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Abstract: Generally, Least Squares (LS) Method treats only random errors of observation
vector in adjustment function models. However, both observation vector and elements of
coefficient matrix of adjustment function model contain random errors. Therefore, there is
no guarantee that the result of adjustment by LS method is the global optimal solution. Total
Least Square (TLS) method is a primary estimation method that treats random errors of
observation vector and coefficient matrix in adjustment functional models. Since TLS method
take into account both random errors of observation vector and coefficient matrix based on
errors-in-variables model, it is possible to improve the accuracy compared with the result of
LS method. So TLS method has been applied to different fields of science and technology
including signal and image processing, computer vision,communication engineering and
geodesy. However, weighted total least square (WTLS) method has been not applied in
geodetic network adjustment problem compared with other fields widely. So the purpose
of this paper is to summarize the algorithm of WTLS briefly and to propose an application
method in adjustment of triangulation network. Key problem in application of WTLS to
adjustment of geodetic network is to determine the weight matrix (or cofactor matrix) for
elements of coefficient matrix in adjustment function model. In this paper proposed a method
to determine cofactor matrix for errors of coefficient matrix in triangulation network, and
verifies the effectiveness of suggested method through example applied to triangulation
network.

Keywords: WTLS method, EIV model, cofactor matrix, adjustment function model,
triangulation network adjustment
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1. Introduction

Total Least Squares (TLS) method had been widespread since [8]Golub and van Loan
(1980) coined the terminology of TLS firstly and demonstrated that the TLS solution
could be obtained readily by singular value decomposition about 40 years ago (Golub
and van Loan, 1980; van Huffel and Vandewalle, 1991). TLS method have been further
systematically developed and widely applied to many science and engineering problems,
namely some practical problems, such as those in signal processing, statistical calculation,
regression analysis, coordinate transformations (Akyilmaz, 2007; Felus, 2004; Markovsky
and van Huffel, 2005; Wang, 2016). Particularly, as TLS method considers errors both in
observation vector and the coefficient matrix simultaneously, this theory is more rigorous
than least square (LS) method (Felus and Burtch, 2009; Ghilant, 2006; Markovsky
and van Huffel, 2007). Therefore, the TLS method based on errors-in-variables (EIV)
model has been arrived as a new method on field of data processing and nowadays
obtained good success in solving practical problem of geodetic science and engineering
(Mastronardi et al., 2000; Neitzel, 2010; Schaffrin, 2006).

In general, the development process of TLS method seems to depend on two typical
approaches to deal with data of observations (Golub and van Loan, 1980; Shen et al., 2011).
The first approach of TLS is to solve by direct solution (SVD-singular value decomposition)
method and second one is based on iterative solution (Lagrange multipliers) method
(Schaffrin et al., 2006; Schaffrin and Wieser, 2008; Schaffrin and Felus, 2009; Shen et al.,
2011; Xu, 2003; Xu,2004). SVD method is used in case of equivalent weight and iterative
solution method is used in case of unequal weight in observation vector and coefficient
matrix. Therefore, TLS method have been developed into more generalized weighted total
least square (WTLS) method and many researchers have studied about it and its application
deeply and widely (Xu, 2009; Xu and Shimada, 2000; Xu et al., 2006; Xu, 2012).

Recently most of all works on WTLS method focus on methods and applications for
linear regression model fit, curved line fit and coordinate transformation (Deng, 2019;
Fang, 2014; Fang, 2015; San, 2014; [20]Wang, 2016; Wang, 2019a; 2019b). But due to
the lack of general method to determine cofactor matrix of coefficient matrix of function
model, it is restricted in practical application. Specially, WTLS method has been less
applied in adjustment problem of geodetic network than other fields. Since coefficient
matrix of adjustment function model has different structure according to type of geodetic
network, it is impossible to construct correlation matrix of it as general form.

The purpose of this paper is to establish the method to determine cofactor matrix of
coefficient matrix of adjustment function model in geodetic network adjustment by WTLS
method and improve the accuracy of geodetic control points by applying to adjustment
calculation. In this paper, we describe the adjustment method based on WTLS method in
triangulation network and verify effectiveness of this method through example applied to
triangulation network adjustment.

So the system of paper is as follows. In second part reformulate solution algorithm
to calculate the estimation of WTLS method in EIV model and then outline a formula
to estimate it’s accuracy. In third part describes example to demonstrate the algorithm
proposed in this paper and then compare the adjustment results by WTLS method with
the results by LS and TLS methods in triangulation networks.



Study on triangulation network adjustment by Total Least Square Method 3

2. Adjustment of geodetic network by WTLS

In this part reformulate the algorithm to solve the WTLS problem and then give a formula
related with first order approximation to estimate the accuracy of unknown parameters in
EIV model.

2.1. Parameter adjustment algorithm

EIV model in the WTLS method can be written as follows (Schaffrin and Wieser, 2008;
Shen et al., 2011):

L − eL = (A − EA) · τ, (1)

where L denotes the m × 1 observation vector, τ represents the n × 1 unknowns parameter
vector, A represents the m × n coefficient matrix of error equation, eL denotes the random
error vector of L, and EA denotes the random error matrix of A.

Eq. 1 can be rewritten as form of condition equations as follows:

Aτ − EAτ − L + eL = 0. (2)

Considering Eq. 2, the Lagrange objective function of WTLS can be written as
follows:

Φ(eL, EA,K, τ) = eTLQ−1
L eL + eTAQ−1

A eA + 2KT (Aτ − (τT ⊗ In)eA − L + eL) = min, (3)

where K denotes the m × 1 vector of “Lagrange multipliers”, QL,QA represents the
cofactor matrix of L and A, and EAτ = (τ

T ⊗ In)eA, eA = vec (EA), in which “vec (•)”
denotes the operator that stacks one column of a matrix underneath the previous one, and
“⊗” denotes the “Kroneker–Zehfuss product” of matrices.

The solution of objective function (3) can be derived via the Euler-Lagrange necessary
conditions:

∂Φ

∂eL
= 2ẽTLQ−1

L + 2K̂T = 0
∂Φ

∂eA
= 2ẽTAQ−1

A − 2K̂T (τ̂T ⊗ In) = 0
∂Φ

∂K
= Aτ̂ − (τ̂T ⊗ In)ẽA − L + ẽL = 0
∂Φ

∂τ
= 2K̂T A − 2KT ẼA = 0


, (4)

where “∼” and “∧” denotes predicted and estimated, respectively.
We can rewrite Eq. 4, as follows:

Q−1
L ẽL + K̂ = 0, (5)

Q−1
A ẽA − (τ̂ ⊗ In)K̂ = 0, (6)

Aτ̂ − (τ̂T ⊗ In)ẽA − L + ẽL = 0, (7)
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AT K̂ − ẼT
AK̂ = 0. (8)

From Eq. 5 and Eq. 6, we obtain following equations:
ẽL = −QLK̂, (9)

ẽA = QA(τ̂ ⊗ In)K̂ . (10)
Substituting Eq. 9 and Eq. 10 into Eq. 7, we can obtain following:

Aτ̂ − (τ̂T ⊗ In)QA(τ̂ ⊗ In)K̂ − L −QLK̂ =

Aτ̂ − L −
[
QL + (τ̂

T ⊗ In)QA(τ̂ ⊗ In)
]

K̂ = 0. (11)
Thus, we can represent the Lagrange multipliers K in Eq. 11 as follows:

K̂ = Q−1(Aτ̂ − L), (12)
where

Q = QL + (τ̂
T ⊗ In)QA(τ̂ ⊗ In). (13)

Substituting Eq. 12 into Eq. 9 and Eq. 10, respectively, we obtain as follows:
ẽL = −QLQ−1(Aτ̂ − L), (14)

ẽA = QA(τ̂ ⊗ In)Q−1(Aτ̂ − L). (15)
Substituting Eq. 12 into Eq. 8, we can represent as follows:

ATQ−1(Aτ̂ − L) − ẼT
AQ−1(Aτ̂ − L) = AT

1 Q−1 Aτ̂ − AT
1 Q−1L = 0 (16)

where A1 = A − EA.
From Eq. 16, correction vector of deterministic unknowns is as follows:

τ̂ = (AT
1 Q−1 A)−1 AT

1 Q−1L. (17)
In summation, the computation process described in Eqs. 13–17 is as follows:
Step 1. Initial values of unknown parameter τ and error matrix EA is as follows:

τ0 = (ATQ−1
L A)−1 ATQ−1

L L, EA0 = 0.
Step 2. Calculate cofactor matrix Q by Eq. 13 as follows:

Qi = QL + (τ̂
T
i ⊗ In)QA(τ̂i ⊗ In)

Step 3. Calculate error vector ẽL, ẽA by Eq. 14 and Eq. 15 as follows:
ẽLi+1 = −QLQ−1

i (Aτ̂i − L)

ẽAi+1 = QA(τ̂i ⊗ In)Q−1
i (Aτ̂i − L)

where i denotes the iterative number.
Step 4. Calculate correction vector τ of deterministic unknowns by Eq. 17 as follows:

τ̂i+1 = (AT
1 Q−1

i A)−1 AT
1 Q−1

i L

Step 5. Iterate from step 2 to step 4 until the following condition is satisfied:
|τ̂i+1 − τ̂i | < ε. (18)

where ε is a small positive number related with accuracy of computation.
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2.2. Accuracy of parameter adjustment result

Although many algorithms have been developed to solve WTLS problems, statistical
aspects of WTLS estimation have not received due attention. WTLS estimations have been
proved to be weakly consistent under regularity conditions, as the number of measurements
tends to infinity (Markovsky and van Huffel, 2005). However, asymptotic statistical results
are not very useful in practice. Even if a WTLS estimator is known to be asymptotically
unbiased, it can still be significantly biased in the case of finite samples, depending on the
severity of model. The WTLS estimator of parameters in an EIV model is essentially the
problem of nonlinearity.

As a result, we can naturally use nonlinear adjustment theory to analyze the nonlinear
TLS estimators statistically. Here, we will investigate the statistical aspects of the nonlinear
WTLS estimators in finite sample. Based on well-known knowledge, we can obtain the
first-order approximation of the cofactor matrix of the WTLS estimates simply.

Considering Eq. 17, cofactor matrix of unknown parameters can be determined based
on linearly approximate cofactor propagation law as follows:

Q̃τ = (AT
1 Q̃−1 A)−1 AT

1 Q̃−1QLQ̃−1 A1(AT
1 Q̃−1 A)−1, (19)

or
Q̃τ = Qτ0QLQT

τ0, (20)

where
Qτ0 = (AT

1 Q̃−1 A)−1 AT
1 Q̃−1.

Therefore, variance matrix of unknown parameters can be determined as follows:

Dτ = σ̂
2
0 Q̃τ, (21)

where σ̂2
0 is estimation of unit weight variance, and σ̂2

0 is estimated as follows:

σ̂2
0 =

ẽT Q̃−1ẽ
m − n

, (22)

where
ẽ = ẼAτ̂ − ẽL = Aτ̂ − L,

m – number of observations, n – number of unknown parameters.

3. Application of WTLS method in triangulation network adjustment

In order to applyWTLSmethod in adjustment of triangulation network, at first, the cofactor
matrix Q of EIV model should be calculated by Eq. 13. In calculation of cofactor matrix Q,
it is the most important problem to calculate the cofactor matrix QA of coefficient matrix.
In this section, we describe the method to calculate the correlation matrix of coefficient
matrix A. Then, we have adjusted the triangulation network by proposed method and
analyzed the effectiveness.
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3.1. Cofactor matrix of coefficients in triangulation network adjustment

Let’s determine the cofactor matrix of coefficients in example of triangulation network
presented in Figure 1. In Figure 1, point 6 and 7 are the given points, point 1 ∼ 5 are
points to be determined and number of measurement angle is 18.

Fig. 1. Triangulation network

General form of residual equation in triangulation network with 18 angles can be
written as follows:

vkβi j = (aki − ak j)τxk + (bki − bk j)τyk − akiτxi − bkiτyi + ak jτx j + bτk j + `kβi j , (23)

where k – a number of vertex forming angles, i, j – numbers of vertices forming angles in
triangle (see Fig. 2), τxi, τyi – correction value of coordinates, `kβi j = `k j − `ki = β

k′

i j − β
k0

i j ,

ai j =
∆yi j

S2
i j

, bi j = −
∆xi j

S2
i j

, Si j =
√(

xj − xi
)2
+

(
yj − yi

)2.
Making Eq. 23 with all angles and considering the EIV model, we can obtain as

follows:
L − eL = (A − EA) · τ, (24)

where

A =
©«

A1,1 A1,2 · · · · · · A1,9 A1,10
A2,1 A2,2 · · · · · · A2,9 A2,10
...

...
...

...
...

...
A18,1 A18,2 · · · · · · A18,9 A18,10

ª®®®®¬18×10

.

Here, elements of coefficient matrix are represented as a function of observation
angles, that is:

A = f (β1, β,2, · · · , β18). (25)
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Taking partial derivatives of Eq. 26 with relation to observation angles βi, we can
denote as follows;

H =
∂A
∂β
=

©«

∂A11
∂β1

∂A11
∂β2

· · ·
∂A11
∂β18

∂A12
∂β1

∂A12
∂β2

· · ·
∂A12
∂β18

...
... · · ·

...

∂A110
∂β1

∂A110
∂β2

· · ·
∂A110
∂β18

...
... · · ·

...

∂A181
∂β1

∂A181
∂β2

· · ·
∂A181
∂β18

∂A182
∂β1

∂A182
∂β2

· · ·
∂A182
∂β18

...
... · · ·

...

∂A1810
∂β1

∂A1810
∂β2

· · ·
∂A1810
∂β18

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬180×18

. (26)

Here partial derivatives
∂Ai j

∂βk
should be determined. Let’s consider an example to

determine the partial derivatives (Fig. 2). Partial derivatives
∂A1j

∂β1
( j = 1, 2, · · · 6) in

relation to coefficient of correction equation of angle 1 in triangle of Figure 2 (note that 1,
2, 3 are number of angles) can be computed as follows:

Fig. 2. Triangle

∂A11
∂β1

=
sinαki

S1
−

sinαk j
S2

∂A12
∂β1

= −
cosαki

S1
+

cosαk j
S2

∂A13
∂β1

=
sinαk j

S2
,

∂A14
∂β1

= −
cosαk j

S2
,

∂A15
∂β1

= −
sinαki

S1
,

∂A16
∂β1

=
cosαki

S1
,

where Si – length of triangle side (see Fig. 2).
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Similarly partial derivatives
∂Ai j

∂βk
( j = 1, 2, · · · 6) in relation to all angles can be

determined. Considering Eq. 25 and Eq. 26, the cofactor matrix QA of coefficient matrix
A can be determined as follows:

QA = HQβHT , (27)

where Qβ is cofactor matrix of measured angles.
From Eq. 13, cofactor matrix Q̃ of observation vector and coefficient matrix can be

computed as follows:

Q̃ = Qβ + (τ
T ⊗ I18)QA(τ ⊗ I18). (28)

3.2. Triangulation network adjustment by WTLS

We adjust triangulation network (Fig. 3) laid out in an area using the real observation data
by WTLS method. In triangulation network presented in Figure 3, point 16 and 17 are
the given points, points 1 ∼ 15 are points to be determined and number of observation
angle are 66, and coordinates of given points and observation angles are presented in
Table 1 and Table 2. Using given data in Table 1 and Table 2, we adjusted the triangulation
network by three methods, that is, WTLS, TLS and LS methods.

Fig. 3. Triangulation network in an area
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Table 1. Coordinate of given points

Point
no.

Coordinate

X (m) Y (m)

16 6 749.760 –7 351.370

17 3 069.590 –2 809.280

Table 2. Observation data

Angle
No.

Observation
angle

(◦ ′ ′′)

Angle
no.

Observation
angle

(◦ ′ ′′)

Angle
no.

Observation
angle

(◦ ′ ′′)

1 48 13 38.0 23 58 06 8.6 45 29 49 54.1

2 58 10 6.9 24 59 38 39.8 46 59 11 38.8

3 73 36 15.6 25 61 19 56.8 47 54 03 17.4

4 62 10 55.8 26 59 00 24.2 48 66 45 6.7

5 66 14 37.2 27 59 39 35.7 49 55 26 24.6

6 51 34 30.3 28 54 54 10.5 50 59 24 56.8

7 31 54 59.3 29 40 44 39.0 51 65 08 38.3

8 35 15 2.8 30 84 21 6.0 52 68 16 14.4

9 112 49 52.2 31 93 03 25.5 53 59 16 2.6

10 41 36 29.5 32 40 21 36.7 54 52 27 38.2

11 72 49 51 33 46 35 0.6 55 38 51 9.6

12 65 33 39.0 34 54 34 53.5 56 94 38 19.6

13 70 02 28.9 35 63 41 42.8 57 46 30 32.5

14 51 53 52.2 36 61 43 22.1 58 46 29 17.2

15 58 03 45.8 37 57 04 59.0 59 89 19 51.8

16 90 47 27.6 38 62 32 16.7 60 44 10 50.7

17 38 20 39.0 39 60 22 44.0 61 49 26 11.7

18 50 51 51.5 40 36 43 46.3 62 36 39 4.8

19 70 44 0.9 41 57 07 16.7 63 93 54 44.9

20 29 34 52.2 42 86 08 59.9 64 50 45 28.7

21 79 41 7.5 43 111 17 47.0 65 91 59 46.5

22 62 15 11.3 44 38 52 25.3 66 37 14 46.1
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In this case, partial derivatives with relation to observation angles β by Eq. 26 can
denote as follows:

H =
∂A
∂β
=

©«

∂A11
∂β1

∂A11
∂β2

· · ·
∂A11
∂β66

∂A12
∂β1

∂A12
∂β2

· · ·
∂A12
∂β66

...
... · · ·

...

∂A130
∂β1

∂A130
∂β2

· · ·
∂A130
∂β66

...
... · · ·

...

∂A661
∂β1

∂A661
∂β2

· · ·
∂A661
∂β66

∂A662
∂β1

∂A662
∂β2

· · ·
∂A662
∂β66

...
... · · ·

...

∂A6630
∂β1

∂A6630
∂β2

· · ·
∂A6630
∂β66

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬1980×66

.

Considering Eq. 27, the cofactor matrix QA of coefficient matrix A can be determined
as follows:

QA
1980×1980

= H
1980×66

· Qβ
66×66

· HT

66×1980
.

Adjustment results are given in Table 3 and Table 4. And standard deviation of
coordinates X a and Y are represented in Figure 4 and Figure 5, respectively. In Figure 3
and Figure 4 curve 1 denotes standard deviation of adjusted coordinates in WTLS method,
curve 2 in TLS method and curve 3 in LS method.

Standard deviation factor of unit weight is σWTLS = 0.23 in WTLS method, σTLS =
1.68 in TLS method and σLS = 1.79 in LS method.

As can be seen in Table 4, Figure 4 and Figure 5, the largest standard deviations of
X,Y coordinates is 1.3 cm, 1.5 cm respectively in WTLS method, –6.4 cm, 7.6 cm in
TLS method, –6.8 cm, 7.4 cm in LS method. Consequently, it is clear that WTLS method
is superior to TLS and LS methods in raising the accuracy of adjustment results. However,
differences between accuracy of adjustment results by TLS and LS methods is not so
large. Because the cofactor matrix of both observation vector and coefficient matrix is
assumed as unit matrix. Therefore, we should apply WTLS method after determination of
cofactor matrix of both observation vector and coefficient matrix to raise the accuracy of
adjustment results.
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Table 3. Adjusted coordinates by three methods

Point
no.

WTLS TLS LS

X (m) Y (m) X (m) Y (m) X (m) Y (m)

1 12 104.151 –5 548.488 12 104.408 –5 548.554 12 104.487 –5 548.616

2 8 717.994 –2 751.155 8 718.164 –2 751.065 8 718.236 –2 751.054

3 5 696.258 –911.999 5 696.365 –911.8738 5 696.409 –911.832

4 3 808.487 509.959 3 808.498 510.141 3 808.506 510.210

5 –23.002 838.564 –23.100 –838.342 –23.172 –838.305

6 1 527.490 –5 304.389 1 527.480 –5 304.420 1 527.465 –5 304.461

7 8 935.259 722.412 8 935.448 722.584 8 935.554 722.645

8 5 815.230 2 689.597 5 815.318 2 689.800 5 815.371 2 689.915

9 3 970.171 4 579.740 3 970.248 4 580.016 3 970.260 4 580.181

10 527.730 3 044.974 527.755 3 045.260 527.685 3 045.387

11 –1 606.319 2 058.599 –1 606.412 2 058.869 –1 606.530 2 058.966

12 –2 703.061 –4 027.191 –2 703.319 –4 027.125 –2 703.434 –4 027.168

13 8 793.083 4 218.986 8 793.247 4 219.232 8 793.375 4 219.369

14 5 470.183 6 302.061 5 470.307 6 302.372 5 470.363 6 302.578

15 11 669.941 738.279 11 670.223 738.475 11 670.381 738.512

Table 4. Standard deviations of coordinates by three methods

Point
no.

WTLS TLS LS
X (m) Y (m) X (m) Y (m) X (m) Y (m)

1 0.009 0.008 0.045 0.048 0.047 0.050
2 0.006 0.006 0.029 0.030 0.029 0.032
3 0.005 0.005 0.024 0.022 0.024 0.022
4 0.004 0.007 0.024 0.027 0.026 0.026
5 0.006 0.008 0.032 0.027 0.032 0.029
6 0.003 0.006 0.017 0.028 0.018 0.030
7 0.008 0.008 0.044 0.039 0.043 0.041
8 0.007 0.009 0.040 0.043 0.042 0.042
9 0.010 0.013 0.050 0.059 0.053 0.057
10 0.008 0.012 0.046 0.053 0.048 0.052
11 0.011 0.011 0.055 0.052 0.056 0.053
12 0.011 0.009 0.0541 0.045 0.055 0.048
13 0.012 0.013 0.063 0.060 0.064 0.060
14 0.013 0.015 0.064 0.076 0.068 0.074
15 0.012 0.010 0.062 0.052 0.061 0.055
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Fig. 4. Standard deviation in X coordinate

Fig. 5. Standard deviation in Y coordinate

4. Discussion and conclusions

In application of WTLS method, the most important problem is to determine the cofactor
matrix of coefficient matrix of EIV model. We have discussed the methods to decide
the cofactor matrix of coefficient matrix in function models of triangulation network
adjustment. Since generally coefficients of function model are expressed as function of
observed values in triangulation networks, it’s cofactor (weight) matrix can be determined
using cofactor(weight) matrix of observed values.
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In this paper focuses one’s attention on the use of WTLS approach for triangulation
network adjustment. Firstly, adjustment algorithms by WTLS method are reformulated
so as to be applied in triangulation network adjustment, secondly, we propose a method
to determine the cofactor matrix of EIV model coefficients in triangulation network
adjustment, thirdly, the presented WTLS method was shown to be very efficient in practice
of triangulation network adjustment.

The advantage of the proposed method is to convenient for computing the cofactor
matrix of coefficient matrix, i.e. we composed the algorithm to be able to calculate the
coefficient matrix and its partial derivatives simultaneously. The disadvantage is to increase
the storage capacity of cofactor matrix in the triangulation network of the large scale.

We suggest that research the method to determine the cofactor matrix of EIV model
coefficients in order to extend the application of WTLS in various kinds of geodetic
networks further. In the future research, we will propose a more general method to solve
this problem.
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