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1. INTRODUCTION 

The mobility of goods and people is key to the economy and 

society. Since sustainable and clean energy is essential in this 

mobility, it is necessary to store energy adequately, and quickly 

and use it efficiently. Energy storage systems (ESS) typically 

occur through chemical, mechanical, or thermal means [1]. 

Chemical energy storage (battery) is an important technology 

in transitioning to a sustainable and clean energy system. Li-ion 

batteries have long cycle life, high specific energy, and low self-

discharge rates. These features enable them to surpass other 

battery technologies. Li-ion batteries are used in many 

applications, from electronic devices to the transportation sector 

[2]. 

Electric vehicles (EVs) are an alternative solution for the 

transportation sector, which is largely dependent on fossil fuels. 

The range and capabilities of EVs depend on the battery 

technology used, and their safety depends on the battery 

management system (BMS). The general problems of EVs in 

terms of capability and performance are fast charging and range 

problems. Although currently used lithium-ion battery types are 

solutions to these problems, they are insufficient on their own 

[3], [4], [5]. Lithium titanate oxide (LTO) batteries have higher 

specific power energy, higher cycle life, and better safety than 

other types of lithium-ion batteries. These features enable them 

to 

 provide solutions to range and fast charging problems on their 

own [6]. BMS is an important unit where data of battery groups 

is monitored, evaluated, and managed. Current, voltage, and 

temperature data are collected from battery groups. Using this 

data, important functions such as battery state of charge (SoC) 

and state of health (SoH) are obtained. BMS performs cell 

balancing of battery groups within the safe operating range with 

all the information [7]. 

The SoC is obtained from measurable temperature, voltage, and 

current data of the battery cell. The SoC requires an electro-

thermal battery model of the battery for its accuracy under 

variable load and ambient temperature. The electro-thermal 

model of the battery should include two submodels. The first is 

the electrical model, which describes the adaptive electrical 

behavior of the battery to varying load situations. The second is 

the thermal model that can express the thermodynamic 

properties of the battery suitable for variable ambient 

temperature [8]. 

Models describing electrical behavior are divided into four 

basic groups in the literature: empirical model, data-driven 

model, equivalent circuit model (ECM), and electrochemical 

model [9]. In empirical models, the nonlinear behavior of the 
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battery is expressed as a mathematical function or reduced-

order polynomial. In this method, which is quite simple to 

apply, the non-linear characteristic of the battery reduces the 

model accuracy considerably [10]. The electrochemical model 

directly expresses the internal reactions of the battery. This 

model, created with partial differential equations, expresses the 

nonlinear characteristics of the battery better than the empirical 

model. However, it is insufficient due to the complexity of the 

calculation process in the model and its accuracy under 

different operating conditions [11]. The data-driven model can 

directly give the battery's terminal voltage without depending 

on the battery variable relationships. However, this requires a 

suitable historical measurement dataset. For this reason, it is not 

widely used [12]. The ECM consists of open circuit voltage 

(OCV), internal resistance, and resistor-capacitance networks. 

OCV defines the nonlinear characteristic of the battery, internal 

resistance defines the voltage drop under load, and resistance-

capacity networks define the electrochemical processes. The 

ECM provides numerous combinations of circuit components 

and connections. Thevenin model, Rint model, and Partnership 

for a New Generation of Vehicles (PNGV) model are the most 

widely used circuit models [13]. 

There are four main methods in the literature for models 

describing thermodynamic behavior: direct measurement, 

electrochemical impedance spectroscopy (EIS), 

electrochemical-thermal coupling model, and electro-thermal 

coupling model [14], [15], [16], [17]. The direct measurement 

method is provided by measurements made on the structure of 

battery cells with the help of thermal sensors. However, it is not 

a preferred method because it damages the battery structure, 

and the sensor costs are high. In the EIS and the 

electrochemical-thermal coupling model method, the results are 

quite accurate. However, the methods are not practical because 

they have a complex measurement system and are not 

economical. The electro-thermal coupling model combines the 

electrical circuit model and the two-state thermal model 

(TSTM). In the two-state thermal model, the heat production 

rate of the battery cell is calculated by the Bernardi heat 

generation model. Ambient temperature and battery cell surface 

temperature data are measured. The internal temperature of the 

battery cell is estimated with the help of the following data: 

ambient temperature, heat production rate of the battery cell, 

and surface temperature of the battery cell. The high accuracy 

of this popularly applied method has been proven by many 

studies in the literature [18], [19], [20], [21], [22], [23], [24], 

[25]. Unfortunately, this model requires measuring the surface 

temperature information of each cell. Additionally, the number 

of model parameters increases considerably. As a result, this 

method has high sensor costs and a complex management 

system. 

In this study, a temperature-effective model for the LTO battery 

is designed with a new modification to be applied to the 

electrical circuit. In the proposed temperature-effective battery 

model, there is no need for a thermal model and high-cost 

sensors. It can work adaptively to different operating currents 

and different ambient temperatures. The SoC of the LTO 

battery was estimated with the help of the proposed 

temperature-effective battery model and the sigma-point 

Kalman filter (SPKF), which is one of the non-linear estimators. 

2. METHOD 

2.1. Development of temperature-effective battery 
model. 

The temperature-effective model in LTO batteries is illustrated 

in Fig. 1. This model includes the Coulomb counting method, 

OCV method, internal resistance determination, and Thevenin 

electrical circuit. 

 

Fig.1. Temperature-effective model of LTO battery 

 

The Coulomb counting method calculates the relative SoC 

change based on the integration of the current over time. This 

change is calculated as shown in the Eq. (1). 

 ( ) ( 1) 0

t

t t

b

I
SoC SoC d

C
−= −   () 

where SoC(t) is the SoC at time t, SoC(t-1) is the SoC at time (t-

1), and Cb is the capacity value of the battery cell. 

f(OCV,SoC) is obtained by determining the voltages at the 

points where the battery is not under load and rested for a 

sufficient time at the relevant SoC value. The data fitting 

method based on polynomial interpolation was used for the 

mathematical model of the obtained data. 

The ohmic internal resistance of the battery is an important 

factor affecting the discharge efficiency and power 

performance. Internal resistance is affected by various usage 

conditions such as depth of discharge and temperature. 

Therefore, it must be adaptive to different usage conditions. The 

terminal voltage of the battery is directly affected by different 

usage conditions. In this study, internal resistance is calculated 

using the battery's OCV and voltage under load, as shown in the 

Eq. (2). 
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where R0 is the internal resistance of the battery cell, 

f(OCV,SoC)(t-1) is the value of the OCV at the time (t-1), UT(t) is 
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the value of the terminal voltage at the time (t), and I(t) is the 

instantaneous current at the time (t). Since the internal 

resistance is based on instantaneous data, it captures the 

interaction at different temperatures and operating currents. The 

temperature-effective battery model is completed with the 

circuit equations given in Eq. (3-5). 

 1 1

1 1 1

1
I

dU U

dt R C C
= − + , (3) 

 2 2

2 2 2

1
I

dU U

dt R C C
= − + , (4) 

 ( ) 1 2 0,TU f OCV SoC U U IR= − − − . (5) 

2.2. Parameter identification. 

The experimental test bench given in Fig.2 was set up to carry 

out the experimental studies. The structure includes DC power 

supply, DC electronic load, data acquisition system, thermal 

chamber and LTO battery cell. The nominal voltage of the LTO 

battery cell is 2.3V and its capacity is 40 Ah. 

 

Fig.2. Diagram of experimental test bench 

 

The relationship between OCV and SoC is obtained 

experimentally. A gradual discharge process is applied from the 

battery’s fully charged state until it is completely discharged. 

During gradual discharge, the battery rests for a sufficient 

period. Values after rest give the open circuit voltage of the 

battery. Open circuit voltage analysis of the LTO battery at 

different temperatures was performed. For the gradual 

discharge process, 40 A, 8 A, 32 A, 16 A, and 24 A current 

cycles were applied to the LTO battery under different 

temperatures, respectively. Figure 3 shows the terminal 

voltages of the LTO battery under different temperatures after 

gradual discharge. 

 

Fig.3. Gradual discharge of LTO battery under different temperatures 

 

In most of the studies conducted with the thermal model, OCV 

was obtained depending on temperature. However, as seen in 

Fig. 3, OCV is not affected by different temperatures and 

different operating currents. Therefore, it is unnecessary to 

correlate OCV with temperature. The OCV-SoC relationship of 

the LTO battery was determined by the curve fitting method, as 

shown in Fig. 4. The polynomial obtained from the curve fitting 

method is given in Eq. (6). 

 
( ) 5 4

3 2 1

, 18.1 43.6

39.8 16.8 3.5 1.8

f OCV SoC SoC SoC

SoC SoC SoC

=  − 

+  −  +  +
. (6) 

 

Fig.4. Graph of the curve fitting 

 

Internal resistance analysis of the LTO battery was performed 

at different temperatures. The internal resistance graph obtained 

because of the analysis is shown in Fig. 5. When the results 

were examined, it was seen that the internal resistance of the 

LTO battery varied depending on both temperature and SoC. 
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Fig.5. Internal resistance analysis of the LTO battery under different 
temperatures 

 

In studies conducted in the literature, internal resistance has 

been determined as a polynomial depending on temperature and 

SoC. However, the resulting polynomial is fixed, not adaptive. 

Additionally, model complexity increases. Therefore, in this 

study, internal resistance was determined to adapt to changing 

conditions without the need for a polynomial. Internal 

resistance is defined as the ratio of voltage difference to current. 

Based on its definition, the internal resistance of the LTO 

battery was determined online as given in Eq. (2).  

RC blocks, which are the other parameters of the equivalent 

circuit, were determined by the Trust-Region-Reflective-based 

Nonlinear least square method. Internal resistance values are 

given in Fig. 6, other parameter values are given in Table 1. 

 

Fig.6. Internal resistance results of the LTO battery under different 
temperatures 

TABLE 1. Determined Equivalent Circuit Parameters 

LTO cell’s capacity, Cb: 40 Ah 

Polarization resistor, R1: 0,00026 Ω 

Polarization resistor, R2: 0,000019 Ω 

Polarization capacitor, C1: 1200 F 

Polarization capacitor, C2: 11000000 F 

2.3. Sigma-Point Kalman filter. 

Kalman filters are known as very robust state estimators. EKF 

and SPKF are improved versions of the conventional Kalman 

filter [26], [27]. Using Taylor series expansion in EKF, 

Jacobian matrices are calculated and the nonlinear model is 

linearized. This linearization process causes high computational 

costs and approximation problems. SPKF uses an unscented 

transformation with a set of sigma points to estimate SoC 

without linearization. The SPKF addresses high computational 

costs and approximation problems that arise from the 

linearization process of the EKF. Therefore, in this study, the 

SoC of the LTO battery was estimated by the SPKF algorithm. 

For state estimation in nonlinear systems, the SPKF provides 

accurate and robust results. The SPKF addresses approximation 

problems that arise from the linearization process of the 

Extended Kalman Filter (EKF). Therefore, in this study, the 

SoC of the LTO battery was estimated by the SPKF algorithm. 

The state-space equation is given by 

 1k k kx Ax Bu+ = + , (7) 

 k k ky Cx Du= + , (8) 

which can be expanded as, 
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where A, B, C, and D are the coefficient matrices and ∆t is the 

sampling time. SPKF's algorithm process is shown in Table 2. 

TABLE 2. Algorithm Process of the SPKF 
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Time update 
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3. RESULTS AND DISCUSSION 

In this section, the proposed temperature-effective battery 

model was tested under different temperatures. Room 

temperature was chosen as the modeling reference and all 

parameters were determined at this temperature. The SoC 

estimation was also made at the same temperature and tested at 

other temperatures. 

3.1. Validation of the Temperature-effective Battery 
Model. 

The graphs of voltage comparisons made under different 

temperatures and their absolute errors are given in Fig. 7-14. 

When the comparison graphs are examined, it is seen that the 

errors are almost the same in the no-load condition. At no load, 

the terminal voltage is equal to the open circuit voltage, and this 

error is caused by the curve fitting method.  

 

 

Fig.7. Model validation at -25˚C 

 

Fig.8. Model validation at -20˚C 

 

 

Fig.9. Model validation at -10˚C 

 

 

Fig.10. Model validation at 0˚C 

 

When the points under load are examined, it is seen that the 

temperature-effective model errors are almost zero. 
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Fig.11. Model validation at 10˚C 

 

 

Fig.12. Model validation at 20˚C 

 

Root mean squared percentage error (RMSPE), mean squared 

percentage error (MSPE), and mean absolute percentage error 

(MAPE) metric errors were calculated to better understand the 

comparison results.  

 

 

Fig.13. Model validation at 25˚C 

 

Fig.14. Model validation at 40˚C 

 

Metric error calculations of the model results are given in Table 

2. 

TABLE 2. Metric errors of model results 

Metric 

Errors 
RMSPE MSPE MAPE 

Model TiE TE TiE TE TiE TE 

-25˚C 0.1420 0.0855 0.0202 0.0073 0.8593 0.5988 

-20˚C 0.1446 0.0701 0.0209 0.0049 0.8302 0.5001 
-10˚C 0.1333 0.0590 0.0178 0.0035 0.7293 0.3974 

0˚C 0.1248 0.0431 0.0156 0.0019 0.5889 0.2754 

10˚C 0.1325 0.0399 0.0175 0.0016 0.5979 0.2635 
20˚C 0.1636 0.0408 0.0268 0.0017 0.6545 0.2790 

25˚C 0.1493 0.0405 0.0223 0.0016 0.6366 0.2646 

40˚C 0.1041 0.0375 0.0108 0.0014 0.5247 0.2533 
Improvement 

Range 40 ~ 75 % 64 ~ 94 % 30 ~ 58 % 

 

When all errors were taken into consideration, the resulting 

metric errors were examined. It was observed that the 

temperature-effective (TE) model improved the temperature-

ineffective (TiE) model by a minimum of 30% and a maximum 

of 94%. 

3.2. SPKF-based SoC Estimation. 

Room temperature was again chosen as the reference for SoC 

estimation. SPKF’s settings were determined based on the best 

result for this temperature. The state variable was set to 𝑥 =
[1 0 0] and the covariance matrix was set to 𝑃 =
𝑑𝑖𝑎𝑔[10−3 10−3 10−3]. The setting of weight matrices are 

critical parameters that affect SPKF’s performance. These 

parameters were adjusted once to examine the temperature 

effect. Different weight matrices were not set for different 

temperatures. At room temperature, the weight matrices were 

set as 𝑄 = 𝑑𝑖𝑎𝑔[10−6 10−6 10−6], 𝑅 = 1. Figure 15-22 

shows test results under different temperatures for SoC 

estimation. 
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Fig.15. Validation of the SoC estimation at -25˚C 

 

 

Fig.16. Validation of the SoC estimation at -20˚C 

 

When the test results were examined, it was seen that the 

estimation errors with the temperature-ineffective model were 

up to 10%. On the other hand, the estimation results with the 

temperature-effective model do not exceed 2%.  

 

 

Fig.17. Validation of the SoC estimation at -10˚C 

 

Fig.18. Validation of the SoC estimation at 0˚C 

 

 

Fig.19. Validation of the SoC estimation at 10˚C 

 

 

Fig.20. Validation of the SoC estimation at 20˚C 

 

Metric errors of SoC comparisons were calculated and are given 

in Table 3. It is clear from the metric error results that the 

temperature-effective model makes a strong improvement in 

the SoC prediction results. 
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Fig.21. Validation of the SoC estimation at 25˚C 

 

 

Fig.22. Validation of the SoC estimation at 40˚C 

TABLE 3. Metric errors of model results 

Metric 

Errors 
RMSPE MSPE MAPE 

Model TiE TE TiE TE TiE TE 

-25˚C 0.9126 0.1884 0.8329 0.0355 7.5354 1.5317 
-20˚C 0.7887 0.1265 0.6221 0.0160 6.5113 0.9434 

-10˚C 0.7390 0.2295 0.5462 0.0527 5.0497 1.6877 

0˚C 0.9015 0.0942 0.8128 0.0089 6.8684 0.7613 
10˚C 0.4180 0.0506 0.1747 0.0026 3.2367 0.4303 

20˚C 0.1042 0.0633 0.0109 0.0040 0.6675 0.5181 

25˚C 0.2874 0.0458 0.0826 0.0021 1.7691 0.3724 
40˚C 0.1123 0.1150 0.0126 0.0132 0.8672 0.7854 

Improvement 

Range 2 ~ 90 % 5 ~ 99 % 9 ~ 89 % 

 

4. CONCLUSIONS 

This study develops a new temperature-effective model for 

LTO batteries. Unlike other studies, the developed model does 

not require a separate model for temperature. The model 

incorporates this effect with internal resistance adaptive to 

terminal voltage, which is directly affected by temperature. The 

performance of the proposed model and its impact on SoC 

estimation was evaluated through experimental tests under 

different operating conditions. The main results are as follows: 

(i) The internal resistance converges to its value at different 

temperatures and improves the model’s accuracy. 

(ii) The model's average root mean square error (RMSE) is 

within 0.05%, mean square error (MSE) is within 0.003%, 

and mean absolute error (MAE) is within 0.354%. 

(iii) The model improves SoC estimation performance at 

different temperatures. 

(iv) The SoC estimation converges to an average of 0.11%, 

0.02%, and 0.8% in the RMSE, MSE, and MAE metric 

errors, respectively. 

The proposed temperature-effect model is stable and accurate. 

Compared to previous studies, it offers a simpler solution to 

different operating conditions. Since it improves SoC 

estimation, it benefits the design of the battery management 

system and can be applied in practical applications. 
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