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Robust fault-tolerant control with dynamic
event-triggered mechanism based on observer

for nonlinear switched systems
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Abstract. In this paper, a robust fault-tolerant control with a dynamic event-triggered mechanism based on the observer is proposed for a
nonlinear switched system with faults, external disturbances, and uncertainties. A first-order filter is utilized to equate sensor faults to actuator
faults, and the augmented system is constructed. An adaptive observer with H∞ performance is designed based on the augmented system.
The condition that the state error and fault error of the adaptive observer are uniformly bounded is given. To save communication resources and
reduce the transmission of unnecessary information, an improved dynamic event-triggered mechanism is designed by introducing a fixed threshold
and defining a sampling error function based on the observed state and the actual state. This mechanism can further expand the triggering time
interval and effectively avoid the Zeno behavior. According to the observed state and real-time fault estimation information at the triggering
moment, a fault-tolerant controller for the switched system based on the dynamic event-triggered mechanism is proposed, and the conditions for
asymptotic stability of the closed-loop system are provided. Finally, the validity of the proposed method is verified by application simulation for
the variant aircraft switched system.
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1. INTRODUCTION

With the increasing complexity of industrial systems, actuator
or sensor faults are inevitable during operation. It will lead to a
degradation or deterioration in the performance of the control
system. This makes the need for reliability, security, and stabil-
ity of the system more and more urgent. Fault-tolerant control
aims to design and implement control strategies that can main-
tain stable system operation in the event of faults. It is of great
significance to design a fault-tolerant controller that can stabi-
lize the system when a fault occurs [1–4]. In [1], an adaptive
state feedback control method is proposed for uncertain nonlin-
ear switched systems based on the backstepping technique, and
the global stability of the closed-loop system in case of actu-
ator fault is achieved. An adaptive neural fault-tolerant control
strategy is proposed in [2] utilizing a command filter approach
for a class of nonlinear switched systems. By using a neural
network, the unknown nonlinear function of the system under
consideration is approximated while its unmeasurable states are
estimated by building a switched observer. In [3], a fault-tolerant
control scheme is proposed for a class of nonlinear systems with
unmatched disturbance and actuator faults. The output track-
ing error is asymptotically converged to zero by constructing
a sliding mode control law method. Currently, the study for
fault-tolerant control mainly focuses on dealing with actuator
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faults, while most of the investigation for fault-tolerant control
on sensor faults focuses on the field of linear systems. The na-
ture of sensors makes it difficult to accurately diagnose the fault
magnitude. Therefore, the research on fault-tolerant control for
nonlinear switched systems is more challenging. In [4], an in-
direct adaptive approach is proposed to investigate the prob-
lem of fault-tolerant control in the presence of actuator faults.
An adaptive controller is designed to compensate for faults and
disturbances, ensuring that the system remains asymptotically
stable under both normal and fault conditions.

In recent years, observer-based fault estimation has received
extensive attention from scholars [5–7] The main objective in [5]
is to design controllers and observers in an integrated manner.
The state and fault observers are designed to estimate the state
and actuator faults. The fault-tolerant controllers are developed
based on the observers to stabilize the system. In [6], a sliding
mode observer (SMO) is designed to generate residual signals
and compare them with a given threshold to detect whether a
fault occurs in the system or not. In [7], an adaptive fault observer
based on the approximation technique of fuzzy logic systems is
designed to estimate both faults and states simultaneously. Based
on the estimated information, an observer-based fault-tolerant
controller is designed.

Switched systems, as a class of hybrid systems consisting
of a series of subsystems and switching rules between subsys-
tems, have been widely used in practical engineering, such as
robot power systems, DC/DC converters, aircraft control sys-
tems [8–11], and many other fields. Investigations on switched
systems have focused on the stability analysis of the system. Even
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if there is an unstable subsystem, the system stability can still be
ensured by designing suitable switching control signals [12–15].
For switched systems under arbitrary or constrained switching
signals, the common Lyapunov function, multiple Lyapunov
functions, and the average dwell time method have been pro-
posed to study the system stability [16–18]. With the rapid de-
velopment of computer network technology, network control
systems have become an extremely important research topic in
the control field. Most of the switched systems rely on the net-
work for information transmission. Therefore, for the switched
system, the introduction of an event-triggered mechanism is very
necessary.

The event-triggered mechanism can effectively reduce com-
munication and computation resources and avoid redundant
data transmission. Currently, the application of event-triggered
mechanisms has been studied by many researchers, such as fault
diagnosis [19, 20], system control [21–24], and filtering [25].
Compared to static event-triggered mechanisms, dynamic event-
triggered mechanisms have also made great progress in recent
years [26–29]. In [27], the problem of adaptive event-triggered
fault-tolerant consistency for general linear multi-agent systems
is studied. The self-regulation of the event-triggered mechanism
is improved by introducing an adaptive function into the trigger
function, which makes the trigger threshold function dependent
on both state and time. In [28], the system stabilization with
time delay based on dynamic event-triggered intermittent con-
trol is studied. A dynamic event-triggered intermittent control
scheme with input delay is proposed based on the minimum
activation time rate related to time delay. A dynamic event-
triggered mechanism for fault-tolerant control of linear systems
is proposed in [29], where the dynamic threshold consists of the
instantaneous and mean errors and their boundaries.

Compared with static event-triggered mechanisms, dynamic
event-triggered mechanisms often have larger trigger intervals
and fewer triggering times while ensuring system performance.
However, there are relatively few research results on fault-
tolerant control for switched systems under dynamic event-
triggered mechanisms. In [30], the robust fault-tolerant control
of nonlinear switched systems with actuator faults and distur-
bances under static event-triggered control strategies is investi-
gated. The effect of actuator faults is eliminated by an adaptive
estimation of an unknown upper bound on the uncertain param-
eters. The designed controller ensures that the signals for the
closed-loop switched system are uniformly bounded. However,
the control method will no longer be applicable if the sensor
fault occurs. Based on the above analysis, in this paper, robust
fault-tolerant control of nonlinear switched systems based on
dynamic event-triggered mechanisms is investigated. The main
contributions are summarized as follows: (1) For the nonlinear
switched system with actuator faults, sensor faults, and external
disturbances, a first-order filter is used to equate sensor faults
to actuator faults, and an adaptive observer with H∞ perfor-
mance is designed. The asymptotic estimation of the system
fault is achieved by the adaptive fault algorithm. The conditions
in which the state error and fault error for the adaptive observer
are uniformly bounded are given. (2) An improved dynamic
event-triggered mechanism is designed by introducing a fixed

threshold and defining a sampling error function based on the
observed state and the actual state. This triggering mechanism
can further expand the triggering time interval and effectively
avoid Zeno behavior. (3) Based on the observed state and real-
time fault estimation at the triggering moment, the design of the
fault-tolerant controller for the switched system based on the
dynamic event-triggered mechanism is proposed, and the con-
ditions for the asymptotic stabilization of the closed-loop system
are given. Finally, the validity of the proposed method is verified
by application simulation of a variant aircraft switched system.

The paper is structured as follows: the problem description is
given in Section 2. The adaptive observer design is presented
in Section 3. Dynamic event-triggered mechanism with robust
fault-tolerant controller design for nonlinear switched systems
is presented in Section 4. Simulation results are given in Sec-
tion 5 to illustrate the effectiveness of the approach. Finally,
conclusions are presented in Section 6.

2. PROBLEM DESCRIPTION

Consider the following nonlinear switched system:

¤𝑥(𝑡) = 𝐴𝜎𝑥(𝑡) +𝐵𝜎𝑢(𝑡) +𝐸𝜎𝑆𝑎 (𝑡) + 𝑓𝜎 (𝑥, 𝑡) +𝐷𝜎𝜔(𝑡),
𝑦(𝑡) = 𝐶𝜎𝑥(𝑡) +𝑀𝜎𝑆 𝑓 (𝑡),

(1)

where 𝜎 : 𝑅+ → 𝑁{1,2, . . . , 𝑛} is the switched law, which is a
piecewise constant function that depends on the state or time.
𝑦(𝑡), 𝑢(𝑡), 𝑥(𝑡), 𝑆𝑎 (𝑡), 𝑆 𝑓 (𝑡), and 𝜔(𝑡) represent output vec-
tor, input vector, state vector, actuator faults, sensor faults, and
external disturbances in the system, respectively. 𝐴𝜎 , 𝐵𝜎 , 𝐶𝜎 ,
𝐷𝜎 , 𝐸𝜎 , and 𝑀𝜎 are matrices of known real constants with
appropriate dimensions.
Assumption 1. The time-varying fault function and external
disturbances are bounded and satisfy:

∥𝑆 𝑓 (𝑡)∥ ≤ 𝑆 𝑓 ,

∥𝑆𝑎 (𝑡)∥ ≤ 𝑆𝑎 ,
∥𝜔(𝑡)∥ ≤ �̄� .

Assumption 2. For any given 𝜎 ∈ 𝑁 , 𝑓𝜎 is a known nonlinear
function that satisfies the global Lipschitz condition, for all 𝑡 ≥ 0,
there is

∥ 𝑓𝜎 (𝑥, 𝑡)∥ ≤ 𝜃∥𝑥1 − 𝑥2∥,

where 𝜃 is the known Lipschitz constant.
Assumption 3. (𝐴𝜎 , 𝐵𝜎) is controllable, (𝐴𝜎 , 𝐶𝜎) is observ-
able.
Lemma 1. [31] For any matrices 𝐴 and 𝐵 with appropriate
dimensions, the following inequality holds:

𝐴𝑇𝐵+𝐵𝑇 𝐴 ≤ 𝛾𝐴𝑇 𝐴+ 1
𝛾
𝐵𝑇𝐵.

The new state variable 𝜉 (𝑡) is chosen as a first-order low-pass
filter for the output signal:

¤𝜉 (𝑡) = −𝐴 𝑓 𝜉 (𝑡) + 𝐴 𝑓 𝑦(𝑡), (2)
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where 𝜉 (𝑡) is the filter state vector and 𝐴 𝑓 is the symmetric
positive definite filter matrix. Bringing the output equation in
equation (1) into equation (2), one can get

¤𝜉 (𝑡) = −𝐴 𝑓 𝜉 (𝑡) + 𝐴 𝑓𝐶𝜎𝑥(𝑡) + 𝐴 𝑓𝑀𝜎𝑆 𝑓 (𝑡). (3)

Next, the Lipschitz nonlinear switched system (1) is combined
with equation (3) to obtain the augmented system, defined as
follows:

¤̃𝑥(𝑡) = �̃�𝜎𝑥(𝑡) + �̃�𝜎𝑢(𝑡) + �̃�𝜎𝑆(𝑡) + 𝑓𝜎 (𝑥, 𝑡) + �̃�𝜎𝜔(𝑡),
�̃�(𝑡) = �̃�𝜎𝑥(𝑡),

(4)

where

𝑥(𝑡) =
[
𝑥(𝑡)
𝜉 (𝑡)

]
, �̃�𝜎 =

[
𝐴𝜎 0
𝐴 𝑓𝐶𝜎 −𝐴 𝑓

]
,

�̃�𝜎 =

[
𝐵𝜎

0

]
, �̃�𝜎 =

[
𝐸𝜎 0
0 𝐴 𝑓𝑀𝜎

]
,

𝑆(𝑡) =
[
𝑆𝑎 (𝑡)
𝑆 𝑓 (𝑡)

]
, 𝑓𝜎 (𝑥, 𝑡) =

[
𝑓𝜎 (𝑥, 𝑡)

0

]
,

�̃�𝜎 =

[
𝐷𝜎

0

]
, �̃�𝜎 =

[
0 𝐶𝜎

]
.

Remark 1. Since sensors are often located in the feedback chan-
nel in the control loop, they cannot rely on feedback mechanisms
to regulate disturbances like components in the forward channel.
Moreover, when an observer is designed, the inputs and outputs
of the system are usually needed to observe the state, and the
outputs are often measured by sensors, so the true state cannot
be observed if the sensors fail. Therefore, in this paper, sensor
faults are dealt with here by equating sensor faults to actuator
faults by utilizing a form of first-order filter.

Assumption 4. The fault signal 𝑆(𝑡) and its derivative of the
augmented system are bounded

∥𝑆(𝑡)∥ ≤ 𝑆,
∥ ¤𝑆(𝑡)∥ ≤ 𝑆1 .

Lemma 2. [32] For the scalar 𝜇 and symmetric positive definite
matrices 𝐺 > 0, the following inequality holds:

2𝑥𝑇 𝑦 ≤ 1
𝜇
𝑥𝑇𝐺𝑥 + 𝜇𝑦𝑇𝐺−1𝑦, 𝑥, 𝑦 ∈ 𝑅.

3. ADAPTIVE OBSERVER DESIGN

For the augmented system (4), the structure of the adaptive
observer is defined as:

¤̃̂𝑥(𝑡) = �̃�𝜎
ˆ̃𝑥(𝑡) + �̃�𝜎𝑢(𝑡) + �̃�𝜎𝑆(𝑡) + 𝑓𝜎 ( ˆ̃𝑥, 𝑡)

+ 𝐿
(
�̃�(𝑡) − ˆ̃𝑦(𝑡)

)
,

�̃�(𝑡) = �̃�𝜎
ˆ̃𝑥(𝑡),

, (5)

where ˆ̃𝑥(𝑡) and ˆ̃𝑦(𝑡) represent the state and output vectors of the
observation, 𝑆(𝑡) denotes the observed fault, 𝑓𝜎 ( ˆ̃𝑥, 𝑡) denotes
the Lipschitz nonlinear function associated with the observed
state ˆ̃𝑥(𝑡), and 𝐿 is the observer gain matrix to be designed.

Define the state error function, the fault error function, and
the output error function, respectively.

𝑒𝑥 (𝑡) = 𝑥(𝑡) − ˆ̃𝑥(𝑡),
𝑒 𝑓 (𝑡) = 𝑆(𝑡) − 𝑆(𝑡),
𝑒𝑦 (𝑡) = �̃�(𝑡) − ˆ̃𝑦(𝑡).

Taking the derivative of the error function 𝑒𝑥 (𝑡) with respect to
time and substituting equation (1) and equation (5) yields:

¤𝑒𝑥 (𝑡) =
(
�̃�𝜎 − 𝐿�̃�𝜎

)
𝑒(𝑡) + �̃�𝜎𝑒 𝑓 (𝑡)

+ 𝑓𝜎 (𝑥, 𝑡) − 𝑓𝜎 ( ˆ̃𝑥, 𝑡) + �̃�𝜎𝜔(𝑡). (6)

Theorem 1. Under Assumption 1 to Assumption 4, for a given
constant 𝛾0 > 0, if the adaptive observer (5) is introduced into
the system (4), and there exists a symmetric positive definite
matrix 𝑃1 = 𝑃

𝑇
1 > 0, scalar 𝜇1 > 0, and symmetric matrix 𝐻1,

the following conditions hold:

Ψ =


𝜓1 0 𝜃𝑃1 𝑃𝐷𝜎

∗ 𝜇1𝐻1 0 0
∗ ∗ −𝐼 0
∗ ∗ ∗ −𝛾2

0 𝐼


< 0, (7)

𝑅1𝐶𝜎 = 𝐸𝑇
𝜎𝑃1 , (8)

where

𝜓1 =
(
�̃�𝜎 − 𝐿�̃�𝜎

)𝑇
𝑃1 +𝑃1

(
�̃�𝜎 − 𝐿�̃�𝜎

)
+ �̃�𝑇

𝜎�̃�𝜎 + 𝐼,
𝛿 = 𝑆2

1𝜆max (𝜅−1𝐻−1𝜅−1).

Adaptive fault estimation algorithm:

¤̂
𝑆(𝑡) = 𝜅𝑅1𝑒𝑦 (𝑡), (9)

where 𝜅 is the adaptive law. Then, the adaptive observer (5) can
ensure that 𝑒𝑥 (𝑡) and 𝑒 𝑓 (𝑡) are uniformly bounded, and the H∞
performance index is no greater than 𝛾0.

Proof. . Choose a Lyapunov function:

𝑉𝑖 (𝑡) = 𝑒𝑇𝑥 (𝑡)𝑃1𝑒𝑥 (𝑡) + 𝑒𝑇𝑓 (𝑡)𝜅
−1𝑒 𝑓 (𝑡). (10)

If the 𝑖-th subsystem is in the activated state, one can get

¤𝑉𝑖 (𝑡) + 𝑒𝑇𝑦 (𝑡)𝑒𝑦 (𝑡) −𝛾2
0𝜔

𝑇 (𝑡)𝜔(𝑡)

≤ 𝑒𝑇𝑥 (𝑡)
[ (
�̃�𝑖 − 𝐿�̃�𝑖

)𝑇
𝑃1 +𝑃1

(
�̃�𝑖 − 𝐿�̃�𝑖

) ]
𝑒𝑥 (𝑡)

+2𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖𝑒 𝑓 (𝑡) +2𝑒𝑇𝑥 (𝑡)𝑃1
[
𝑓𝑖 (𝑥, 𝑡) − 𝑓𝑖 ( ˆ̃𝑥, 𝑡)

]
+2𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖𝜔(𝑡) +2𝑒𝑇𝑓 (𝑡)𝜅

−1 ¤𝑒 𝑓 (𝑡)
+ 𝑒𝑇𝑦 (𝑡)𝑒𝑦 (𝑡) −𝛾2

0𝜔
𝑇 (𝑡)𝜔(𝑡). (11)
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According to equation (8), one can get

¤𝑉𝑖 (𝑡) + 𝑒𝑇𝑦 (𝑡)𝑒𝑦 (𝑡) −𝛾2
0𝜔

𝑇 (𝑡)𝜔(𝑡)

≤ 𝑒𝑇𝑥 (𝑡)
[ (
�̃�𝑖 − 𝐿�̃�𝑖

)𝑇
𝑃1 +𝑃1

(
�̃�𝑖 − 𝐿�̃�𝑖

) ]
𝑒𝑥 (𝑡)

+2𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖𝑒 𝑓 (𝑡) +2𝑒𝑇𝑥 (𝑡)𝑃1
[
𝑓𝑖 (𝑥, 𝑡) − 𝑓𝑖 ( ˆ̃𝑥, 𝑡)

]
+2𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖𝜔(𝑡) +2𝑒𝑇𝑓 (𝑡)𝜅

−1 ¤𝑆(𝑡) −2𝑒𝑇𝑓 (𝑡)𝑅1𝑒𝑦 (𝑡)
+ 𝑒𝑇𝑦 (𝑡)𝑒𝑦 (𝑡) −𝛾2

0𝜔
𝑇 (𝑡)𝜔(𝑡), (12)

2𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖𝑒 𝑓 (𝑡) = 2𝑒𝑇𝑓 (𝑡)𝑅1�̃�𝑖𝑒𝑥 (𝑡). (13)

By Assumption 2

2𝑒𝑇𝑥 (𝑡)𝑃1
[
𝑓𝑖 (𝑥, 𝑡) − 𝑓𝑖 ( ˆ̃𝑥, 𝑡)

]
≤ 𝜃2𝑒𝑇𝑥 (𝑡)𝑃𝑇

1 𝑃1𝑒𝑥 (𝑡) + 𝑒𝑇𝑥 (𝑡)𝑒𝑥 (𝑡).. (14)

From Lemma 1

2𝑒𝑇𝑥𝑃1�̃�𝑖𝜔(𝑡) ≤
1
𝛾2

0
𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖 �̃�

𝑇
𝑖 𝑃1𝑒𝑥 (𝑡)

+ 𝛾2
0𝜔

𝑇 (𝑡)𝜔(𝑡). (15)

From the Assumption 4 and the Lemma 2, one can obtain

2𝑒𝑇𝑓 (𝑡)𝜅
−1 ¤𝑆(𝑡) ≤ 𝜇1𝑒

𝑇
𝑓 (𝑡)𝐻1𝑒 𝑓 (𝑡) +

𝑆2
1
𝜇1
𝜅−1𝐻−1

1 𝜅−1

≤ 𝜇1𝑒
𝑇
𝑓 (𝑡)𝐻1𝑒 𝑓 (𝑡) +

𝑆2
1
𝜇1
𝜆max (𝜅−1𝐻−1

1 𝜅−1). (16)

Bringing the equations (13)–(16) into equation (12) yields

¤𝑉𝑖 (𝑡) + 𝑒𝑇𝑦 (𝑡)𝑒𝑦 (𝑡) −𝛾2
0𝜔

𝑇 (𝑡)𝜔(𝑡)

≤ 𝑒𝑇𝑥 (𝑡)
[ (
�̃�𝑖 − 𝐿�̃�𝑖

)𝑇
𝑃1 +𝑃1

(
�̃�𝑖 − 𝐿�̃�𝑖

) ]
𝑒𝑥 (𝑡)

+ 𝜃2𝑒𝑇𝑥 (𝑡)𝑃𝑇
1 𝑃1𝑒𝑥 (𝑡) + 𝑒𝑇𝑥 (𝑡)𝑒𝑥 (𝑡)

+ 1
𝛾2

0
𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖 �̃�

𝑇
𝑖 𝑃1𝑒𝑥 (𝑡) +𝛾2

0𝜔
𝑇 (𝑡)𝜔(𝑡)

+ 𝜇1𝑒
𝑇
𝑓 (𝑡)𝐻1𝑒 𝑓 (𝑡) +

𝑆2
1
𝜇1
𝜆max (𝜅−1𝐻−1

1 𝜅−1)

+ 𝑒𝑇𝑥 (𝑡)�̃�𝑇
𝑖 �̃�𝑖𝑒𝑥 (𝑡) −𝛾2

0𝜔
𝑇 (𝑡)𝜔(𝑡). (17)

□

The matrix M is defined as follows:

M = 𝑒𝑇𝑥 (𝑡)
[ (
�̃�𝑖 − 𝐿�̃�𝑖

)𝑇
𝑃1 +𝑃1

(
�̃�𝑖 − 𝐿�̃�𝑖

) ]
𝑒𝑥 (𝑡)

+ 𝜃2𝑒𝑇𝑥 (𝑡)𝑃𝑇
1 𝑃1𝑒𝑥 (𝑡) + 𝑒𝑇𝑥 (𝑡)𝑒𝑥 (𝑡) + 𝜇1𝑒

𝑇
𝑓 (𝑡)𝐻1𝑒 𝑓 (𝑡)

+ 𝑒𝑇𝑥 (𝑡)�̃�𝑇
𝑖 �̃�𝑖𝑒𝑥 (𝑡) +

1
𝛾2

0
𝑒𝑇𝑥 (𝑡)𝑃1�̃�𝑖 �̃�

𝑇
𝑖 𝑃1𝑒𝑥 (𝑡) +

1
𝜇1
𝛿

=

[
𝑒𝑥 (𝑡)
𝑒 𝑓 (𝑡)

]𝑇 [
Ψ1 0
0 𝜇1𝐻1

] [
𝑒𝑥 (𝑡)
𝑒 𝑓 (𝑡)

]
+ 1
𝜇1
𝛿, (18)

where

𝜀(𝑡) =
[
𝑒𝑥 (𝑡)
𝑒 𝑓 (𝑡)

]
, 𝐻 =

[
Ψ1 0
0 𝜇1𝐻1

]
,

Ψ1 =
(
�̃�𝑖 − 𝐿�̃�𝑖

)𝑇
𝑃1 +𝑃1

(
�̃�𝑖 − 𝐿�̃�𝑖

)
+ 𝜃2𝑃𝑇

1 𝑃1 +
1
𝛾2

0
𝑃1�̃�𝑖 �̃�

𝑇
𝑖 𝑃1 + �̃�𝑖�̃�

𝑇
𝑖 + 𝐼 .

Equation (18) can be written as

𝑄 = 𝜀𝑇 (𝑡)𝐻𝜀(𝑡) + 1
𝜇1
𝛿. (19)

Based on the Schur complement, the matrix 𝐻 is equivalent to

Ψ =


𝜓1 0 𝜃𝑃1 𝑃𝐷𝜎

∗ 𝜇1𝐻1 0 0
∗ ∗ −𝐼 0
∗ ∗ ∗ −𝛾2

0 𝐼


, (20)

when 𝐻 < 0, then 𝛿 < −𝜇2
1𝜆max (−𝐻)∥𝜀∥2. Based on Lya-

punov stability theory, it follows that ¤𝑉𝑖 (𝑡) + 𝑒𝑇𝑦 (𝑡)𝑒𝑦 (𝑡) −
𝛾2

0𝜔
𝑇 (𝑡)𝜔(𝑡) < 0, and for the initial condition𝑉𝑖 (0) = 0,𝑉𝑖 (∞) >

0, by sorting and integrating, we can obtain equation (21)

𝑡∫
0

𝑒𝑇𝑦 (𝑡)𝑒𝑦 (𝑡) d𝑡 < 𝛾2
0

𝑡∫
0

𝜔𝑇 (𝑡)𝜔(𝑡) d𝑡. (21)

Then the state and fault estimation errors (𝑒𝑥 (𝑡), 𝑒 𝑓 (𝑡)) are uni-
formly bounded, and the H∞ performance index is not greater
than 𝛾0.

Remark 2. According to the fault estimation algorithm (9), the
change rate of fault estimation depends on the output error and
adaptive law 𝜅. For different application scenarios, adjusting the
adaptive law 𝜅 can reasonably estimate different faults.

4. DYNAMIC EVENT-TRIGGERED ROBUST
FAULT-TOLERANT CONTROLLER DESIGN

In this section, dynamic event-triggered conditions are given
and inspired by [26], an internal dynamic variable is designed
based on the static event-triggered mechanism to obtain a longer
triggering time interval compared to the static event-triggered
mechanism. The specific scheme adopted is as follows:

𝑡0 = 0,
(22)

𝑡𝑘+1 = inf
{
𝑡 > 𝑡𝑘 | 𝜙(𝑡) + 𝑟0 + 𝜕

(
𝜀1∥⌢𝑥 (𝑡)∥ − ∥⌢𝑒 (𝑡)∥

)
≤ 0

}
,

where 𝜕 > 0, 𝑟0 > 0.
The dynamic variable 𝜙(𝑡) is defined as:

¤𝜙(𝑡) = −𝜒𝜙(𝑡) + 𝜀1∥⌢𝑥 (𝑡)∥ − ∥⌢𝑒 (𝑡)∥. (23)

Initial conditions 𝜙(0) ≥ 𝜙0, 0 < 𝜒 < 1.
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Define the event-triggered error based on the observed state:

⌢
𝑒 (𝑡) = 𝑥(𝑡𝑘) − ˆ̃𝑥(𝑡𝑘), (24)

where 𝑡𝑘 is the event-triggered transient.

Remark 3. 𝜒 describes the attenuation rate of filtering.
The smaller 𝜒 is, the more filtered signals will be. Therefore, 𝜒
should be as small as possible. 𝜀1 reflects the tightness of the
event triggering. A larger 𝜀1 will result in greater tolerance for
error ⌢

𝑒 (𝑡), which will result in a smaller number of triggers.

Consider applying (22) to the robust fault-tolerant controller
that will be designed. Assuming that 𝑛 samples occur on the
interval [𝑡𝑖 , 𝑡𝑖+1), then

𝑢(𝑡) =


𝑢(𝑡𝑘), 𝑡 ∈ [𝑡𝑖 , 𝑡𝑘+1),
𝑢(𝑡𝑘+1), 𝑡 ∈ [𝑡𝑘+1, 𝑡𝑘+2),
· · ·
𝑢(𝑡𝑘+𝑛), 𝑡 ∈ [𝑡𝑘+𝑛, 𝑡𝑖+1).

(25)

Next, the fault-tolerant controller is designed by utilizing the ob-
served state and real-time fault estimation information obtained
in Section 3.

Assumption 5. rank(𝐵,𝐸) = rank(𝐵), i.e., there exists a matrix
such that (

𝐼 −𝐵𝐵+)𝐸 = 0.

The following fault-tolerant controllers based on observation
information are considered:

𝑢(𝑡) = −𝐾 ˆ̃𝑥(𝑡) − �̃�+
𝜎 �̃�𝜎𝑆(𝑡), (26)

where 𝐾 is the control gain and �̃�+
𝜎 is the generalized right

inverse of matrix �̃�𝜎 .
Bringing equation (26) into the augmented system (3) yields

¤̃𝑥(𝑡) = �̃�𝜎𝑥(𝑡) − �̃�𝜎𝐾 ˆ̃𝑥(𝑡) − �̃�𝜎𝑆(𝑡) + �̃�𝜎𝑆(𝑡)
+ 𝑓𝜎 (𝑥, 𝑡) + �̃�𝜎𝜔(𝑡)

= �̃�𝜎𝑥(𝑡) − �̃�𝜎𝐾 ˆ̃𝑥(𝑡) + �̃�𝜎𝐾𝑥(𝑡) − �̃�𝜎𝐾𝑥(𝑡)
+ 𝑓𝜎 (𝑥, 𝑡) + �̃�𝜎𝜔(𝑡) + �̃�𝜎𝑒 𝑓 (𝑡)

=
(
�̃�𝜎 − �̃�𝜎𝐾

)
𝑥(𝑡) + �̃�𝜎𝐾𝑒𝑥 (𝑡) + �̃�𝜎𝑒 𝑓 (𝑡)

+ 𝑓𝜎 (𝑥, 𝑡) + �̃�𝜎𝜔(𝑡). (27)

Let

𝑑 (𝑡) =
[
𝑒𝑇𝑥 (𝑡) 𝜔𝑇 (𝑡) 𝑒𝑇

𝑓
(𝑡)

]𝑇
,

�̃� =

[
�̃�𝜎𝐾 �̃�𝜎 �̃�𝜎

]
.

Then equation (27) can be rewritten as

¤̃𝑥(𝑡) =
(
�̃�𝜎 − �̃�𝜎𝐾

)
𝑥(𝑡) + �̃�𝑑 (𝑡) + 𝑓𝜎 (𝑥, 𝑡). (28)

Theorem 2. For the closed-loop system (28), if there exists a
symmetric positive definite matrix 𝑃2 = 𝑃

𝑇
2 > 0, scalars 𝜇2 > 0,

𝛾 > 0 and a control gain matrix 𝐾 such that

Ψ2 𝑃2�̃�𝜎𝐾 𝑃2�̃�𝜎 𝑃2�̃�𝜎 𝜃𝑃2

∗ −𝛾2𝐼𝑛 0 0 0
∗ ∗ −𝛾2𝐼𝑏 0 0
∗ ∗ ∗ −𝛾2𝐼𝑒 0
∗ ∗ ∗ ∗ −𝜇2𝐼𝑐


< 0. (29)

Then the closed-loop system is asymptotically stable and has an
H∞ performance index 𝛾 that is

𝑡∫
0

𝑦𝑇 (𝑡)𝑦(𝑡) d𝑡 < 𝛾2
𝑡∫

0

𝑑𝑇 (𝑡)𝑑 (𝑡) d𝑡, (30)

where

Ψ2 = 𝑃2
(
�̃�𝜎 − �̃�𝜎𝐾

)
+
(
�̃�𝜎 − �̃�𝜎𝐾

)𝑇
𝑃2 + �̃�𝑇

𝜎�̃�𝜎 + 𝜇2 .

Proof. Choose a Lyapunov function:

𝑉𝑖 (𝑡) = 𝑥𝑇 (𝑡)𝑃2𝑥(𝑡), (31)

where 𝑃2 = 𝑃
𝑇
2 ≥ 0. If the 𝑖𝑡ℎ subsystem is in the activated state,

one can get

¤𝑉𝑖 (𝑡) + �̃�𝑇 (𝑡) �̃�(𝑡) −𝛾2𝑑𝑇 (𝑡)𝑑 (𝑡)

= 𝑥𝑇 (𝑡)
[ (
�̃�𝑖 − �̃�𝑖𝐾

)𝑇
𝑃2 +𝑃2

(
�̃�𝑖 − �̃�𝑖𝐾

) ]
𝑥(𝑡)

+2𝑥𝑇 (𝑡)𝑃2 𝑓𝑖 (𝑥, 𝑡) +2𝑥𝑇 (𝑡)𝑃2�̃�𝑑 (𝑡)
+ �̃�𝑇 (𝑡) �̃�(𝑡) −𝛾2𝑑𝑇 (𝑡)𝑑 (𝑡). (32)

By Assumption 2 and Lemma 2, one has

2𝑥𝑇 (𝑡)𝑃2 𝑓𝑖 (𝑥, 𝑡) ≤
𝜃2

𝜇2
𝑥𝑇 (𝑡)𝑃𝑇

2 𝑃2𝑥(𝑡) + 𝜇2𝑥
𝑇 (𝑡)𝑥(𝑡). (33)

Substituting equation (5) and equation (33) into equation (32),
one obtains

¤𝑉𝑖 (𝑡) + �̃�𝑇 (𝑡) �̃�(𝑡) −𝛾2𝑑𝑇 (𝑡)𝑑 (𝑡)

≤ 𝑥𝑇 (𝑡)
[ (
�̃�𝑖 − �̃�𝑖𝐾

)𝑇
𝑃2 +𝑃2

(
�̃�𝑖 − �̃�𝑖𝐾

)
+ 𝜃

2

𝜇2
𝑃𝑇

2 𝑃2 + 𝜇2

]
𝑥(𝑡) + 𝑥𝑇 (𝑡)�̃�𝑇

𝑖 �̃�𝑖𝑥(𝑡)

+2𝑥𝑇 (𝑡)𝑃2�̃�𝑑 (𝑡) −𝛾2𝑑𝑇 (𝑡)𝑑 (𝑡)

≤ 𝑥𝑇 (𝑡)
[ (
�̃�𝑖 − �̃�𝑖𝐾

)𝑇
𝑃2 +𝑃2

(
�̃�𝑖 − �̃�𝑖𝐾

)
+�̃�𝑇

𝑖 �̃�𝑖 +
𝜃2

𝜇2
𝑃𝑇

2 𝑃2 + 𝜇2

]
𝑥(𝑡)

+2𝑥𝑇 (𝑡)𝑃2�̃�𝑑 (𝑡) −𝛾2𝑑𝑇 (𝑡)𝑑 (𝑡)

=

[
𝑥(𝑡)
𝑑 (𝑡)

]𝑇 [
𝜓11 𝑃2�̃�

∗ −𝛾2𝐼𝑠

] [
𝑥(𝑡)
𝑑 (𝑡)

]
, (34)
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where

𝑠 = 𝑛+ 𝑏 + 𝑒,

𝜓11 =
(
�̃�𝑖 − �̃�𝑖𝐾

)𝑇
𝑃2 +𝑃2

(
�̃�𝑖 − �̃�𝑖𝐾

)
+ 𝐶𝑇

𝑖 𝐶𝑖 +
𝜃2

𝜇2
𝑃𝑇

2 𝑃2 + 𝜇2 ,

Φ =

[
𝜓11 𝑃2�̃�

∗ −𝛾2𝐼𝑠

]
, (35)

𝑃2�̃� =

[
𝑃2�̃�𝑖𝐾 𝑃�̃�𝑖 𝑃�̃�𝑖

]
. (36)

Utilizing equation (36), Φ < 0 can be rewritten as


𝜓11 𝑃2�̃�𝑖𝐾 𝑃2�̃�𝑖 𝑃2�̃�𝑖

∗ −𝛾2𝐼𝑛 0 0
∗ ∗ −𝛾2𝐼𝑏 0
∗ ∗ ∗ −𝛾2𝐼𝑒


< 0. (37)

Based on Schur complement, the above inequality is equiva-
lent to: 

Ψ2 𝑃2�̃�𝑖𝐾 𝑃2�̃�𝑖 𝑃2�̃�𝑖 𝜃𝑃2

∗ −𝛾2𝐼𝑛 0 0 0
∗ ∗ −𝛾2𝐼𝑏 0 0
∗ ∗ ∗ −𝛾2𝐼𝑒 0
∗ ∗ ∗ ∗ −𝜇2𝐼𝑐


< 0, (38)

where

Ψ2 = 𝑃2
(
�̃�𝑖 − �̃�𝑖𝐾

)
+
(
�̃�𝑖 − �̃�𝑖𝐾

)𝑇
𝑃2 + 𝜇2 + �̃�𝑇

𝑖 �̃�𝑖 .

Equation (38) holds, i.e., ¤𝑉𝑖 (𝑡) + �̃�𝑇 (𝑡) �̃�(𝑡) − 𝛾2𝑑𝑇 (𝑡)𝑑 (𝑡) ≤ 0.
Similar to Theorem 1, the fact that this inequality holds implies
that the closed-loop system (28) is asymptotically stable and
has an H∞ performance index 𝛾. Therefore, equations (29) and
(30) hold. □

Theorem 3. For any Λ𝑥 ≥ 0, Λ𝜙 ≥ 0, �̄� ≥ 0, all positive real
numbers 𝑘 , there exists a strict positive lower bound on the
minimum triggering interval 𝛼min, i.e., 𝑡𝑘+1− 𝑡𝑘 ≥ 𝛼min, for each
solution in (4), ∥𝑥(0)∥ ≤ Λ𝑥 , ∥𝜔∥ ≤ �̄�, then the lower bound of
the minimum interval is given by the following equation:

𝛼min ≥
𝜑

𝜏
, (39)

where

𝜑 = 𝜀Λ𝑥 , 𝜑1 = max ∥ �̃�𝑖 − 𝐿�̃�𝑖 ∥,
𝜑2 = max ∥�̃�𝑖 ∥, 𝜑3 = max ∥�̃�𝑖 ∥,

𝜏 = ∥ ¤⌢𝑒 (𝑡)∥ ≤ 𝜑1∥𝑒𝑥 (𝑡)∥ +𝜑2∥𝑒 𝑓 (𝑡)∥ + 𝜃∥𝑒𝑥 (𝑡)∥ +𝜑3∥�̄�∥.

Proof. According to Assumption 1 and Assumption 2, at the
triggering interval [𝑡𝑘 , 𝑡𝑘+1), there is:

∥ ¤⌢𝑒 (𝑡)∥ = ∥ ¤𝑒𝑥 (𝑡)∥
=
( �̃�𝑖−𝐿�̃�𝑖

)
𝑒𝑥 (𝑡)+�̃�𝑖𝑒 𝑓 (𝑡)+ 𝑓𝑖 (𝑥, 𝑡)− 𝑓𝑖 ( ˆ̃𝑥, 𝑡)+�̃�𝑖𝜔(𝑡)


≤ 𝜑1∥𝑒𝑥 (𝑡)∥ +𝜑2∥𝑒 𝑓 (𝑡)∥ + 𝜃𝑒𝑥 (𝑡) +𝜑3∥�̄�∥. (40)

According to Theorem 1, 𝑒𝑥 (𝑡) and 𝑒 𝑓 (𝑡) are uniformly bounded
and have H∞ performance index 𝛾0, thus

∥ ¤⌢𝑒 (𝑡)∥ ≤ 𝜑1∥𝑒𝑥 (𝑡)∥ +𝜑2∥𝑒 𝑓 (𝑡)∥
+ 𝜃∥𝑒𝑥 (𝑡)∥ +𝜑3∥�̄�∥ = 𝜏. (41)

Integrating the inequality (41) with the initial condition ⌢
𝑒 (𝑡𝑘) =

0 yields
∥⌢𝑒 (𝑡)∥ ≤ 𝜏 (𝑡 − 𝑡𝑘) . (42)

On the trigger interval [𝑡𝑘 , 𝑡𝑘+1), according to the dynamic
event-triggered scheme (23), the next event will be triggered
under the following conditions:

𝑟0 + 𝜕 (𝜀∥⌢𝑥 (𝑡)∥ − ∥⌢𝑒 (𝑡)∥) = −𝜙(𝑡). (43)

From Theorem 2, it is easy to obtain that:

∥⌢𝑥 (𝑡)∥ ≤ ∥𝑥(0)∥, (44)

i.e.
∥⌢𝑥 (𝑡)∥ ≤ Λ𝑥 . (45)

Since 𝜙(𝑡) ≥ 0, 𝑟0 ≥ 0, the event will not occur before ∥⌢𝑒 (𝑡)∥ =
𝜀∥⌢𝑥 (𝑡)∥, and the time interval is greater than or equal to the
following equation:

𝛼∗min =
𝜑

𝜏
. (46)

The above equation is completely non-negative, the proof is
complete. □

5. APPLICATION SIMULATION STUDY

To verify the effectiveness of the proposed method, in this sec-
tion, a variant craft model in [33] is used for application simula-
tion. The variant craft model used in this section is to change the
flight state by switching the wingspan curvature. The specific
model is represented as follows:

¤𝑥(𝑡) = 𝐴𝜎𝑥(𝑡) +𝐵𝜎𝑢(𝑡) +𝐸𝜎𝑆𝑎 (𝑡) + 𝑓𝜎 (𝑥, 𝑡) +𝐷𝜎𝜔(𝑡),
𝑦(𝑡) = 𝐶𝜎𝑥(𝑡) +𝑀𝜎𝑆 𝑓 (𝑡),

𝑥(𝑡) = [𝑥1 (𝑡), 𝑥2 (𝑡), 𝑥3 (𝑡), 𝑥4 (𝑡)]𝑇 = [Δ𝑉0,Δ𝛽0,Δ𝜃0,Δ𝑞0] is the
engine status, where 𝑉0, 𝛽0, 𝜃0, 𝑞0 represent velocity (m/s),
angle of attack (rad), pitch angle (rad), and pitch angle velocity
(rad/s), respectively.

Considering a flying wing curvature 𝑓 with values of 0 and 1,
i.e., the initial base airfoil state, as well as the system state at
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wingspan curvature 𝑓 = 1%, comprise a variant craft system
with two subsystems. The parameters are selected as follows:

𝐴1 =


−18 −0.7 0 1
1.5 −0.8 0 0
2 −1 −1 0

15 0 1 −2.5


, 𝐵1 =


9 0.2
1 −1.2
−1 1
0 1


,

𝐸1 =


−7
−2.2

0
−4


, 𝐴2 =


−20 −1 0 1

2 −1 0 0
2 −1 −1 0
0 0 0 −2


,

𝐵2 =


0.5 0.2
1 −1.2
−1 1
0 1


, 𝐸2 =


−4.1
−2.2

0
1


,

𝐷1 =


−2 2
1 1

0.7 0
0 0


, 𝐷2 =


0.7 0.8
1 0.9

0.5 0
0 0


,

𝐶1 = 𝐶2 =


1 0 0 0
0 1 0 0
0 0 0 1

 ,
𝑀1 = 𝑀2 =

[
1 1 1

]𝑇
.

Based on Theorem 1 and Theorem 2, the observer gain matrix
and controller gain matrix can be obtained as follows:

𝐿1 =



0.4690 −3.4532 −0.1347
0.6863 2.6364 0.0719
0.2755 −1.5863 0.0271
−0.1244 −0.5058 1.1170
3.5466 0.1900 0.0236
−0.0879 3.3816 0.1934
−0.0170 −0.1822 3.5317


,

𝐿2 =



0.2396 −4.5688 −0.1620
1.2125 3.4029 0.1026
0.5299 −1.1132 0.0366
−0.3251 −0.7317 1.2231
3.8260 0.5240 −0.1403
−0.3798 3.7206 0.0449
0.1491 −0.0349 3.8026


,

𝐾1 =

[
1.0084 1.5651 0.8161 1.1737 0.2990 0.3466 0.2026
1.5611 −4.2713 1.1753 −0.2063 0.0215 −2.1193 0.1491

]
,

𝐾2 =

[
10.1149 10.0768 0.8161 3.7878 1.3444 0.3466 2.5418
7.5657 1.9502 3.5891 2.6715 0.0215 0.8705 −0.1990

]
.

In this paper, the actuator fault and sensor fault are considered
at the same time, and the actuator mutation fault and sensor
gradual fault are considered respectively.

Case 1

1. Actuator mutation fault:

𝑆𝑎 (𝑡) =
{

0.01, 0 s ≤ 𝑡 < 3 s,
0.08(1− 𝑒−2(𝑡−3) ), 3 s ≤ 𝑡 < 10 s.

2. Sensor gradual fault:

𝑆 𝑓 (𝑡) = 𝑏0 sin(2𝜋 𝑓 𝑡),

where 𝑏0 = 0.05, 𝑓 = 0.5.
In addition, let 𝑓1 (𝑥, 𝑡) = 0.01sin𝑥1, 𝑓2 (𝑥, 𝑡) = 0.01cos𝑥2,

𝜔 = [0.02,0.01]𝑇 .
The simulation parameters 𝜕 = 1, 𝜒 = 0.8, 𝜀1 = 0.4, 𝑟0 = 0.1

are selected.
Under the initial conditions

𝑥1 (0) =
[
−2 1 0 −1

]𝑇
, 𝑥2 (0) =

[
2 1 1 1

]𝑇
, 𝜙0 = 0,

the simulation results are shown in Figs. 1–4.

Fig. 1. Curve of switched signal 𝜎(𝑡)

Fig. 2. State curves of the nonlinear switched system
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The switched signal curve 𝜎(𝑡) is shown in Fig. 1. The state
response curves of the nonlinear switched system, under the ac-
tion of the robust fault-tolerant controller based on the dynamic
event-triggered mechanism are shown in Fig. 2.

Fig. 3. Control input curve for subsystem 1

Fig. 4. Control input curve for subsystem 2

The effects of actuator and sensor faults are effectively com-
pensated by the designed control method. Furthermore, the sys-
tem is ensured to sustain its desired performance despite the
presence of external disturbances. It can be seen that the state
response curves 𝑥𝑖 (𝑡) of the two subsystems with different initial
conditions can rapidly converge to zero within 5 s. Additionally,
it can be ensured that the system maintains an ideal steady state
even after prolonged operation.

Case 2

1. Actuator mutation fault:

𝑆𝑎 (𝑡) =
{

0.1, 0 s ≤ 𝑡 < 3 s,
0.4(1− 𝑒−2(𝑡−3) ), 3 s ≤ 𝑡 < 10 s.

2. Sensor gradual fault:

𝑆 𝑓 (𝑡) = 𝑏0 sin(2𝜋 𝑓 𝑡),

where 𝑏0 = 0.5, 𝑓 = 0.5.
Let 𝑓1 (𝑥, 𝑡) = 0.2sin𝑥1, 𝑓2 (𝑥, 𝑡) = 0.2cos𝑥2, 𝜔 = [0.2,0.3]𝑇 .
This time, the corresponding state curves of the system are

shown in Fig. 5. The control input curves for subsystems 1 and
2 are shown in Fig. 6 and Fig. 7.

Fig. 5. State curves of the nonlinear switched system

As shown in Fig. 5, by enhancing the magnitude of the dis-
turbances and the amplitude of the faults, it can be seen that
the systems still have the desired performance, and the state
response curves can also quickly converge to 0 within 5 s and
continue to run stably. Therefore, the robust fault-tolerant con-
trol algorithm designed in this paper can achieve stability and
maintain robustness in the variant aircraft system.

Fig. 6. Control input curve for subsystem 1

The observed state curves of the nonlinear switched system
are shown in Fig. 8. The dynamic event-triggered scheme de-
signed based on the relationship between this observed state and
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Fig. 7. Control input curve for subsystem 2

Fig. 8. Observed state curves of the nonlinear switched system

the state of the actual system can effectively reduce the number
of aircraft data transmissions and communication. The system
runs for 15 s and transmits data a total of 2000 times when the
event-triggered mechanism is not used. Under the static event-
triggered mechanism, the two subsystems transmit data 371 and
359 times, respectively. The total number of transmissions is
reduced by 81.4%, and system performance can also be main-
tained, as shown in Fig. 9b. In Fig. 9a, the two subsystems trans-
mit data 193 and 199 times under the dynamic event-triggered
scheme, which reduces the total number of transmissions by
90.3% and reduces the number of transmissions by 8.9% com-
pared to the static event-triggered scheme.

The system runs for 40 s and transmits data a total of 7200
times when the event-triggered scheme is not used. The two sub-
systems under the static event-triggered scheme transmit 4198
and 4199 times, respectively, which reduces the total number
of transmissions by 41.7% while ensuring the system perfor-
mance. In the dynamic event-triggered scheme as shown in
Fig. 10a, the two subsystems transmit 1855 and 1834 times

respectively, which reduces the total number of transmissions
by 74.2%, and reduces the number of transmissions by 32.5%
compared to the static event-triggered scheme, which indicates
that with the growth of the system operation time, adopting
the dynamic event-triggered scheme will be more advantageous
than the static event-triggered scheme.

(a) Dynamic event-triggered mechanism

(b) Static event-triggered mechanism

Fig. 9. Number of triggers for dynamic event-triggered and static
event-triggered in 15 s

Simulation results show that the robust fault-tolerant con-
trol method based on dynamic event-triggered designed in this
paper can effectively reduce the number of data transmissions
while ensuring the system performance. The trigger interval
selected according to Theorem 3 can effectively avoid the Zeno
behavior.

Remark 4. By introducing a positive real number 𝑟0 into the
dynamic event-triggered scheme, the triggering interval can be
lengthened, and reduce the number of triggers. Meanwhile, the
Zeno behavior can also be effectively prevented.
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(a) Dynamic event-triggered mechanism

(b) Static event-triggered mechanism

Fig. 10. Number of triggers for dynamic event-triggered and static
event-triggered in 40 s

6. CONCLUSIONS
In this paper, the design method of an adaptive observer and
robust fault-tolerant controller is proposed for the nonlinear
switched systems. An adaptive observer can simultaneously
observe the system state and estimate system faults. Dynamic
event-triggered condition is designed by exploiting the observed
states. Under the robust fault-tolerant control, the switched sys-
tem can be guaranteed to have good performance, while the
number of samples and the transmission of unnecessary infor-
mation can be greatly reduced. The gain matrices of the observer
and controller can be obtained by solving the linear matrix in-
equality. Finally, the designed control strategy is applied to an
aircraft model with switched wingspan curvature to verify its
effectiveness.
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