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Research paper

Structural optimization design of multi ribbed composite
wall of building components under seismic load based on
random optimization algorithm and resilience model

Xu Hu1, Lu He2

Abstract: The multi ribbed composite wall structure is also known as the multi ribbed wall panel light
frame structure. This structure is suitable for housing construction in the residential field. The special
structural failure process and mode of multi ribbed composite walls are different from traditional walls.
To fully utilize the excellent structural performance in building construction and improve the seismic
performance of the building, based on the transformation principle of subset optimization algorithm for
optimization problems, a constrained subset simulation optimization algorithm suitable for optimizing
the maximum displacement angle of multi ribbed composite wall panels is designed. The Bayesian
algorithm is used to construct a restoring force model for multi ribbed composite wall panels. The
constrained subset simulation optimization algorithm and resilience model are used to optimize the
seismic performance of 4-layer multi ribbed composite wall panels. The results show that the section
height and the equivalent slant support width of the continuous column for the 4-story multi ribbed
composite wall panel change from discrete distribution to aggregation with the increase of iteration.
Finally, the sampling is stable in the 9th floor. At this time, the section height of the continuous column
is 230 mm, and the equivalent slant support width is 525. After optimization, the failure probability of
both extreme displacement angle states has decreased. When the peak ground acceleration is 1.0 g, the
optimized second limit state failure probability is less than 100%. When the peak ground acceleration
value is between 0.2 g and 0.6 g, both limit states show a rapid upward trend. The constrained subset
simulation optimization algorithm and Bayesian quantitative resilience model proposed in the research
can effectively optimize the seismic performance of multi ribbed composite walls.
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optimization

1MSc., Department of Real Estate and Engineering Management, Liaoning Urban Construction Technical College,
Shenyang, 110122, China, e-mail: 15541568826@163.com, ORCID: 0009-0005-7348-9761
2MSc., Department of Real Estate and Engineering Management, Liaoning Urban Construction Technical College,
Shenyang, 110122, China, e-mail: Helu0248879@163.com, ORCID: 0009-0004-8571-4789

https://doi.org/10.24425/ace.2024.149874
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:15541568826@163.com
https://orcid.org/0009-0005-7348-9761
mailto:Helu0248879@163.com
https://orcid.org/0009-0004-8571-4789


448 X. HU, L. HE

1. Introduction

With the development of modern industrial technology, the structural system of building
construction is also increasing. The multi-ribbed composite wall (MRCW) structure,
also known as the multi-ribbed wall panel light frame structure, is commonly used in
the construction of residential buildings [1, 2]. The failure mode of MRCW structure is
influenced by the ratio of wall panels and frames, the strength of filled blocks, and the elastic
modulus. The parameters of MRCW include integer variables and continuous variables. The
optimization design methods for traditional building components have limited effectiveness.
Therefore, for the MRCW structure, a reasonable improvement algorithm needs to be
designed for structural optimization [3]. The optimization problem of MRCW structure
and the solution of restoring force model parameters both require rich stress analysis and
calculation. The data is large in scale and highly non-linear. However, traditional numerical
optimization algorithms have low computational efficiency [4]. It is prone to falling into the
dilemma of local optimal solutions. The global optimization ability of random optimization
algorithms is effective, which has efficient computational efficiency, making them suitable
for solving high data scale problems. Based on this, random optimization algorithms and
resilience models are used to optimize the MRCW structures in building components. It is
expected to fully utilize the excellent structural performance in building construction and
improve the enhance performance.

2. Related works

There is sufficient research on wall components and construction in architecture.
MRCWs, as the main load-bearing components of building structures, have also received
much attention. Sun et al. explored the temperature and residual bearing capacity of the filled
frame of the MRCW structure after high temperature through experiments and finite element
analysis. The axial compression test is used to evaluate the mechanical properties of MC at
high temperatures. The finite element (FE) model of the infill frame under oblique loads is
developed. The relationship between residual bearing capacity and fire exposure time is
obtained [5]. Ismail et al. focused on improper evaluation and information management
of thermal comfort in prefabricated concrete buildings. The feasibility and benefits of
using ICT for new solutions in PC building projects where natural ventilation levels are
inconsistent with occupant comfort are analyzed. The results indicate that this solution is
crucial for optimizing the thermal comfort and energy efficiency of PC building projects [6].
Han et al. focused on the incorrect installation and operation of heavy lifting equipment in
structured building construction. The visualization design of hoisting based on dynamic
three-dimensional trajectory is used in a data-driven crane management system. The results
indicate that it can reduce lifting time, improve safety and quality [7].

There are abundant intelligent optimization algorithms suitable for solving optimization
strategy problems. Among them, random optimization algorithms have been applied in
various fields. Li et al. proposed a novel topology optimization framework based on SS
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by combining subset simulation (SS) with generative adversarial networks (GAN). The
topology optimization (TO) algorithm guided by SS and GAN can promote efficient TO
of periodic structures. The effectiveness and efficiency of the method are demonstrated
through TO of two-dimensional periodic structures [8]. Ezaleden et al. used the NPSO
algorithm to learn the importance of relationship types between concepts. A simulated
recommendation system based on the highest ranking for dynamic learners is constructed.
The CLM and ECLM conceptual models are learned. The simulation results demonstrate
that the performance of ECLM is better than other existing methods, with an average
Interchange Rating (MRR) value of 0.780 [9].

In summary, scholars have focused on the bearing capacity and safety issues of buildings
and conducted extensive research on composite wall frame structures. However, there is still
limited research on the structural performance of MRCWs. The performance advantages of
MRCW structures in terms of earthquake resistance and support cannot be fully explained.
MRCWs have high seismic application value. The structure is complex. How to fully utilize
the potential application value of the performance advantages has become a research focus.

3. Optimization design of multi-ribbed composite
wallboard based on SSO algorithm and resilience model
To design a random optimization algorithm and restoring force model suitable for

optimizing the seismic performance of MRCW panels, a subset simulation optimization
algorithm is first optimized based on the structural features of the MRCW panel, making it
to optimize constrained problems. On the other hand, Bayesian theory is used to construct a
restoring force model, which can be used for simulating the maximum displacement angle
parameters of multi-ribbed composite wall panels.

3.1. Problem-solving solution based on SSO algorithm

The algorithm foundation of the research is the Subset Simulation Optimization (SSO)
algorithm. The basic idea of the SSO algorithm is to construct the problem to be optimized
into a reliability analysis problem [10, 11]. By introducing probability assumptions into the
design variables, artificial randomness is added to the objective problem function. Taking
the maximum value of the objective function for solving a multi-parameter problem as an
example, the conditional formula for the function solution is shown in Eq. (3.1).

(3.1) gopt = g(xopt) ≥ g(x) ∀x ∈ Ω

In Eq. (3.1), Ω represents the set of design variable spaces, Ω ∈ Rn, gopt is the global
maximum. The solution of the corresponding design variable is xopt. The target failure event
occurrence conditions for the reliability analysis problem of SSO construction are shown in
Eq. (3.2).

(3.2) F = {g(x) ≥ b}
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In Eq. (3.2), F is the target failure event. b is the threshold at which the small failure
event occurs. The critical value of the structural response is taken as this value. Intermediate
events are introduced to transform small failure probability events into a series of conditional
probability event products with high occurrence probability. When the intermediate event
satisfies a nested relationship, F1 ⊃ F2 ⊃ . . . ⊃ Fm = F. The probability expression is
shown in Eq. (3.3).

(3.3) PF = P(F) = P(Fm) = P(Fm |Fm−1)P(Fm−1) = . . . = P(F1)

m∏
i=2

P(Fi |Fi−1)

In Eq. (3.3), m represents the intermediate events. The conditional probability of
intermediate events is P(Fi |Fi−1). When the value is large, the efficiency of simulation PF

is higher, which can improve the efficiency of simulation operations. The expression for
intermediate events is shown in Eq. (3.4).

(3.4) Fi = {g(s) ≥ bi−1, i = 2, . . . ,m} (b1 < b2 < . . . < bm = b)

The failure domain of reliability calculation includes the target variable value of
optimization calculation. Therefore, optimization problems can be solved within the
framework of reliability. Since reliability analysis is a probability analysis, the design
variables for optimization analysis within the framework need to be “randomized”. Therefore,
the target variable has randomness [12, 13]. The design variable solution corresponding
to the maximum of the target function is x = xopt. The expression for converting into a
reliability problem is shown in Eq. (3.5).

(3.5) pg = P(g) = P(g(x) ≥ gopt)

In Eq. (3.5), the probability of failure event Fg =
{
g(x) ≥ gopt

}
occurring is 0. The

mathematical model of constrained optimization problems is shown in Eq. (3.6).

(3.6)
max W(x)

s.t .
{
gi(x) = gi(x1, x2, ..., xn) ≤ 0 (i = 1, 2, ..., l)
hj(x) = hj(x1, x2, ..., xn) = 0 ( j = 1, 2, ..., k)

x ∈ S

In Eq. (3.6), the objective function is represented as W(x). The i-th inequality constraint
is represented asgi(x). l represents the total number of inequality constraints. The constraint
condition of the j-th equation is expressed as hj(x). k represents the total number of
equality constraints. S is the problem search domain. By defining global constraint functions,
constraint conditions are integrated. For inequality constraints, for inequality constraints,
the violation function is shown in Eq. (3.7).

(3.7) vi(x) =
{

0, gi(x) ≤ 0
gi(x), gi(x) > 0

According to the definition of inequality constraint violation function, the violation
function of equality constraint condition is shown in Eq. (3.8).

(3.8) vj(x) =
��hj(x)

�� ≥ 0
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The inequality constraint violation function and the equality constraint violation function
are integrated to define the global constraint function, as shown in Eq. (3.9).

(3.9) Fcon(x) = −max vi

In Eq. (3.9), vi denote the set of inequality constraint violation functions and equation
constraint violation functions, and only when the variable is in the feasible region of the
constraint condition, Fcon(x) = 0. All solutions in this domain satisfy Fcon(x) = 0.

3.2. Optimization scheme for seismic performance of MRCW panels
based on SSO

Due to the constraint conditions, during optimization, samples that meet the constraint
conditions are selected from the current sample set. Then the next stage of optimization
is entered. Afterwards, the global constraint function is used as the first sorting criterion.
The feasibility of the objective function is used as the second sorting criterion to sort the
samples. The algorithm flowchart is shown in Fig. 1.

Start

i=1

Randomisation of design 

variables, definition of 

interlayer parameters

Calculate objective function 

value, global constraint 

function, bicriteria ordering, 

picking thresholds

Selection of alternative samples

i=i+1

Conditional samples were extracted with MCMC for seed samples that exceeded thresholds

Bicriteria ordering of the sample objective function 

and the global constraint function

Statistical properties of sample 

simulations between statistical strata

Termination 

guidelines

Fcon(x)<Fconi-1,N(1-p0)

Fcon(x)=Fconi-1,N(1-p0) g(x)<gi-1,N(1-p0)
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characteristics of the 

samples in layer i, the 

maximum value of the 

objective function in 

that layer and the 

corresponding samples

Yes

No

Yes Yes

No

No
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Fig. 1. SSO algorithm flowchart

In Fig. 1, The Markov chain Monte Carlo (MCMC) algorithm is applied to extract
generating conditional samples. After sorting the sample objective function and global
constraint function in a dual standard order, the statistical characteristics of the inter layer
simulated samples are calculated. The incremental dynamic analysis (IDA) method is used to
analyze the vulnerability of MRCW structures [14]. In the vulnerability analysis of MRCW
structures, Peak Ground Acceleration (PGA) is taken as IM. The maximum displacement
angle (DA) between floors is taken as DM. The calculation process is shown in Eq. (3.10).

(3.10) D̂ = a · IMb

Firstly, as shown in Eq. (3.10), D̂ represents the median value of earthquake demand,
which follows a normal distribution. By taking logarithms on both sides of the equation, the
earthquake probability demand model can be obtained as shown in Eq. (3.11).

(3.11) ln D̂ = ln a + b · ln IM
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The data obtained by IDA can be regressed in the logarithmic distribution space to
obtain ln a and b.

After analyzing the seismic performance, the seismic performance is optimized by
optimizing the maximum interlayer displacement angle under earthquake action. The
specific steps are shown in Fig. 2.

Determination of the initial 

structural programme based on 

engineering experience

IDA analysis to determine 

sensitive ground vibration and 

IM values

i=1

(Vi-V0) /V0<10%

Elasto-plastic time-history analysis of the model 

was carried out to extract the maximum interstorey 

displacement angle of the structure

Optimising the optimal solution for the ith time

Reduced probability of structural failure

i=1

Abandonment programme

End
Yes

No

No

Yes

Fig. 2. Specific steps for optimizing seismic performance with maximum inter story displacement
angle

Firstly, based on consulting design data and on-site engineering research, the parameters
of the wall structure are determined. The IDA is applied for vulnerability analysis, seismic
motion, and IM values. Afterwards, the constrained SSO algorithm is used to generate
an optimized design scheme through sampling. If the structure meets the requirements
of the standard design and meets the constraints, modifications will be made according
to the optimized design plan. The alternative IM value is used for elastic-plastic time
history analysis. The scheme to minimize the maximum DA between floors is determined.
Afterwards, the existing optimal solution is subjected to IDA analysis to determine whether
the probability of structural failure has decreased [15].

3.3. Construction scheme of restoring force model for MRCW
structure

The RFM is a mathematical model that reflects the relationship between the restoring
force of a structure or component and its deformation, which is the basis for conducting
nonlinear structural analysis. The restoring force model of the MRCW panel and the RFM
of the component section are constructed. The RFM of the component section is constructed
using Fiber Section (FS), as shown in Fig. 3.
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Fig. 3. Fiber cross section

FS can divide beam and column components into discrete elements represented by the
stress-strain relationship of the corresponding material. The cross-section is smooth. The
bending moment-curvature relationship of the component section is less affected by shear
stress. Therefore, the effect of shear force can be ignored when deriving the relationship
between bending moment-curvature. When calculating the stress and strain of components,
the changes caused by factors such as temperature, time, and humidity are ignored. The
influence of bond slip for steel bars is not considered. The degenerate bilinear restoring
force model is selected to simulate the restoring force model of a 4-floor MRCW plate
structure, as displayed in Fig. 4.
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Fig. 4. Interlayer restoring force model of 4-layer multi ribbed composite plate structure

The eigenvalues of the degenerate bilinear model include elastic stiffness k, yield
stiffness k ′, and yield displacement xy . Therefore, the parameters to be identified are set
as follows. The elastic stiffness are k1, k2, k3, and k4 respectively. The yield stiffness are
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k ′1, k ′2, k ′3, and k ′4. The yield displacements are Xy1, Xy2, Xy3, and Xy4, with a total of 12
parameters. Bayesian method is used to construct resilience models. Based on Bayesian
theory and measured data, the posterior distribution of the target parameter variable is
calculated, as shown in Eq. (3.12).
(3.12)

p(Y (t)|θ) = exp(L(θ)) =

(
R∏
i=1

1
(
√

2πσi)
Ni

)
exp


R∑
i=1

N j∑
j=1
−

1
2σ2

i

[yi( j) − xi(θ, j)]2


4. Example analysis of optimization schemes
for MRCW panels seismic performance

4.1. Seismic response analysis of dense ribbed composite wall panel
model

Based on the proposed optimization design scheme for seismic performance of MRCW
panels, a case study is conducted on a 4-story MRCW panel to verify the effectiveness of the
proposed scheme. The construction of 4-layer dense-ribbed composite wall panel is based
on the Code for Seismic Design of Buildings (GB50011-2010), Technical Specification
for Dense-Ribbed Composite Panel Structure (JCJ/T 275-2013) and the actual project
information, which sets the structural storey height of 3.3 m, the wall thickness of 200 mm,
and the dimensions of the frame columns and concealed beams of 200× 200 mm and 200×
300 mm, respectively. Referring to the specification of a 4-layer dense ribbed composite wall
panel and (JCJ/T 275-2013), the wall concrete selects C25, wall panel beams and columns
concrete selects C20, and autoclaved aerated concrete is used to fill in the wall, and the three-
dimensional three-dimensional diagram and the plan layout diagram are shown in Fig. 5.
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Fig. 5. 3D structure and layout plan: a) Three-dimensional figure, b) Layout plan
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In Fig. 5, the seismic fortification intensity is 8. The live load is 0.5 kN/m2. The dead
load is 7.0 kN/m2. OpenSees is used to establish finite element models. Beam, column
and equivalent slant support components are taken as basic elements. Table 1 displays the
parameters.

Table 1. Model parameters

Wall panel
number

Eaq (N/mm2) Width of slant
support (mm)

Weightiness
(N/mm)

QB-1 7016.67 437.63 2.48 × 10−5

QB-2 6492.47 480.75 2.41 × 10−5

Equivalent slant support and concrete constitutive parameters

– Peak pressure
(N/mm2)

Peak strain Ultimate stress
(N/mm2)

Ultimate
strain

Elastic
modulus (GPa)

QB-1 10.523 0.003 2.105 0.006 7.017

QB-2 9.838 0.003 1.948 0.006 6.492

C25
unconstrained

concrete
–24.235 0.0015 0 0.004

31.68

C25 core area
concrete –29.082 0.0018 –6.98 0.018

C30
unconstrained

concrete
–28.03 0.0017 0 0.004

33.01

C30 core area
concrete –33.64 0.002 –8.07 0.02

The elastic modulus of the 4-layer ribbed composite wall panel filled with autoclaved
aerated concrete block is 1600 N/mm2. The weight is 5.5 · 10−6 N/mm3. The elastic
modulus of C20 concrete is 2.55 · 104 N/mm2. The weight is 2.5 · 10−5 N/mm3. Through
comprehensive calculation, the equivalent elastic modulus, equivalent width and equivalent
weight of equivalent slant support of 4-layer MRCW panel can be obtained. The results
are shown in Table 1. According to the Code for Design of Concrete Structures (GB50010-
2010), various parameters of concrete can be calculated. The above parameters are used for
OpenSees modeling and vulnerability analysis. The results are shown in Fig. 6.

In Fig. 6, at the natural vibration period T = 0.29 s of the 4-layer MRCW plate structure,
the design response spectrum of the structure corresponds to an acceleration value of 0.9 g.
The average response spectrum corresponds to an acceleration value of 0.95 g, with an error
of 5.6%. It indicates that the error between the mean response spectrum and the design
response spectrum at their natural vibration period is small. The selected wave is reasonable.
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Fig. 6. Seismic response spectra of a 4-story multi ribbed composite plate structure

4.2. IDA Analysis of dense rib composite wall panel structures

By analyzing the seismic response of the above MRCW plate structure, the spacing of
PGA ranges from 0.05 g to 0.05 g−1 g. Under 300 operating conditions, IDA analysis is
conducted on the structure, as shown in Fig. 7.
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Fig. 7. IDA curve

Fig. 7 displays the IDA of the maximum DA of the structure under various working
conditions. When the peak ground acceleration is 1.0 g, the maximum DA of the 4-
story MRCW plate structure under the action of seismic wave No. 3 is 0.0861, and the
minimum under the action of seismic wave No. 1 is 0.0196. The IDA calculation results are
linearly regressed in logarithmic space to obtain the seismic probability demand model and
parameters of the structure. The fitting results and vulnerability curve are shown in Fig. 8.
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Fig. 8. Fitting results and vulnerability curve: a) Seismic demand modelling of 4-ply dense ribbed
composite panel structures, b) Perishability Curve

In Fig. 8a shows the seismic demand model of a 4-story MRCW plate structure.
According to the curve fitting results, as ln(IM) increases, the logarithmic value of the
maximum displacement angle shows a stable upward trend. The value of parameter βD/IM
is 0.4209. According to Technical Specification for Dense Ribbed Composite Plate Structure
(JGJ/T275-2013), for dense ribbed composite plate structure, the horizontal displacement
of the structure should be calculated, and the maximum interstorey displacement angle of
the floors calculated according to the elasticity method of the structure under the action
of multiple earthquakes should not be greater than the limit of elasticity displacement
angle of the structure (1/800), and the limit of elastic-plasticity displacement angle of the
floors is 1/100. Fig. 8b shows the vulnerability curve of a 4-layer multi ribbed composite
plate structure at the above limit states. The LS1 displacement angle limit is 1/800. The
LS2 displacement angle limit is 1/100. From the seismic vulnerability curve, the failure
probability of LS1 in a 4-layer multi ribbed composite plate structure stabilizes at 1 after
0.20 g. The failure probability of LS2 enters a rapidly increasing stage after 0.20 g, and the
failure probability is 1 after 0.80 g. The PGA corresponding to a 50% failure probability of
the structure is the median value, which can be used to characterize the seismic performance
of the structure.

4.3. Analysis of optimisation results for dense ribbed composite wall
panel structures

At 0.35 g, the exceeding probability of LS2 for a 4-layer multi ribbed composite plate
structure reaches 50% in the limit state. 0.35 g is used as the IM value for optimizing the
design of a 4-layer structure. When the PGA is 0.35 g, the structure has the highest response
under the action of seismic wave No. 2. Therefore, the seismic wave No. 2 is chosen as
the input seismic motion for the optimization design of the 4-layer multi ribbed composite
plate. The seismic peak acceleration is PGA = 0.35 g. The constrained SSO algorithm is
used to optimize the seismic performance of 4-layer MRCW panels. Truncated normal
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distribution is a random distribution of continuous design variables used for analysis. The
upper and lower boundaries of the truncated normal distribution are taken as the upper and
lower boundaries of the continuous design variable design domain. The standard deviation
is taken as 1/3 of the distance from the center of the defined domain to the upper and lower
boundaries. The number of samples per layer is N = 50. The maximum number of sampling
layers is 50. The initial inter layer conditional probability is 0.2. The sampling process and
the iterative results of the maximum inter story displacement angle are shown in Fig. 9.
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Fig. 9. Sampling process and maximum inter story displacement angle iteration results: a) First layer,
b) Fifth floor, c) Ninth floor, d) Maximum angular cha interlayer displacement

In Fig. 9, With the change of iteration, the column section height and equivalent slant
support brace width change from discrete distribution to aggregation. Finally, the sampling
is stable in the 9th layer. At this time, the section height of the continuous column is
230 mm, and the equivalent width of the slant support is 525. Fig. 9d shows after 7 iterations,
the maximum displacement angle stabilizes at 0.01922, The optimized structure of SSO
algorithm performs IDA analysis. The vulnerability curve of the optimized 4-layer MRCW
panel structure is shown in Fig. 10.

Fig. 10 displays the results of the vulnerability curves for the 4-layer MRCW panel
structure before and after SSO algorithm optimization. By comparison, the failure probability
of both extreme displacement angle states has decreased after optimization. Compared to
LS1, LS2 has a more significant performance in reducing the failure probability. When
PGA is 1.0 g, the optimized LS2 failure probability is less than 100%. When the PGA value
is between 0.2 g and 0.6 g, the optimized LS1 and LS2 show a rapid upward trend as PGA
increases.
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5. Conclusions
The study was conducted to optimise the wall structure of MRCW in order to make

full use of its excellent structural performance in building construction. The constrained
SSO algorithm is used to optimize the seismic performance of 4-layer MRCW panels. The
results show that the section height and the equivalent slant support width of the continuous
column for the 4-story multi ribbed composite wall panel change from discrete distribution
to aggregation with the increase of iteration. Finally, the sampling is stable in the 9th layer.
At this time, the section height of the continuous column is 230 mm, and the equivalent
slant support width is 525.When PGA is 1.0 g, the optimized LS2 failure probability is
less than 100%. When PGA values are between 0.2 g and 0.6 g, the optimized LS1 and
LS2 show a rapid upward trend as PGA increases. This indicates that the constrained SSO
algorithm has a good effect on the structural optimization of seismic performance for 4-layer
multi ribbed composite wall panel structures. However, the research does not consider the
effect of the wall panel and frame ratio on dynamic response. Further exploration of shape
optimization is needed. At the same time, a linear restoring force model is used, which does
not fully simulate the curve restoring force characteristics and multiple seismic responses.
This is also an area that can be further improved in future research.
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