0 ( || ( ) || || ( ) ||) ( )r x t e t t+   − = −               (43) 

From Theorem 2, it is easy to be obtained that 

|| ( ) || || (0) ||x t x                                 (44) 

i.e. 

|| ( ) || xx t                                       (45) 

Since 0( ) 0, 0t r   , the event will not occur before 

|| ( ) || || ( ) ||e t x t=  , and the time interval is greater than or 

equal to the following equation： 

*

min


 =


                                      (46) 

The above equation is completely non-negative, the proof is 

complete. 
5. Application simulation study 

In order to verify the effectiveness of the proposed method, in 

this section, a variant craft model in [33] is used for 

application simulation. The variant craft model used in this 

section is to change the flight state by switching the wingspan 

curvature. The specific model is represented as follows: 

( ) ( ) ( ) ( ) ( , ) ( )

( ) ( ) ( )

a

f

x t A x t B u t E S t f x t D t

y t C x t M S t

    

 

= + + + + 


= +  

1 2 3 4 0 0 0 0( ) [ ( ), ( ), ( ), ( )] [ , , , ]Tx t x t x t x t x t V q= =     is the 

engine status. Where, 0 0 0 0, , ,V q  represent velocity (m/s), 

angle of attack (rad), pitch angle (rad) and pitch angle 

velocity (rad/s), respectively.  

Considering a flying wing curvature f with values of 0 and 1, 

i.e., the initial base airfoil state as well as the system state at 

wingspan curvature f = 1% comprise a variant craft system 

with two subsystems. The parameters are selected as follows: 

1

18 0.7 0 1

1.5 0.8 0 0
,

2 1 1 0

15 0 1 2.5

A

− − 
 

−
 =
 − −
 

− 

1

9 0.2

1 1.2
,

1 1

0 1

B

 
 

−
 =
 −
 
   

1

7

2.2
,

0

4

E

− 
 
−
 =
 
 
− 

2

20 1 0 1

2 1 0 0
,

2 1 1 0

0 0 0 2

A

− − 
 

−
 =
 − −
 

−   

2

0.5 0.2

1 1.2
,

1 1

0 1

B

 
 

−
 =
 −
 
 

2

4.1

2.2
,

0

1

E

− 
 
−
 =
 
 
 

 

1

2 2

1 1

0.7 0

0 0

D

− 
 
 =
 
 
 

, 2

0.7 0.8

1 0.9

0.5 0

0 0

D

 
 
 =
 
 
 

, 

1 2

1 0 0 0

0 1 0 0 ,

0 0 0 1

C C

 
 

= =
 
  

 

 1 2 1 1 1
T

M M= =  

Based on Theorem 1 and Theorem 2, the observer gain 

matrix and controller gain matrix can be obtained as follows: 

1

0.4690 3.4532 0.1347

0.6863 2.6364 0.0719

0.2755 1.5863 0.0271

0.1244 0.5058 1.1170

3.5466 0.1900 0.0236

0.0879 3.3816 0.1934

0.0170 0.1822 3.5317

L

− − 
 
 
 −
 

= − − 
 
 
− 
 − − 

 

2

0.2396 4.5688 0.1620

1.2125 3.4029 0.1026

0.5299 1.1132 0.0366

0.3251 0.7317 1.2231

3.8260 0.5240 0.1403

0.3798 3.7206 0.0449

0.1491 0.0349 3.8026

L

− − 
 
 
 −
 

= − − 
 −
 
− 
 − 

 

1

1.0084 1.5651 0.8161 1.1737 0.2990 0.3466 0.2026

1.5611 4.2713 1.1753 0.2063 0.0215 2.1193 0.1491

K =

 
 

− − − 

 

2

10.1149 10.0768 0.8161 3.7878 1.3444 0.3466 2.5418

7.5657 1.9502 3.5891 2.6715 0.0215 0.8705 0.1990

K =

 
 − 

 

In this paper, the actuator fault and sensor fault are considered 

at the same time, and the actuator mutation fault and sensor 

gradual fault are considered respectively.  

Case1: 

1) Actuator mutation fault: 

2( 3)

0.01,                     0 3
( )

0.08(1 ),   3 10
a t

s t s
S t

e s t s− −

 
= 

−  
 

2）Sensor gradual fault: 

0( ) sin(2 )fS t b ft=  

where, 0 0.05, 0.5b f= = . 

In addition, let 1 1( , ) 0.01sinf x t x= , 2 2( , ) 0.01cosf x t x= ,

[0.02,0.01]T = .  
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The simulation parameters 1 01, 0.8, 0.4, 0.1r =  =  = = are 

selected. 

Under the initial conditions 

 1(0) 2 1 0 1
T

x = − − ,  2 (0) 2 1 1 1
T

x = ,
0 0 = ,the 

simulation results are shown in Fig. 1to Fig. 4. 

 
Fig. 1 Curve of switched signal ( )t  

 

Fig. 2 State curves of the nonlinear switched system 

 
Fig. 3 Control input curve for subsystem 1 

 
Fig. 4 Control input curve for subsystem 2 

The switched signal curve ( )t  is shown in Fig.1. The state 

response curves of the nonlinear switched system, under the 

action of the robust fault-tolerant controller based on the 

dynamic event-triggered mechanism ,are shown in Fig. 2.  

The effects of actuator and sensor faults are effectively 

compensated by the designed control method. Furthermore, 

the system is ensured to sustain its desired performance 

despite the presence of external disturbances. It can be seen 

that the state response curves ( )ix t  of the two subsystems 

with different initial conditions can rapidly converge to zero 

within 5s. Additionally, it can be ensured that the system 

maintains an ideal steady state even after prolonged operation. 

Case2: 

1) Actuator mutation fault: 

2( 3)

0.1,                     0 3
( )

0.4(1 ),   3 10
a t

s t s
S t

e s t s− −

 
= 

−  
 

2）Sensor gradual fault 

0( ) sin(2 )fS t b ft=  

where, 0 0.5, 0.5b f= =  

Let 1 1( , ) 0.2sinf x t x= , 2 2( , ) 0.2cosf x t x= , [0.2,0.3]T =  

At this time, the corresponding state curves of the system are 

shown in Fig. 5.The control input curves for subsystem 1 and 

2 are shown in Fig. 6 and Fig. 7. 

As shown in Fig. 5, by enhancing the magnitude of the 

disturbances and the amplitude of the faults. It can be seen that 

the systems still have the desired performance, and the state 

response curves can also quickly converge to 0 within 5s and 

continue to run stably. Therefore, the robust fault-tolerant 

control algorithm designed in this paper can achieve stability 

and maintain robustness in the variant aircraft system. 
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Fig. 5 State curves of the nonlinear switched system 

 
Fig. 6 Control input curve for subsystem 1 

 
Fig. 7 Control input curve for subsystem 2 

 
Fig. 8 Observed state curves of the nonlinear switched 

system 

 
(a) Dynamic event-triggered mechanism 

 
(b) Static event-triggered mechanism 

Fig. 9 Number of triggers for dynamic event-triggered and 

static event-triggered in 15s 

The observed state curves of the nonlinear switched system 

are shown in Fig. 8. The dynamic event-triggered scheme 

designed based on the relationship between this observed state 

and the state of the actual system can effectively reduce the 

number of aircraft data transmission and communication. The 
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system runs for 15s and transmits data a total of 2000 times 

when the event-triggered mechanism is not used. Under the 

static event-triggered mechanism, the two subsystems 

transmit data 371 and 359 times, respectively. The total 

number of transmissions is reduced by 81.4%, and system 

performance can also be maintained, as shown in Fig. 9(b). In 

Fig. 9(a), the two subsystems transmit data 193 and 199 times 

under the dynamic event-triggered scheme, which reduces the 

total number of transmissions by 90.3%, and reduces the 

number of transmissions by 8.9% compared to the static 

event-triggered scheme. 

 
(a) Dynamic event-triggered mechanism 

 
(b) Static event-triggered mechanism 

Fig. 10 Number of triggers for dynamic event-triggered and 

static event-triggered in 40s 

The system runs for 40s and transmits data a total of 7200 

times when the event-triggered scheme is not used. The two 

subsystems under the static event-triggered scheme transmit 

4,198 and 4,199 times, respectively, which reduces the total 

number of transmissions by 41.7% while ensuring the system 

performance. In the dynamic event-triggered scheme as 

shown in Fig. 10(a), the two subsystems transmit 1855 and 

1834 times respectively, which reduces the total number of 

transmissions by 74.2%, and reduces the number of 

transmissions by 32.5% compared to the static event-triggered 

scheme, which indicates that with the growth of the system 

operation time, adopting the dynamic event-triggered scheme 

will be more advantageous than the static event- triggered 

scheme. 

Simulation results show that the robust fault-tolerant control 

method based on dynamic event-triggered designed in this 

paper can effectively reduce the number of data transmissions 

while ensuring the system performance. The trigger interval 

selected according to Theorem 3 can effectively avoid the 

Zeno behavior. 

Remark 4  By introducing a positive real number  r0  into the 

dynamic event-triggered scheme, the triggering interval can 

be lengthened, and reduce the number of triggers. Meanwhile, 

Zeno behavior can also be effectively prevented. 
6. Conclusion 

In this paper, the design method of an adaptive observer and 

robust fault-tolerant controller is proposed for the nonlinear 

switched systems. An adaptive observer can simultaneously 

observe the system state and estimate system faults. Dynamic 

event-triggered condition is designed by exploiting the 

observed states. Under the robust fault-tolerant control, the 

switched system can be guaranteed to have good performance, 

while the number of samples and the transmission of 

unnecessary information can be greatly reduced. The gain 

matrices of the observer and controller can be obtained by 

solving the linear matrix inequality. Finally, the designed 

control strategy is applied to an aircraft model with switched 

wingspan curvature to verify the effectiveness.  
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