
1. Introduction 

In the natural world, various processes entail the simultaneous 

transport of mass and heat. These occurrences arise not only due 

to temperature gradients but also from concentration differences 

or a combination of both factors. Over the past few decades, sci-

entists have extensively studied buoyancy-driven flows influ-

enced by mass and thermal diffusion working together. These 

investigations have found significant applications in diverse 

technological and engineering fields, including nuclear fuel 
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Abstract 

In this study, a new physical model has been created to look into the behaviour of transient incompressible unsteady flow 

between two infinite parallel plates exposed to high temperatures. The model takes into consideration thermal radiation 

flux, chemical reaction, and mass diffusion at the boundaries. To handle non-integer behaviour, the model incorporates the 

Caputo notion of time fractional derivative. To solve this complex physical fractional order fluid model, a novel optimal 

homotopy asymptotic method and semi-analytical methodology is extended and utilized successfully. This method pro-

vides a third-order highly approximate solution, offering valuable insights into the behaviour within the system. The study 

comprehensively examines the effects of varied flow characteristics and fractional order on the dynamics of the system. 

The results are visually presented through graphs, offering a clear understanding of the system's response under different 

conditions. The effectiveness and ease of use of the optimal homotopy asymptotic method make it a valuable tool for 

solving boundary value fractional order problems encountered in scientific fields. The developed physical model and its 

fractional extension contribute significantly to the understanding of unsteady flow phenomena with thermal and chemical 

effects, advancing knowledge in this area of research. 
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Nomenclature 

𝐷𝐶
0,𝑡
𝛼   – Caputo derivative 

C1, C2, C3 – constants 

ci ‒ convergence control parameters 

cp – specific heat at constant pressure, J/(kg K)  

D – coefficient of molecular diffusivity  

g – acceleration due to gravity, m/s2  

H – nonlinear operator – Caputo fractional derivative operator (de-

notes space of functions) 

k – thermal conductivity, W/(m K) 

k*  mean value of heat absorption parameter 

Kr – chemical reaction parameter 

L ‒ Caputo fractional derivative operator 

n – order of approximation 

Nr – particles per unit volume, 1/m3 

Pr – Prandtl number 

𝑞𝑟𝑦 – radiative heat flux, W/m2 

R ‒ Caputo fractional derivative operator (denotes space of functions 

that are Lebesgue integrable) 

s  – parameter (that represents the convergence rate) 

Sc – Schmidt number 

t – time, s 

u – velocity, m/s  

Greek symbols 

  – fractional order 

  – volume expansion coefficient for the heat transfer 

 *  – volume expansion coefficient for the mass transfer 

Γ ‒ gamma function 

 – fluid temperature, K  

d  – far field temperature, K  

w  – temperature of the wall, K 

  kinematic viscosity, m2/s 

ρ  – density, kg/m3  

σ* – Stefan-Boltzmann constant, W/(m2 K4) 

𝜓   – concentration  

𝜓𝑑  – far field concentration  

𝜓𝑤 – wall-based nanoparticle concentration, mol/m3 

Subscripts and Superscripts 

eff  – effective order of approximation 

t  – time variable or independent variable 

yy  – second derivative 

 

Abbreviations and Acronyms 

HPM – homotopy perturbation method 

HVAC  – heating, ventilation and air conditioning 

OHAM  – optimal homotopy asymptotic method  

storage, underground coal gasification, groundwater hydrology, 

chemical engineering and processor cooling. Consequently, the 

study of free convective flow in vertical channels has garnered 

substantial attention because of its profound relevance in applied 

sciences and engineering [1]. Among the notable research ef-

forts, Harris et al. [2,3] have examined the effects of transient 

free convective flow along a straight plate embedded in a porous 

medium that has been exposed to abrupt changes in heat flow 

and surface temperature. As the fluid flows towards the wall, 

heat generated through viscous temperature rises as a result of 

dissipation, resulting in reduced viscosity and significant flow 

stratification. These changes notably influence the heat transfer 

rate (HTR) [4,5], rendering this phenomenon practically im-

portant in various engineering applications. The study of frac-

tional calculus has gained considerable interest in recent times, 

becoming a popular subject due to its widespread applications 

across scientific and engineering disciplines [6]. In this context, 

Sarwar et al. [7] investigated the behaviour of a fluid of the non-

Newtonian fractional Brinkman type using the optimal ho-

motopy asymptotic method (OHAM). OHAM has demonstrated 

to be a valuable tool for solving complex problems involving 

fractional calculus effectively implemented to various physical 

models, demonstrating its efficacy in providing accurate and ef-

ficient solutions [8]. Furthermore, references [912] delve into 

the time fractional operator's importance in heat transfer analy-

sis, highlighting its usefulness in comprehending and modelling 

heat transfer processes involving fractional derivatives. In con-

clusion, the exploration of flows involving the interaction of 

mass and heat transport has enriched our understanding of intri-

cate natural phenomena and has opened up numerous applica-

tions in engineering and applied sciences. By employing ad-

vanced mathematical techniques such as OHAM and studying 

fractional calculus, researchers have gained valuable insights 

and offered innovative solutions to challenging problems across 

various scientific and engineering domains. 

Heat transfer analysis in a micro-channel was thoroughly in-

vestigated by Ojemeri and Hamza [13], with a focus on the com-

plex interactions of Arrhenius-controlled processes, free con-

vection, hydromagnetic flow and the effects of heat generation 

and absorption. 

Through a microchannel that includes a non-Darcy porous 

medium, Bhatti et al. (his research team) [14] investigated the 

dynamics of natural convection in a non-Newtonian electromag-

netohydrodynamics (EMHD) dissipative flow. Their research 

focused on using the homotopy perturbation method (HPM) to 

do the analysis. 

A theoretical investigation on heat transfer in a micro-chan-

nel under Arrhenius control was carried out by Hamza et al. 

(team of experts) [15]. Their main focus was on how an artificial 

magnetic field affected natural convection. 

In a composite channel that was partially filled with a porous 

material, Ajibade et al. [16] (research collaborators) conducted 

a thorough analysis of the effects of both viscous and Darcy dis-

sipations on fully developed natural convection flow. They used 

HPM for analysis as part of their research technique. 

In order to account for convective boundary conditions, Ray 

et al. [17] studied the non-similar solution of fluid flow and heat 

transfer for Eyring-Powell fluids. In their analysis, they used the 

homotopy analysis method (HAM). 

Many studies [1820] focus on the optimization of second-

ary energy sources in hydrostatic drive systems, which is rele-

vant to machinery operating in tight spaces. In these specific op-

erating circumstances, this study emphasizes the benefits of en-

ergy efficiency and custom technical solutions. The second col-

laborative study investigates the effect of blade design on fan 

efficiency using cutting-edge prototyping methods. These in-
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sights have an effect on a number of applications, such as venti-

lation, HVAC and cooling systems, and can increase the perfor-

mance of fans. Increasing the maximum speed of underground 

suspended monorails is an essential part of safe crew mobility 

in the challenging environment of Polish underground mining. 

In mining, operational efficiency and safety are crucial, and this 

research looks into realistic approaches to achieve both. The 

fourth study evaluates a special energy recovery system created 

especially for hybrid cars in order to satisfy the pressing need 

for enhanced energy efficiency and sustainability within the au-

tomotive sector. By giving experts and researchers insightful in-

formation, these countless study discoveries significantly ad-

vance their respective fields. 

In this study, we examine temperature and concentration gra-

dient-driven unsteady free convection flow between two parallel 

plates. To take into consideration non-integer order derivatives 

in the equations, fractional order Caputo derivatives are intro-

duced. Solving these difficult fractional differential equations 

and comprehending their ramifications for real-world applica-

tions are the main goals of the research. An important part of 

this inquiry involves validating and interpreting boundary con-

ditions as well as taking into account their restrictions and po-

tential future orientations. 

This research introduces a fresh perspective by applying 

fractional calculus to transient free-convection flow in channels. 

It stands out due to the innovative use of OHAM, offering an 

efficient approach to complex fluid dynamics problems. The 

study's interdisciplinary potential, optimization focus and prac-

tical relevance make it a unique and impactful contribution to 

the field. 

2. Materials and methods 

Consider a free convective fluid that is incompressible, unstable, 

and flows between two parallel plates with a temperature gradi-

ent and mass diffusion, placed in the xy-Cartesian coordinate 

system. As seen in the image, one of the plates is fixed along the 

x-axis, while the y-axis is normal to the plate. Temperature and 

concentration variations have resulted in a free convection flow 

seen in Fig. 1. 

We make assumptions that at t  0, the plates as well as the 

fluid are at ambient concentration of 𝜓𝑑 and temperature d. At 

time t  0, fluid concentration and temperature at 𝑦 =  0 are al-

tered to 𝜓𝑤  and w, respectively. 

The governing equations for unsteady flow are derived from 

Boussinesq’s approximations as: 

 𝑢𝑡 − 𝑢𝑦𝑦 − 𝑔𝛽(𝜃 − 𝜃𝑑) − 𝑔𝛽∗(𝜓 − 𝜓𝑑) = 0; (1) 

 𝜌𝑐𝑝𝜃𝑡 − 𝑘𝜃𝑦𝑦 + 𝑞𝑟𝑦 = 0,   𝑦, 𝑡 > 0, (2) 

where qry is radiative heat flux, and the above equation can be 

rewritten using the Roseland approximation: 

 𝜃𝑡 −
𝑘

𝜌𝑐𝑝
(1 +

16𝜎∗𝜓𝑑
3

3𝑘𝑘∗ ) 𝜓𝑦𝑦 = 0, (3) 

where 𝜎∗, 𝜌, 𝑘, 𝑘∗ and 𝑐𝑝 are Stefan-Boltzmann constant, den-

sity, thermal conduction, mean value of heat absorption param-

eter and specific heat with invariant pressure, respectively; 

 𝜓𝑡 − 𝐷𝜓𝑦𝑦 + 𝐾𝑟(𝜓 − 𝜓𝑑) = 0, (4) 

where Kr is the chemical reaction parameter. The appropriate 

boundary conditions are: 

 𝑡 > 0:    𝑢(𝑡, 0)  =  0,    𝜃(𝑡, 0)  = 𝜃𝑤,    𝜓(𝑡, 0)  = 𝜓𝑤 , (5) 

 𝑡 > 0:    𝑢(𝑡, 𝑑)  =  0,    𝜃(𝑡, 𝑑)  = 𝜃𝑑 ,    𝜓(𝑡, 𝑑)  = 𝜓𝑑 . (6) 

Equations (1), (3) and (4), after using the appropriate dimen-

sionless variables and parameters, become 

 𝑢𝑡 − 𝑢𝑦𝑦 − 𝜃 − 𝑁𝑟𝜓 = 0, (7) 

 𝜃𝑡 −
1

Pr𝑒𝑓𝑓
𝜃𝑦𝑦 = 0, (8) 

 𝜓𝑡 +
1

Sc
𝜓𝑦𝑦 −

𝐾𝑟

Sc
𝜓 = 0, (9) 

with dimensionless boundary conditions: 

 𝑡 > 0:     𝑢(𝑡, 0)  =  0,    𝜃(𝑡, 0)  = 1,    𝜓(𝑡, 0)  = 1, (10) 

 𝑡 > 0:    𝑢(𝑡, 1)  =  0,    𝜃(𝑡, 1)  = 0,    𝜓(𝑡, 1)  = 0. (11) 

In Eqs. (8)(10), we replace the time derivative terms with 

the time fractional order Caputo derivative; then we have: 

 𝐷𝐶
0,𝑡
𝛼 𝑢(𝑡, 𝑦) − 𝑢𝑦𝑦(𝑡, 𝑦) − 𝜃(𝑡, 𝑦) − 𝑁𝑟𝜓(𝑡, 𝑦) = 0, (12) 

 𝐷𝐶
0,𝑡
𝛼 𝜃(𝑡, 𝑦) −

1

Pr𝑒𝑓𝑓
𝜃𝑦𝑦(𝑡, 𝑦) = 0, (13) 

 𝐷𝐶
0,𝑡
𝛼 𝜓(𝑡, 𝑦) +

1

Sc
𝜓𝑦𝑦(𝑡, 𝑦) −

𝐾𝑟

Sc
𝜓(𝑡, 𝑦) = 0, (14) 

where 𝐷𝐶
0,𝑡
𝛼  is the Caputo derivative defined as: 

 𝐷𝐶
0,𝑡
𝛼 𝑓(𝑡) =

1

𝛤(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑓(𝑛)(𝜏)𝑑𝜏, 0 < 𝛼 < 1.

𝑡

0
 (15) 

3. Implementation of OHAM 

Equations (8) and (9) describe the optimal homotopy asymptotic 

approach (OHAM). To the best of our knowledge, Sarwar et al. 

[10], Sarwar and Rashidi [11] and Sarwar and Iqbal [12] firstly 

formulated this approach applicable to fractional order partial 

 
Fig. 1. Geometry of problem. 
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differential equations. The key steps of OHAM for fractional or-

der partial differential equations are as follows (for details we 

refer to [1012]):  

(a) construct the governing fractional order differential equa-

tion as follows (see Eq. (16)): 

𝐷𝐶
0,𝑡
𝛼 𝑢(𝑟, 𝑡) = 𝐿(𝑢(𝑟, 𝑡)) + 𝑁(𝑢(𝑟, 𝑡)) + 𝑓(𝑟, 𝑡), 0 < 𝛼 < 1, 

 , (16) 

 with boundary condition  𝐵(𝑢, 𝑢𝑡) = 0, where 𝐷𝐶
0,𝑡
𝛼  deno-

tes the Caputo fractional derivative operator defined  

in Eq. (15); 

(b) construct an optimal homotopy 𝐻(𝜓; 𝑐𝑖), defined as 

𝜓(𝑟, 𝑡; 𝑝): 𝛺 × [0, 1] ⟶ 𝑅  which satisfies Eq. (17) 

𝐻(𝜓; 𝑐𝑖) = (1 − 𝑝) ( 𝐷𝐶
0,𝑡
𝛼 𝜓(𝑟, 𝑡) − 𝑓(𝑟, 𝑡)) − 𝐻(𝑝; 𝑐𝑖) 

( 𝐷𝐶
0,𝑡
𝛼 𝜓(𝑟, 𝑡) − (𝐿(𝜓(𝑟, 𝑡)) + (𝑁(𝜓(𝑟, 𝑡)) + 𝑓(𝑟, 𝑡))) = 0, 

(17) 

where r   and p  [0, 1] is an embedding parameter, 

𝑐𝑖  are convergence control parameters; 

(c) expand 𝜓(r, t; p, c) in Taylor's series about p, to get ap-

proximate solutions; 

(d) equate the coefficients of like powers of p, if necessary, 

zeroth order, first order, second order, and higher order is-

sues can be obtained; 

(e) apply the fractional order integral operator on the obtained 

problems and with the boundary conditions and get the de-

sired outcomes. 

4. Numerical example 

In this section, we will look for a solution to the problem 

(1214) with boundary conditions (1011). To begin the simu-

lations, the following starting guesses are suggested: u0 = y  y2, 

0 = 1  y2, 𝜓0 = 1  y2. The solution for the fractional concen-

tration, temperature and velocity can be found in the form as 

below in Eqs. (1820). These equations encapsulate the compre-

hensive understanding of the system's dynamics, offering in-

sights into the interplay between various parameters and pheno-

mena. 

 

Results of Fractional Concentration Field: 

 𝜓(𝑡, 𝑦) =
𝑡𝛼

Sc3 [−
2𝐶1(𝐶1

2+𝐶1+𝐶2)𝐾𝑟Sc𝑡𝛼((𝑦2−1)𝐾𝑟+4)

𝛤(2𝛼+1)
+

(𝐶2+𝐶1((𝐶1+1)2+2𝐶2)+𝐶3)Sc2 ((𝑦2−1)𝐾𝑟+2)

𝛤(𝛼+1)
+

𝐶1
3𝐾𝑟𝟐𝑡2𝛼((𝑦2−1)𝐾𝑟+6)

𝛤(3𝛼+1)
]. (18) 

Results of Fractional Temperature Field: 

 𝜃(𝑡, 𝑦) =
2(𝐶1(𝐶1(𝐶1+3)+3)−2𝐶2−𝐶3)𝑡𝛼

𝛤(𝛼+1)Pr
− 𝑦2 + 1. (19) 

Results of Fractional Velocity Field: 

𝑢(𝑡, 𝑦) = 𝑦 − 𝑦2 +
𝐶1(𝑁1(𝑦2−1)+𝑦2+1)𝑡𝛼

𝛼𝛤(𝛼)
+ 𝑡𝛼 (

(𝐶2+𝐶1((𝐶1+1)2+2𝐶2)+𝐶3)(𝑁1(𝑦2−1)+𝑦2+1)

𝛤(𝛼+1)
−  

√𝜋21−2𝛼𝐶1𝑡𝛼(2Sc((𝐶1
2+𝐶1+𝐶2)(𝑁1+1)Pr+𝐶1

2+𝐶1)+(𝐶1
2+𝐶1+𝐶2)𝑁1Pr((𝑦2−1)𝐾𝑟+2))

𝛤(𝛼+
1

2
)𝛤(𝛼+1)ScPr

𝐶1
3𝑁1𝐾𝑟𝑡2𝛼(2(Sc+2)+(𝑦2−1)𝐾𝑟)

𝛤(3𝛼+1)Sc2 ) +  

𝑡𝛼

𝛤(𝛼+1)
((𝐶1

2 + 𝐶1 + 𝐶2)(𝑁1(𝑦2 − 1) + 𝑦2 + 1) −
√𝜋4−𝛼𝐶1

2𝑡𝛼(𝑁1Pr(2(Sc+1)+(𝑦2−1)𝐾𝑟)+2Sc(Pr+1))

𝛤(𝛼+
1

2
)ScPr

).  (20) 

 

5. Analysis of OHAM 

This research delves into the dynamics of transient, viscous, and 

incompressible flow in the absence of restrictions between two 

parallel upright plates. This research's main focus is identifying 

the length component. We consider the consequences of mass 

dispersion and thoroughly examine the uniform temperature dis-

tribution of the system. 

We used an analytical strategy and OHAM to solve the re-

sulting model, allowing us to identify the solutions for all 

boundary and beginning conditions. The research provided im-

portant new understandings of the temperature, concentration, 

and velocity expressions. These results are graphically shown in 

Chapter 6, allowing us to see and comprehend how these param-

eters varied over the flow domain. The system's complicated in-

teractions between temperature, concentration, and velocity are 

made clearer by the graphical representation, which also high-

lights significant patterns and trends. We are able to fully com-

prehend the transient, viscous and free convective flow behav-

iour between the parallel plates by applying the OHAM tech-

nique to this particular issue. 

This study offers a vital basis for future research and appli-

cations in the fields of engineering and science by adding to our 

understanding of fluid dynamics and convective heat and mass 

transfer. 

6. Results 

Figures 24 present the velocity, temperature, and concen-

tration field behaviour. Figure 2 is diagrammed for varied effec-

tive Pr numbers against y by restricting t = 0.01 and α = 0.9 on 

the velocity. We can see that by increasing the Pr number, the 

velocity is decreased. In Fig. 3, as the Pr number increases, the 
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liquid temperature decreases. Raising Pr, as expected, shortens 

thermic conduction and lowers the thickness of the caloric bor-

der layer due to its high viscosity. Figure 4 depicts the impact of 

the chemical reaction parameter Kr. It is apparent that as Kr in-

creases, the flow concentration diminishes. Table 1 provides 

values of convergence control parameters. 
 

7. Conclusions  

The optimal homotopy asymptotic method (OHAM) is utilised 

in this paper to solve a new fractional model based on the Caputo 

derivative. In order to observe the heat and momentum boundary 

layer concentration thickness, the model includes a fractional-

order parameter. The analysis demonstrates that the fluid tem-

perature increases as time values increase and decrease. In con-

trast, the temperature drops when Pr (probably a related metric) 

increases in value. These results imply that higher temperatures 

in the system are caused by lower values and longer time peri-

ods. Additionally, the fractional parameter has a substantial im-

pact on the concentration growth and increases noticeably with 

longer time values. The concentration rise becomes more obvi-

ous as the values drop. Along with the decreasing boundary 

layer thickness, the concentration also decreases with the in-

creasing Schmidt number (Sc) and chemical reaction parameter 

(Kr) values. This implies that narrower boundary layers are pro-

duced as a result of suppressing the concentration growth at 

higher Sc and Kr values. 

Overall, these research results offer insightful information 

on how the fractional-order parameter and other significant 

characteristics, such as fluid temperature, concentration and ve-

locity affect the system's behaviour. These findings greatly ad-

vance our knowledge of fractional models and their prospective 

applications to fluid dynamics and related fields of study. 

A fractional model is created using the Caputo derivative, 

and it is solved by a semi-analytical method OHAM. The con-

centration thickness of heat and momentum boundary layers is 

observed by the fractional-order parameter in this model. The 

fluid temperature falls for larger Pr. The concentration increases 

with decreasing fractional parameter values and increasing time 

values. Furthermore, the concentration decreases by increasing 

Sc and Kr, as well as the boundary layer thickness. The velocity 

increases by increasing the parametric values of N and time t, 

while it decreases by increasing Pr, Kr, and Sc. 

Future research should investigate the influence of different 

fractional orders on transient free convection in channels and 

determine their practical significance. Additionally, the impact 

of nanofluids and non-Newtonian fluids on heat and mass trans-

Table 1. Values of convergence control parameters for velocity, 

temperature and concentration field at fractional order α = 0.9. 

Parameter 𝒖 𝜽 𝝍 

C1 1.0026 2.77074 0.3003 

C2 0.00001 1.9757 0.3247 

C3 5.65601 1.60073 0.0121 

 

 
Fig. 2. Velocity profile for Sc = 0.22, N = 0.5, Nr = 1, Kr = 1.5. 

 
Fig. 3. Temperature profile for Sc = 0.22, N = 0.5, Nr = 1, Kr = 1.5. 

 
Fig. 4. Concentration profile for Sc = 0.22, N = 0.5, Nr = 1, Pr = 1.5. 
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fer should be examined, while optimizing channel designs. Col-

laborating across disciplines can enhance the practical relevance 

of the research. 
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