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AbstractArticle info:

The dynamics of semiconductor lasers are modelled in the time domain using a pair of
differential equations known as rate equations. The analysis, based on temporal solutions
of these equations, yields practical results utilised in various applications. Alternatively,
an analysis employing the phase space method, a well-established analytical tool in applied
mathematics, provides a more comprehensive perspective on semiconductor laser dynamics.
The main purpose of this paper is to provide a detailed and intuitive introduction to phase
space analysis in the context of semiconductor laser dynamics. The goal is to offer an easily
comprehensible description of the mentioned method, placing emphasis on the graphical
representation and physical interpretation of the results. The method effectiveness is shown
through its application to selected practical problems. Furthermore, semiconductor laser
dynamics can be treated as an illustrative example, showcasing the applicability of the method,
which can be readily extended to other types of lasers or even more advanced dynamic systems.

1. Introduction

Semiconductor lasers are coherent light sources with
unique features, including direct electrical pumping, high
efficiency, and compact size. Their dynamic properties, char-
acterised by very short switching times and a straightforward
pulse generation, make them a perfect choice for various
applications, such as telecommunication [1], medicine [2],
or optical remote sensing [3]. Nevertheless, a more in-depth
theoretical analysis reveals the inherently complex behaviour
of this dynamic system [4]. A comprehensive understanding
of the dynamic intricacies of semiconductor lasers unlocks
pathways to optimise their performance, enhance reliability,
and pave the way for innovative technological breakthroughs.

Semiconductor lasers dynamics are modelled with a sys-
tem of differential equations, called rate equations, describing
mutual interaction between carriers in an active medium
and photons inside a laser cavity. They include all light
and matter interaction mechanisms influencing the system
output. Rate equations can be employed to derive various
properties of lasers, such as DC characteristics or frequency
response, however, for more advanced analysis, such as step
response, equations have to be solved in time domain. This
task can be complicated due to the nonlinear nature of the
dynamic system and numerical methods are commonly used
for accurate solutions.
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Another approach to analyse the behaviour of a dynamic
system is through a phase space analysis [5]. This method
uses multidimensional space to demonstrate all possible
states in which the dynamic object can exist, treating time as
a parameter. This powerful tool offers a different perspective
on laser dynamics, leading to a better understanding of such
a nonlinear system. With support of the numerical methods
it is possible to generate the phase space with a satisfactory
resolution within a short computation time.

Phase space analysis itself is not a recent concept; it was
developed by mathematicians in the 19th century in response
to the demands of physics of that time [6]. As the method
gained popularity, it found widespread application in solving
dynamic problems across various fields, including laser
technology [7]. Even early publications on semiconductor
lasers dynamics described the use of phase space to illustrate
the interaction between the matter and light [8]. Today, phase
space analysis stands as a fundamental tool for describing
semiconductor lasers, especially their chaotic behaviour
under external perturbation.

The purpose of this paper is to present a thorough and
straightforward introduction to phase plane analysis within
the context of semiconductor laser dynamics. It was written
to support researchers taking their initial steps into the topic.
Emphasis will be placed on the graphical interpretation of
results to enhance understanding of the problem and foster a
proper intuition. Educators are encouraged to use this paper
as a resource for their own teaching materials.
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The motivation behind this paper stems from the recogni-
tion of an existing gap in the literature concerning the clear
introduction to the phase space analysis of semiconductor
laser dynamics. While the method itself is widely used in
advanced topics, a thorough and accessible presentation of
the methodology appears to be lacking in current publica-
tions. This paper aims to fill that void, offering a concise and
accessible overview to empower researchers, teachers and
students in understanding and applying phase space analysis
effectively.

While the authors’ main focus is on semiconductor lasers,
it is important to note that the phase plane analysis has univer-
sal applicability. The insights and description provided can
be readily adopted for analysing various nonlinear dynamic
systems, extending the utility of phase space analysis beyond
the presented context of semiconductor lasers.

2. Rate equations

The fundamental model governing the dynamics of single-
mode semiconductor lasers is mathematically described by a
set of rate equations. These equations constitute a nonlinear
system of differential equations that describes the mutual
interaction between carriers and photons within an active
region:

𝑑𝑁 (𝑡)
𝑑𝑡

=
𝐼 (𝑡)
𝑒𝑉

− 𝑁 (𝑡)
𝜏𝑁

− 𝑣𝑔𝐺 (𝑁, 𝑆)𝑆(𝑡), (1a)

𝑑𝑆(𝑡)
𝑑𝑡

= Γ𝑣𝑔𝐺 (𝑁, 𝑆)𝑆(𝑡) − 𝑆(𝑡)
𝜏𝑃

+
𝛽𝑠𝑝𝑁 (𝑡)

𝜏𝑟
, (1b)

where 𝑁 (𝑡) and 𝑆(𝑡) denote the carrier and photon den-
sities, respectively. The term 𝐼 (𝑡) represents the current
flowing through the junction, 𝑒 is the elementary charge, 𝑉
is the volume of the active region, 𝜏𝑁 is the carrier lifetime,
𝑣𝑔 is the group velocity, 𝐺 (𝑁, 𝑆) is the gain function, Γ
is the confinement factor, 𝜏𝑃 is the photon lifetime, 𝛽𝑠𝑝
is the spontaneous emission factor, and 𝜏𝑟 is the radiative
component of the carrier lifetime.

It is noteworthy that the literature often includes the
third equation describing the electromagnetic wave phase
evolution [9]. However, this equation is linearly dependent
on the carrier density and does not significantly impact the
laser intensity dynamics. For the sake of simplicity, the
authors will neglect this mentioned equation.

Each term of the equations above has a physical interpre-
tation originating from the quantum electronics. In (1a), the
first expression describes the pumping rate directly related
to the electric current flowing through the junction. The
second term encompasses all mechanisms responsible for
carrier loss that do not cause the light amplifications, such
as spontaneous emission and Auger recombination. The last
expression describes the carrier loss due to the stimulated
emission. This expression, along with additional confine-
ment factor, recurs in (1b) and it represents the change in
photon number resulting from optical gain. The subsequent
term describes photons escaping from the laser cavity due
to transmission and dissipative losses. The final term de-
scribes a minor contribution of spontaneous emission in the
lasing mode. While typically this term is neglected during a

laser generation, its presence is essential to initiate the laser
process.

An additional comment is necessary regarding the gain
function, denoted in its general form as 𝐺 (𝑁, 𝑆). In its
most common form, it takes the shape of a linear function
independent of the actual photon density:

𝐺 (𝑁) = 𝑔0 (𝑁 − 𝑁𝑡𝑟 ). (2)

Here, 𝑔0 represents the gain coefficient, and 𝑁𝑡𝑟 is the car-
rier density at which the active region becomes optically
transparent. While this straightforward model is suitable for
basic simulations and educational purposes, more advanced
models are available in the literature, incorporating logarith-
mic relationships [10] or piecewise-defined functions [11].
Additionally, to account for gain saturation effects, another
function dependent on photon density is used:

𝐺 (𝑁, 𝑆) = 𝑔0 (𝑁 − 𝑁𝑡𝑟 )
1 + 𝜀𝑠𝑎𝑡𝑆

. (3)

In (3), 𝜀𝑠𝑎𝑡 denotes the gain saturation coefficient. Although
the saturation effect will be neglected for a fundamental
understanding of semiconductor laser behaviour, its impact
on laser dynamics will be demonstrated subsequently.

The brief overview above serves as a concise reminder
of semiconductor laser rate equations, playing an integral
role in ensuring the completeness of the phase plane method
description. For a more in-depth understanding, readers are
encouraged to consult various academic books and dedicated
literature on the subject.

3. Phase plane construction

From the perspective of the article subject, it is more
intriguing to examine the presented model from the control
theory point of view. Rate equations are a system of two
ordinary differential equations with two independent state
variables, the carrier and photon densities. In (1a) and (1b),
the variables are clearly separated from their derivatives,
what means that for a given constant current, the change
of the state variables depends only on the values of these
variables.

It is possible to imagine a two-dimensional plane, where
each 𝑋 and𝑌 axis represents one of the state variables: carrier
𝑁 and photon 𝑆 densities, respectively. In this conceptual
framework, each point on the plane, denoted as 𝑃(𝑁𝑃 , 𝑆𝑃),
represents a different state of the dynamic system. According
to the rate equations, the derivatives of the state variables
depend only on the current state of the system, i.e., the actual
values of 𝑁 and 𝑆. Therefore, a vector ®𝑣 =

[
𝑑𝑁
𝑑𝑡

, 𝑑𝑆
𝑑𝑡

]
can

be assigned at each point of the plane (Fig. 1), creating a
vector field. These vectors describe the rate of state change
and they point to the state of a laser in the next moment
of time. Alternatively, the vector can be represented by its
length | |®𝑣 | | (a magnitude) and direction 𝜃 (an angle between
the vector and the 𝑋 axis). As time progresses, the state will
continuously change, tracing a path on the phase plane. In
mathematical terms, this path is called a trajectory or an
orbit, and the velocity vector ®𝑣 is always tangent to this path.
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Fig. 1. A graphical interpretation of the trajectory of a dynamic
system on the phase plane.

Rate equations are non-autonomous differential equations
due to the presence of the excitation term 𝐼 (𝑡 )

𝑒𝑉
. Consequently,

the vector field on the phase plane varies with different
currents and to construct a two-dimensional phase plane a
constant current must be assumed. For arbitrary current
values, the vector field can be calculated using numerical
methods by solving the rate equations for each point on a
grid iteratively. This approach is fast and straightforward,
with the main limitation being the resolution of the solution.
To enhance the understanding of the phase plane method,
the subsequent paragraphs will present numerically obtained
plots using 1550 nm distributed-feedback (DFB) laser diode
parameters adopted from literature [12] and gathered in
Table 1. The current was arbitrarily set to 𝐼 = 5 × 𝐼𝑡ℎ as a
value frequently found in practical applications.

Table 1
Dynamic parameters of the semiconductor laser used in numerical

calculations.

Parameter Value

Active region volume 𝑉 30 µm3

Group velocity 𝑣𝑔 8.33 · 107 m/s
Gain coefficient 𝑔0 9.9 · 10−16 cm2

Carrier density at transparency 𝑁𝑡𝑟 1.23 · 1018 cm−3

Carrier lifetime 𝜏𝑁 1.2 ns
Photon lifetime 𝜏𝑃 1.7 ps
Radiative carrier lifetime 𝜏𝑟 1.8 ns
Confinement coefficient Γ 0.2
Spontaneous emission factor 𝛽𝑠𝑝 3 · 10−5

Gain saturation coefficient 𝜀𝑠𝑎𝑡 2.77 · 10−17 cm3

The initial step in plotting a vector field on the phase
plane is calculating its vertical and horizontal components
separately by evaluating derivatives from (1a) and (1b) for
each point. The results in the form of combined contour
and quiver plots are presented in Fig. 2. Additionally, red
curves mark points where the derivatives are equal to zero.
These characteristic lines, essential for understanding the
system behaviour, are referred to as nullclines. In the
presented case, they divide the vector fields into two distinct
regions. For carrier density dynamics, being on the left

Fig. 2. Horizontal and vertical components of the vector field
in the phase plane. Black lines are isoclines and red lines
represents nullclines.

side of the red curve (𝑁-nullcline) signifies an increase in
carrier density (with positive derivative values), causing
the point representing the system state to move to the right.
Conversely, on the right side of the nullcline, the opposite
behaviour occurs. For photon density dynamics, the red
curve (𝑆-nullcline) is located slightly over the horizontal
axis and at specific point it becomes vertical. The derivative
is positive on the right side of the plane, distinguishing it
from the carriers. In this situation, as time passes, the point
representing the actual state will move upward.

By combining the components, the complete vector field
on the phase plane is obtained. Figure 3 shows magnitudes
and direction of each vector on the plane. It can be observed
that the majority of vectors are almost horizontal. The
dominance of this single component arises from the fact that
the vertical components are one order of magnitude smaller
than the horizontal ones. This pattern changes only in the
close neighbourhood of the 𝑁-nullcline. At the point where
both nullclines intersect, the magnitude of a state change
vector ®𝑣 is equal to zero. This characteristic point is referred
to as an attractor, and over time, the dynamic system will
evolve towards it.

Both nullclines divide the phase plane into four distinct
regions. In the first region, lying along the horizontal axis
[dark blue region in Fig. 3(b)], vectors are directed towards
first quadrant of the coordinate system. The vectors in
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Fig. 3. Magnitude and direction of the vectors in the phase plane.
Black lines are isoclines and red lines represent nullclines.

the rightmost region direct towards the second quadrant.
A narrow region in the middle of the plane corresponds
to the negative values of both rate equations and vectors
are oriented to the third quadrant. Lastly, the olive green
region in Fig. 3(b) points to the fourth quadrant of the
coordinate system. This vector field arrangement implicates
the dynamic system behaviour, as it cyclically transitions
from one region to another. Vectors for points lying on the
nullclines will be purely horizontal or vertical, causing the
state variable to reach a local extreme every time the system
crosses the red line. These properties collectively contribute
to the emergence of oscillations before the system reaches a
steady state.

Rate equations are non-autonomous differential equations
due to the presence of the excitation term. It appears only in
the equation for carrier density dynamics, what means that
vertical components of the vectors on the phase plane remain
unchanged for different currents. In (1a), the excitation
term acts as a constant component and the shape of the
vector field for horizontal component does not depend on
the actual current value. As the current increases, the vector
magnitude will change equally for the whole plane and the
whole function will move towards higher values. Therefore,
any isocline on the contour plot in Fig. 2(a) is a nullcline
for a specific current. This remark is helpful to imagine the
vector field for various currents and has a huge implication
in practical applications of the phase plane analysis.

4. Physical interpretation

All previous considerations have neglected the physical
context of the dynamic system. The mentioned properties of
the vector field on the phase plane are a result of a structure
of the assumed mathematical model. However, it is crucial
to note that the outcomes obtained hold a direct correlation
with physical phenomena occurring in the semiconductor
laser.

Analysing the vector fields of each component separetly
provides information on the state variables dynamics. The
𝑁-nullcline locates the points where driving current balances
the carrier loss due to a stimulated and spontaneous emission.
The impact of the light emission phenomena grows for higher
carrier concentrations, i.e., on the right side of the Fig. 3(a),
leading to the higher energy level depopulation.

The shape of the 𝑁-nullcline will change with the current,
as noted in the remark. Since the current can only take posi-
tive values, the 𝑁-nullcline associated with no net current
represents the isocline that intersects the coordinate system
origin. For higher excitation values, the nullcline will shift to
the right side of the plane, as shown in Fig. 4(a). Generally,
it has a hyperbolic shape; however, for a specific excitation,
the nullcline will become a vertical line. This occurs when
the current is high enough to compensate the spontaneous
emission and maintains the carrier density at medium trans-
parency 𝑁𝑡𝑟 . Under these conditions, the resultant gain of
the medium is zero, photons do not interact with carriers,
and the carrier density remains constant, regardless of the
actual photon density. It is noteworthy that this vertical line
also serves as an asymptote for all isoclines on the plane.

The 𝑆-nullcline, presented in Fig. 3(b), has a shape of two
segments. The first segment lies just above the horizontal axis
and arises due to the presence of the spontaneous emission
term in (1b). Although its impact on laser dynamics is minor,
it plays a crucial role in initiating laser operation. At a certain
carrier density value (the threshold), the nullcline becomes
vertical, dividing the phase plane into two regions. On the
left side of the plane, the intensity of stimulated emission
is not sufficient to overcome the optical losses in the laser,
resulting in a decrease in the number of photons. Conversely,
on the right side, the medium optical gain exceeds total
losses, leading to an increase of photons.

During the laser operation, the phase plane is divided
by nullclines into four regions. Using previously adopted
notation, the first region corresponds to the rise of a carrier
density resulting from the driving current. The photon den-
sity is too small to obtain an effective stimulated emission
and to depopulate the carriers. For higher carrier densities,
vectors become more vertical due to the presence of stim-
ulated emission. Moving to the second area, the photon
density is high, and stimulated emission is sufficiently strong
to decrease the number of carriers in the active region. In
the third region, the photon density remains high enough
to continue carrier depopulation. However, the optical gain
becomes lower than losses, leading to a simultaneous de-
crease in photons. As the photon density drops sufficiently to
allow carriers to build up, the laser enters the fourth region.
Here, the increase in carriers, resulting from the current flow,
exceeds its decrease caused by stimulated emission.
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Fig. 4. Location of 𝑁-nullclines for different excitation currents (a) and obtaining the DC characteristic using phase space (b).

5.2. Step response

Step response of the semiconductor laser is a part of its
large signal analysis and is crucial in applications requiring
fast switching or pulse operation. In this case, the impact
of nonlinear effects cannot be neglected and the analytical
approach requires some simplifications. Using numerical
methods the time evolution of carrier and photon densities
can be determined, revealing the features of the step response,
such as relaxation oscillations or turn-on delay. As in the
phase plane analysis, the time is treated as a parameter, it
focuses more on the energy exchange between carrier and
photon densities.

When there is no current flowing through the junction,
the laser remains in a stable idle state, depicted on the phase
plane as a point at the origin of the coordinate system. The
sudden change in current causes a reorganisation of the
vector field, initiating movement of the point representing
the laser actual state along the local state change vectors ®𝑣.
The trajectory traced by the laser states will connect the idle
state with the new stability point in the manner determined
solely by the vector field structure. Hence, the trajectory
shape unveils the dynamic features of the semiconductor
laser step response.

As an example the step response for current change from
𝐼 = 0 to 𝐼 = 5 × 𝐼𝑡ℎ is considered. The complete trajectory
depicted on the phase plane is presented in Fig. 5. After a
rapid current change, the point representing the actual state
moves from the idle state to the right side of the plane along
the 𝑋 axis. In this region, the vectors are nearly horizontal,
resulting in an increase in carrier density with a negligible
rise in photons. In the time domain, this phase corresponds
to the turn-on delay of the laser. Once the carrier density
reaches the threshold value, the local vectors become more
inclined upwards, leading to the rise in photon density. At the
intersection of the trajectory and the 𝑁-nullcline, the carrier
density reaches its maximum and the current state point
moves to the next region. Here, the photon density increases
and it reaches its peak value at next intersection with nullcline.
Since the vectors in the successive areas point towards the
following region, the trajectory passes them subsequently,
taking a shape of an asymmetric spiral. By definition, the

5. Practical  applications

  The  presented  approach,  based  on  graphical  interpretation
of  the  phase  plane,  allows  for  an  intuitive  understanding  of
the  properties  of  semiconductor  laser  dynamics.  However,
this  method  is  not  limited  solely  to  rate  equation  analysis;
it  extends  to  numerous  practical  applications.  Phase  plane
analysis  is  widely  used,  for  instance,  in  describing  chaotic
generation  [4]  or  optimising  laser  diode  steering  [13].  Here,
the  authors  present  much  simpler  examples  of  the  use  of  phase
plane  analysis  as  alternatives  to  the  analytical  approach.

5.1.  DC  characteristics

  Phase  planes  obtained  for  a  given  semiconductor  laser
provide  direct  information  about  its  DC  characteristics.  In
the  classical  approach,  to  establish  quantitative  relationships,
rate  equations  are  solved  by  setting  them  to  zero.  In  the
phase  plane,  this  operation  corresponds  to  localising  the
attractor  for  different  currents.  Since  the  position  of  the
𝑁-nullcline  depends  on  the  current,  the  intersection  between
nullclines  shifts  along  the  𝑆-nullcline.  The  current  value  at
which  the  𝑁-nullcline  intersects  the  bending  of  𝑆-nullcline
corresponds  to  the  threshold  current  𝐼𝑡ℎ.  Beyond  this
point,the  attractor  moves  upward  on  the  plane,  which
corresponds  to  higher  output  powers,  but  the  horizontal
coordinate  of  the  intersection  remains  unchanged,
indicating  carrier  density  or  gain  clamping.  If  the  𝑁-
nullclines  are  obtained  for uniformly  spaced  currents,  the
distance  between  consecutive  attractors  on  a  vertical
section  of  the  𝑆-nullcline  is  fixed,which  corresponds  to
the  linear  relationship  between  current and  output  power.

  The  concept  of  plotting  a  DC  characteristics  directly  from
the  phase  plane  is  illustrated  in  Fig.  4(b).  The  procedure
involves  identifying  the  intersection  points  of  two  nullclines
for  different  excitation  and  subsequently  plotting  each  X  and
Y  coordinate  as  a  function  of  current.  This  straightforward 
graphical  method  provides  an  immediate  understanding  of
laser  stationary  behaviour,  demonstrating  the  effectiveness
of  phase  space  analysis.
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Fig. 5. Step response trajectory (obtained through time domain integration) on the phase plane. Inset: Step response in the time domain.

trajectory intersects nullclines always at a right angle at
the local extreme of the corresponding state variable. The
transition ends when the system reaches the stability point
represented as the attractor point located at the intersection of
both nullclines. The spiral shape of the trajectory reveals the
resonant nature of laser dynamics, exposed by phase-shifted
carrier and photon densities oscillations.

5.3. Impact of gain saturation

In the paper, a linear gain model which neglects the gain
saturation effect was used for simplicity. Nevertheless, the
gain saturation effect plays significant role in laser dynamics,
particularly as photon density reaches relatively high values.
Through phase space analysis, the impact of gain saturation
can be readily determined.

In Fig. 6, a phase plane with a vector field for rate equations
including gain saturation is presented. Comparing to the
image from Fig. 3, few major differences can be noticed.
Firstly, the two-dimensional function of the vector magnitude
is sheared, i.e., for higher photon densities the function is
shifted to the right. It implicates the shape of both nullclines,
especially the 𝑆-nullcline. Previously vertical segment is
now inclined, which means that horizontal coordinate of
the attractor will rise as current increases. Secondly, as
the trajectory of a step response is a counter-clockwise
spiral, it intersects nullclines earlier than in previous case. It
means that the peak values of photon density are significantly
smaller and the number of oscillations is reduced. In the
time domain, it is manifested by much stronger damping of
relaxation oscillations.

5.4. Other examples

The presented examples demonstrate the use of phase
plane analysis to intuitively interpret fundamental topics in
semiconductor laser dynamics. The list of demonstrations
can be easily expanded to additional scenarios such as
gain switching, Q-switching, or digital modulation. The
analysis of the proposed cases may contribute to a better
understanding of the phase plane concept.

Fig. 6. Magnitude of the vectors in the phase plane for rate
equations including gain saturation effect. Black lines are
isoclines and red lines represents nullclines.

6. Conclusions

The paper demonstrates fundamentals of a phase space
analysis in the context of semiconductor laser dynamics.
Its primary objective is to offer an intuitive introduction to
this qualitative method. The example results are obtained
using simplified rate equations with a linear gain function,
while the numerical results are derived based on typical
parameters of a DFB laser diode operating at 1550 nm.
The step-by-step process of constructing the phase plane
and its physical interpretation is described. To demonstrate
the method effectiveness, it has been used to solve basic
dynamic problems, such as plotting DC characteristics or
analysing step response of semiconductor laser. Additionally,
the comparison of different mathematical models of gain
function is presented.

The presented approach focuses in particular on the rate
equations of semiconductor lasers for clarity. However,
this concept can be applied to other laser dynamics models.
By exploring various scenarios and comparing different
laser models, readers can foster an intuition for phase plane
analysis and its applications in laser research.
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