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Abstract—This article deals with the problem of finding the 

maximum number of maximum cliques in a weighted graph with 

all edges between vertices from different d-division of a graph with 

the minimum total weight of all these cliques, and the problem of 

finding the maximum number of maximum cliques in a non-

weighted graph with not all edges between vertices from different 

d-division of the graph. This article presents new ant algorithms 

with new desire functions for these problems. These algorithms 

were tested for their purpose with different changing input 

parameters, the test results were tabulated and discussed,  the best 

algorithms were indicated. 

 

Keywords—d-division graph; ant algorithm; maximum clique; 

machine control; object tracking 

I. INTRODUCTON 

ETERMINATION of weighted and unweighted all 

maximum cliques in d-division graphs serves to solve 

practical technical problems such as tracking multiple 

objects in vision systems[1]-[4] or controlling thread spools in 

textile machines [5], [6].  A graph is the set of vertices 𝑉 and 

edges 𝐸 and is denoted as 𝐺(𝑉, 𝐸). A graph clique occurs when 

all vertices are connected by edges, exactly every pair of clique 

vertices. A graph is d-divisible if the vertices of this graph can 

be divided into 𝑑 sets of vertices and in each set there are 

vertices that are not connected to each other by edges, but edges 

exist between vertices from different divisions. The maximum 

clique in a d-division graph consists of vertices, each of which 

comes from a different division of the graph, and they are all 

connected by edges.  The vertices of the d-division graph can 

therefore be subdivided into divisions 𝑉 = {𝑉1, … . , 𝑉𝑑}, 𝑉𝑖 =

{𝑣𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑛}.  Then the maximum clique can be expressed 

as follows 𝐶 = {𝑣𝑙1 , … … , 𝑣𝑙𝑑}, 𝑣𝑙1 ∊ 𝑉1, … … , 𝑣𝑙𝑑 ∊ 𝑉𝑑 and for 

each pair of {𝑣𝑙𝑖 , 𝑣𝑙𝑗} exists an edge 𝑒(𝑣𝑙𝑖 , 𝑣𝑙𝑗). When the edges 

are assigned a weight, we are talking about a weighted graph, 

while when there are no weights, we are dealing with an 

unweighted graph. Due to the fact that determining the 

maximum cliques in d-division graphs is an NP-difficult 

problem [7]-[9], this problem is solved by artificial intelligence 

methods such as neural network [10], [11], particle swarm 

optimization [12], genetic algorithm [13].  A very good 

overview on this subject are works [14]-[16]. In this article, ant 

algorithms with a new dynamic desire functions are presented 
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to solve these problems. For the first time ant algorithms were 

applied to these problems with a static function of desire, 

precisely in practical application in vision systems [17], [18]. 

Ant algorithms with a dynamic desire function have been shown 

to be better at achieving action goals, as demonstrated in the 

paper [19]. Comparative studies of the effectiveness of certain 

dynamic functions of desire for the problem of finding 

maximum cliques with their minimum total weight are 

presented in the paper [20] and for the problem of determining 

the maximum number of maximum cliques at work [21]. This 

paper presents results of research on the effectiveness of 

dynamic functions of desire, including desire functions 

containing, in addition to heuristic information on the current 

choice, additional heuristic information regarding the possibility 

of the next choice after the current choice. This work is 

organized as follows: section 2 describes the problem, section 3 

describe the ant algorithm and section 4 described dynamic 

desire functions. The experimental results and their discussion 

are presented in Section 5, conclusions are given in Section 6. 

II. PROBLEMS OF MAXIMUM CLIQUES 

In d-divisible graphs, the vertices in these divisions are not 

connected to each other by any edge, but between these 

divisions the vertices are connected by edges, and if there are all 

such edges connecting all vertices from these divisions, the 

graph is called full, and the density of the graph 𝑞 is 1. Of 

course, it may be that not all edges occur between vertices from 

different graph divisions and then the density of the graph 𝑞 is 

less than 1. In each case, it is always about determining the 

maximum number of maximum cliques in d-divisible graphs.   

In the case of a full graph, 𝑞 = 1 , there will be as many 

maximum cliques as there are vertices in each department of the 

graph, the number of vertices in each department of the graph is 

the same. In the case of an incomplete graph, 𝑞 ≤ 1, the number 

of maximum cliques is not known. 

Figure 1 shows a 4-divisons graph.  For example, red, blue, 

and green cliques are the maximum number of cliques specified 

in such a graph, and the sum of the weights of those clicks is the 

minimum. The graph is full, but Figure 1 does not show the 

remaining edges between the vertices, which were excluded 

from the solution of finding the maximum number of maximum 

clicks with the minimum total weight. 
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Fig. 1. Maximum number of maximum cliques in d–divisible graph 𝑞 = 1. 

 

Figure 2 shows the 4-divisons graph.  For example, red, blue, 

and green cliques are the maximum number of cliques specified 

in such a graph, and the maximum number of cliques is 3, but 

the green clique can be indicated in a different way, as indicated 

by the green dashed line, in which case the maximum number 

of clicks will be 2. Since a graph is not a complete graph, it may 

be that the blue clique cannot be determined in any other way. 
 

 
Fig. 2. Maximum number of maximum cliques in d–divisible graph 𝑞 < 1. 

 

The problem of finding the maximum number of maximum 

cliques in a weighted graph with all edges between vertices from 

different d-division of a graph with the minimum total weight 

of all these cliques can be stated as (1): 

 

min ∑ 𝑤𝐶𝑖

𝑘𝑛
𝑖=1                                      (1) 

where: 

𝑤𝑐𝑖
 – the weight of the ith clique 

𝑘𝑛  – the maximum number of maximum cliques 

 

This problem consists in determining all maximum cliques 

with the smallest possible total weight in a full graph, 𝑞 = 1. 

Each maximum click consists of 𝑑 vertices and each of the 

vertices comes from different d-sections of the graph. There are 

as many maximum cliques as there are vertices in each d-section 

of the graph. 

The problem of finding the maximum number of maximum 

cliques in a non-weighted graph with not all edges between 

vertices from different d-division of the graph can be stated as 

(2):  

max 𝑖   𝑜𝑓 𝑐𝑖 , 𝑖 ≤ 𝑛                            (2) 

 

where: 

𝑐𝑖– the ith click in the d-division graph 

𝑛 – the maximum number of maximum cliques while 𝑞 < 1 

 

The problem is to determine as many maximum cliques as 

possible in an incomplete graph, 𝑞 < 1. Each maximum clique 

consists of 𝑑 vertices and each of the vertices comes from 

different d-sections of the graph. 

III. ANT ALGORITHM 

The verbal description of the steps of the ant algorithm is shown 

in Listing 1 at the end of section IV. The algorithm consists of 

two main loops, of which the first inner loop cyclically repeats 

the action of each ant in the swarm, so it is performed as many 

times as there are ants in the swarm, and the second outer loop 

of them repeats the action of the whole swarm, so it is performed 

as many times as the whole swarm is supposed to work. 

Each ant creates as many maximum cliques as can be created 

with a given input data set. Each ant creates a maximum clique, 

starting with the smallest, and systematically adds more vertices 

to the clique being created. However, when it finds a maximum 

clique, it starts creating another maximum clique until it has 

created all the maximum cliques. If the ant is at the vertex 𝑖 and 

then it has the ability to include vertex 𝑗 from the set of vertices 

available, from the set 𝐴, with probability specified (3). 

 

𝑝𝑖𝑗 =  
𝜏𝑖𝑗 𝜂𝑖𝑗

∑ (𝜏𝑖𝑘 𝜂𝑖𝑘)𝑘∊𝐴
                                 (3) 

 

where: 

𝐴 - set of vertices available 

𝑝𝑖𝑗  - the probability of choosing vertex 𝑗 when the ant is at the 

vertex 𝑖 
𝜏𝑖𝑘 - the amount of pheromone on the edge connecting the vertex 

𝑖 with the vertex 𝑘 

𝜂𝑖𝑘 - a function of the desire to select vertex 𝑘 by an ant at vertex 

𝑖 
 

The set of vertices available A is formed by those vertices that 

are not yet in the solution, i.e. in the clique created or in the 

cliques already created by the ant. In the case of a clique that is 

being created, vertices from already visited divisions of the 

graph cannot be included in set A when creating this clique. 

Thus, the available vertices are those vertices from the unvisited 

divisions of the graph, which are connected by edges to all 

vertices of the clique being created. In the case of an incomplete 

graph with a density of less than 1, there is also a need to verify 

and remove from the set of vertices available A those that are 

not connected by edges to all vertices of the clique being 

created. 

Pheromone is a chemical agent with which ants communicate 

with each other. A larger amount of pheromone at the edges of 

the graph encourages ants to select these edges and include them 

in the created maximum clique when including the selected 

vertex in the created clique. Therefore, an additional amount of 

pheromone is stored on the edges that make up the solution to 

the problem, on the edges that form all the maximum cliques 

with the minimum sum of their weights. This additional quantity 

of pheromone depends on the smallest sum of the weights of all 

the maximum clicks determined by all ants in the current cycle 

… … … 

… … … 
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denoted by best solutionc and the smallest sum of weights 

achieved so far in the previous cycles denoted by best solutiong  

and this amount is expressed (4). 

 

𝑑𝜏𝑠 =  
1

(1−
𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑔

− 𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝑐

𝑏𝑒𝑠𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑔
)

                        (4) 

 

Of course, from all edges, part of the pheromone evaporates, 

and the intensity of evaporation depends on the evaporation 

coefficient ρ. The amount of pheromone at the edges of the 

graph in one cycle of the algorithm is therefore updated 

according to (5). 

 

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 +  𝑑𝜏𝑠                               (5) 

 

The vertex selection desire function 𝜂𝑖𝑗 is the heuristic 

information assigned to vertices 𝑗 when the ant is at vertex 𝑖. 
This value is always calculated when the ant turns on another 

vertex 𝑖 to the clique being created, so the value of the desire 

function is constantly changing.  

The amount of pheromone at the edges of the graph indicates 

the extent to which the available vertices are suitable due to the 

purpose of the algorithm to be included in the clique created by 

the ant. 

IV. DIFFERENT FUNCTIONS OF DESIRE 

 

Depending on the purpose of the ant algorithm, different 

information turns out to be important when selecting the most 

suitable next vertex to be included in the clique being created. 

Tables I and II group the different functions of desire according 

to the purpose of the formic algorithms. 

 Table I contains the functions of desire due to the purpose 

of the ant algorithms, which is to determine the minimum sum 

of the maximum weights of all cliques, various functions 

containing information about:  

1) the weight of the edge between vertex 𝑖 and 𝑗, which is 

denoted as the weight of edge 𝑒(𝑖, 𝑗), 

2) the sum of the edge weights by which vertex 𝑗 is 

connected with the vertices of the clique formed so far 

by the ant, which is denoted as the weight of clique cj, 

3) possible next choice after selecting vertex j, which is 

marked as 𝑛𝑗1, see (6), vertices k are connected to 

vertex 𝑗. 

 

The part of the desire function denoted by 𝑛𝑗1 and expressed 

by the formula (6) is shown in Figure 2. 

 

𝑛𝑗1 =  
1

min  {𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑘}
   ,         𝑘 ∊ 𝐴                       (6) 

 

An ant at the vertex 𝑖 can incorporate different vertices 𝑗 from 

the set of available vertices 𝐴. An ant may be guided by heuristic 

information about vertex 𝑗, which can be the weight of the edge 

between vertex 𝑖 and vertex 𝑗 which is denoted as weight of edge 

𝑒(𝑖, 𝑗) or the sum of the edge weights that vertex 𝑗 is connected 

to the vertices of the clique formed so far by the ant, which is 

denoted as weight of clique 𝑐𝑗, which edges for the example 

vertex 𝑗 are marked with dashed red lines in Figure 3. The ant is 

also guided by additional heuristic information regarding the 

possible next vertex selection, i.e. heuristic information about 

the various vertices 𝑘 and contained in the value of the quantity 

𝑛𝑗1. The vertices 𝑘 are vertices connected by edges to vertex 𝑗. 

These vertices have all the edges connecting them to the clique 

formed by the ant, so they also have the sum of their weights 

calculated, which is denoted as the weight of clique 𝑐𝑘, and from 

them the sum with the smallest value is selected and it is an 

additional heuristic information when selecting the vertex 𝑗 

defined by 𝑛𝑗1. Blue dot lines from vertex 𝑗 to the other vertices 

𝑘 symbolize the edges and possible subsequent choices of the 

ant after selecting vertex 𝑗. Not all green dot lines in Figure 2 

are plotted. Green solid lines are drawn for only one of the 

vertices 𝑘. The next possible choices after selecting vertex j are 

as many as there are vertices 𝑘 connected by edges to vertex 𝑗. 

 

 
Fig. 3. Illustration for explanation of an additional heuristic information 𝑛𝑗1. 

 

Taking into account the various heuristic information and 

their combinations, a number of different functions of desire and 

different ant algorithms were created. Six different ant 

algorithms with different desire functions to determine the 

minimum sum of the maximum cliques weights in a full graph 

with a density 𝑞 of 1 are denoted from ALG_1 to ALG_6 and 

shown in Table I. 

TABLE I 

DESIRE FUNCTIONS - MINIMUM SUM OF WEIGHTS 

 

 Formulas of desire functions 

1

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒(𝑖,𝑗))
3  

 

    
1

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑙𝑖𝑞𝑢𝑒 𝑐𝑗)
3 

1

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒(𝑖,𝑗))
2

∗(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑙𝑖𝑞𝑢𝑒 𝑐𝑗 −𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒(𝑖,𝑗))
2  

 

 
1

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒(𝑖,𝑗))
2

∗(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑙𝑖𝑞𝑢𝑒 𝑐𝑗)
2 

 

𝑛𝑗1

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒(𝑖,𝑗))
2

∗(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑙𝑖𝑞𝑢𝑒 𝑐𝑗 −𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒(𝑖,𝑗))
2    

 

𝑛𝑗1

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒(𝑖,𝑗))
2

∗(𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑙𝑖𝑞𝑢𝑒 𝑐𝑗)
2   

ALG_1 

ALG_2 

ALG_3 

ALG_4 

ALG_5 

ALG_6 

 

 

Set

… 

i 

j 

k 
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Table II contains the functions of desire, due to the purpose 

of the formic algorithm, which is to determine the maximum 

number of maximum cliques, various functions containing 

information about: 

1) the degree of vertex 𝑗, i.e. the number of edges 

connecting other available vertices to that vertex 𝑗, 

which is the degree of vertex 𝑗, and the maximum 

degree among these vertices 𝑗, which is denoted as the 

maximum degree of vertices 

2) the number of 3 vertex cliques (each vertex 𝑗 and any 

vertex 𝑘 with other available vertices can form some 

number of 3-vertices cliques) and the maximum 

number of these 3-vertices cliques, which is designated  

number  of 3 vertex cliques and maximum number of 3 

vertex cliques respectively, 

3) possible next choice after selecting vertex 𝑗, which is 

marked as 𝑛𝑗2, see (7), vertices 𝑘 are connected to 

vertex 𝑗. 

 

The part of the desire function denoted 𝑛𝑗2 and expressed (7) 

is shown in Figure  3. 

 

      𝑛𝑗2 =   
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 3 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑙𝑖𝑞𝑢𝑒𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑘  + 1

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 3 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑙𝑖𝑞𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑘
     (7) 

 

An ant at vertex 𝑖 can incorporate into the clique it creates 

different vertices 𝑗 from the set of available vertices A. An ant 

can be guided by heuristic information about vertex 𝑗, which can 

be the degree of vertex 𝑗, which is denoted as degrees of vertex 

𝑗, or the number of 3-vertex cliques that this vertex 𝑗 forms with 

the other available vertices, which is denoted as  number of 3 

vertex cliques. 

An example of a 3-vertex cliques is shown in blue in Figure 

4. Each vertex j forms a certain number of such 3-vertex cliques, 

which is denoted as number of 3 vertex cliques. The maximum 

number of 3-vertex cliques formed by any of the vertices 𝑗 is 

defined by maximum number of 3 vertex cliques.  

The ant is also guided by additional heuristic information 

regarding its possible next selection, i.e. heuristic information 

regarding various vertices of 𝑘 and this information is contained 

in the value of the quantity as 𝑛𝑗2. The vertices of 𝑘 are vertices 

connected by an edge to the vertex 𝑗.  Figure 2 shows only one 

vertex 𝑘 with one 3-vertex clique. The green dotted line 

indicates the existing edge between the vertex 𝑗 and 𝑘. Not all 

green dotted lines are specified in Figure 3. Of course, there may 

be more green 3-vertex cliques formed by vertex 𝑘. The vertices 

𝑘 are all vertices connected by an edge to the vertex 𝑗, and each 

vertex thus forms a different number of 3-vertices cliques, 

including their maximum number from all vertices 𝑘 connected 

by an edge to any vertex 𝑗. Of all the 3-vertex cliques of 𝑘 

connected to vertex 𝑗, the maximum is selected and is additional 

information about vertex 𝑗 and is denoted as the number of 3 

vertex cliques of vertex 𝑘.  Of the 3-vertex cliques found for all 

vertices 𝑘 connected by edges to all vertices 𝑗, the largest is 

chosen and denoted as the maximum number of 3 vertex cliques 

from vertices 𝑘. The ratio of these two quantities is the heuristic 

information of vertex j and is denoted by 𝑛𝑗2. 

 

 
Fig 4. Illustration for explanation of an additional heuristic information 𝑛𝑗2. 

  

Taking into account the various heuristic information and 

their combinations, a number of different functions of desire and 

different ant algorithms were created. Four different ant 

algorithms with different desire functions to determine the 

maximum number of maximum cliques in an incomplete graph, 

i.e. density 𝑞 less than 1, are denoted from ALG_N1 to 

ALG_N4 and presented in Table II. 

 

TABLE  II 

DESIRE FUNCTIONS - MAXIMUM NUMBER OF MAXIMUM CLIQUES 

 

 Formulas of desire functions 

without a desire function 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 3 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑙𝑖𝑞𝑢𝑒𝑠+1

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 3 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑙𝑖𝑞𝑢𝑒𝑠
  

 

 𝑑𝑒𝑔𝑟𝑒𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗+1 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
  

 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 3 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑙𝑖𝑞𝑢𝑒𝑠+1) 𝑛𝑗2

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 3 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑙𝑖𝑞𝑢𝑒𝑠
  

 

ALG_N1 
 

ALG_N2 
 

ALG_N3 
 
 

ALG_N4      

 

The verbal description of the steps of the ant algorithm taking 

into account both goals of its operation is presented in Figure 1. 

 

LISTING 1 

THE VERBAL DESCRIPTION OF THE STEPS OF THE ANT ALGORITHM 

 
BEGIN 

1. The initial pheromone value is given to all edges of the d-division 

graph 

2. Cycle loops - a whole swarm of ants works in one cycle 

3. Each ant from the swarm designates the solution, this is the 

maximum number of maximum cliques: 

3.1 From the available vertices, the ant chooses one by the roulette 

method with the probability 𝑝𝑖𝑗 and includes in the solution using the 

amount of pheromone and the function of desire 

3.2 The set of available vertices 𝐴 and their functions of desire are 

redetermined 

3.2a The edge weights of the resulting solution are added together 

3.2b The number of designated maximum cliques of the resulting 

solution is added together 

3.2a The smallest sum of cliques weights from a given cycle is 

remembered 

… 
     i 

   j    

   k 
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3.2b The largest number of maximum cliques from a given cycle is 

remembered 

4. After the end of the cycle 

4.1 The best solution of all cycles is stored 

4.2 The pheromone value is updated: the amount of pheromone added 

to the edges of the solution is calculated and the evaporation coefficient 

is used 

END. 

V. EXPERIMENTAL RESULTS 

 

The developed algorithms have been tested for different 

purposes of using the algorithm, and so Tables III and IV present 

the results for obtaining the minimum sum of weights of all 

edges of all maximum cliques in full graphs with a density q of 

1, while Tables V, VI and VII present the results for obtaining 

the maximum number of maximum cliques in incomplete 

graphs with a density 𝑞 less than 1. All tables show values 

averaged over the 10 results obtained in each case examined. All 

graphs have been generated randomly, weights were generated 

in range of 1 to 100. 

Table III shows the obtained minimum sums of weights of all 

maximum cliques depending on the number of divisions of the 

d-division graph, and so the number of divisions was 𝐿𝑑𝑧∊{10, 

15, 20, 25, 30} with a constant number of vertices in each of 

these divisions equal to 25 and a constant graph density equal to 

1 and with constant parameters of the ant algorithm such as the 

number of cycles,  which was 30, the number of ants which was 

10 and the evaporation coefficient of 0.005. The most effective 

in their operation turn out to be ant algorithms with the function 

of desire defined as ALG_5 and ALG_6. It is clear that with the 

increase in the number of graph divisions, i.e. with the increase 

in the dimension of the determined maximum cliques, the 

minimum sum of the weights of the maximum cliques increases. 

 

TABLE  III 

MINIMUM SUM OF CLIQUES WEIGHTS – NUMBER OF GRAPH DIVISIONS 

 
 Ldz=10 Ldz=15 Ldz=20 Ldz=25 Ldz=30 

ALG1 45 624 114 786 215 560 347 597 510 958 

ALG2 43 648 111 766 211 569 341 426 523 796  

ALG3 42 223 109 223 206 848 335 839 496 417 

ALG4 42 658 109 018 207 055 336 624 497 680 

ALG5 41 557 106 959 204 187 332 269 492 191 

ALG6 41 810 107 424 204 351 332 874 493 106 

 

Table IV shows the obtained minimum sums of weights of all 

maximum cliques depending on the number of vertices in each 

division of the d-division graph, and so the number of vertices 

in the graph divisions was 𝐿𝑜∊{20, 25, 30, 35, 40} with a 

constant number of graph divisions equal to 20 and a graph 

density constant of 1 and constant parameters of the ant 

algorithm such as the number of cycles,  which was 30, the 

number of ants which was 10 and the evaporation coefficient of 

0.005. Here, too, the most effective in their operation turn out to 

be ant algorithms with the function of desire defined as ALG_5 

and ALG_6. It is also clearly visible here that with the increase 

in the number of vertices in the graph divisions, i.e. with the 

increase in the number of maximum cliques determined, the 

minimum sum of weights increases. 

Table V shows the obtained maximum number of maximum 

cliques depending on the number of divisions of the d-division 

graph, and so the number of divisions was 𝐿𝑑𝑧∊{5, 7, 9, 11, 13} 

with a constant number of vertices in each of these divisions 

equal to 50 and a constant density of the graph equal to 0.75 and 

with constant parameters of the ant algorithm such as the 

number of cycles, which was 30,  the number of ants, which was 

10 and a evaporation  coefficient of 0.005. The most effective 

in its operation turns out to be an ant algorithm with a desire 

function referred to as ALG_N4. It is clear here that with the 

increase in the number of graph divisions, i.e. with the increase 

in the dimension of maximum cliques, the number of maximum 

cliques is decreasing. 

 

TABLE  IV 

MINIMUM SUM OF CLIQUES WEIGHTS – NUMBER OF VERTICES IN DIVISIONS  

 

 Lo=20 Lo=25 Lo=30 Lo=35 Lo=40 

ALG1 172 411 215 560 258 237 301 306 344 782 

ALG2 169 599 211 569 253 109 295 301 337 464 

ALG3 165 896 206 848 247 344 287 822 328 570 

ALG4 165 938 207 055 247 610 288 318 328 961 

ALG5 164 374 204 187 244 045 284 057 324 276 

ALG6 164 436 204 351 244 352 284 317 324 291 

 

TABLE  V 

MAXIMUM NUMBER OF MAXIMUM CLIQUES – NUMBER OF GRAPH DIVISIONS 

 

 ALG_N1 ALG_N2 ALG_N3 ALG_N4 

Ldz=5 49.4 49.4 49.4 49.6 

Ldz=7 46.7 46.8 46.8 46.9 

Ldz=9 40.9 41.3 40.9 41.8 

Ldz=11 30.7 31.0 30.8 32.7 

Ldz=13 17.4 17.9 17.2 19.3 

 

Table VI shows the obtained maximum number of maximum 

cliques depending on the number of vertices in each divisions 

of the d-division graph, and so the number of vertices in the 

graph divisions was 𝐿𝑜∊{20, 30, 40, 50, 60} with a constant 

number of graph divisions equal to 11 and a graph density 

constant of 0.75 and constant parameters of the ant algorithm 

such as the number of cycles, which was 30,  the number of ants, 

which was 10 and a evaporation coefficient of 0.005. Here, too, 

the most effective in its operation turns out to be an ant 

algorithm with a desire function defined as ALG_N4. It is also 

clear here that with the increase in the number of vertices in the 

graph divisions, the maximum number of maximum cliques 

increases. 

Table VII shows the obtained maximum number of maximum 

cliques depending on the density number of the d-division 

graph, and so the graph density was 𝑞∊{0.60, 0.65, 0.70, 0.75, 

0.80, 0.85} with a constant number of graph divisions equal to 

11 and a constant number of vertices in graph divisions equal to 

60 and constant parameters of the ant algorithm such as the 
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number of cycles, which was 30,  the number of ants, which was 

10 and a evaporation coefficient of 0.005. Here, too, the most 

effective in its operation turns out to be an ant algorithm with a 

desire function defined as ALG_N4. It is also clear here that 

with the increase in graph density, the maximum number of 

maximum cliques increases. 

Ant algorithms, regardless of the purpose of operation, were 

tested with changes in the values of ant algorithm parameters 

such as the number of cycles, the number of ants or the 

evaporation rate. The operation of algorithms and the results are 

similar and the best algorithms turn out to be, depending on the 

purpose of the action, and so the algorithms ALG_5 and ALG_6 

for the purpose of determining the minimum sum of the weights 

of the maximum cliques and the algorithm ALG_N4 for the goal 

of determining the maximum number of maximum cliques. Ant 

algorithms determining the maximum number of maximum 

cliques were tested at a constant number of divisions of the 

graph 𝐿𝑑𝑧=9 and a constant number of vertices in divisions 

𝐿𝑜=50 and at graph density 𝑞=0.65, and ant algorithms 

determining the minimum sum of weights of maximum cliques 

were tested with a constant number of divisions of the graph 

𝐿𝑑𝑧=15 and a constant number of vertices in divisions 𝐿𝑜=25 

and with a graph density 𝑞 of 1.0. 

 

TABLE
  VI 

MAXIMUM NUMBER OF MAXIMUM CLIQUES – VERTICES IN GRAPH DIVISIONS 

 
 ALG_N1 ALG_N2 ALG_N3 ALG_N4 

Lo=20 6.5 6.9 6.9 7.0 

Lo=30 13.5 14.2 13.8 15.1 

Lo=40 21.6 22.8 21.9 23.6 

Lo=50 30.7 31.0 30.8 32.7 

Lo=60 40.2 41.4 40.6 42.0 

 

TABLE  VII 

MAXIMUM NUMBER OF MAXIMUM CLIQUES – GRAPH DENSITY Q 

 
 ALG_N1 ALG_N2 ALG_N3 ALG_N4 

Q=0.60 4.0 4.6 3.9 3.9 

Q=0.65 10.6 12.2 11.1 12.7 

Q=0.70 24.3 27.1 25.6 27.2 

Q=0.75 40.2 41.4 40.6 42.0 

Q=0.80 50.4 50.9 50.6 51.6 

Q=0.85 55.7 56.1 55.7 56.3 

 

TABLE  VIII 

MAXIMUM NUMBER OF MAXIMUM CLIQUES – NUMBER OF CYCLES 

 
 ALG_N1 ALG_N2 ALG_N3 ALG_N4 

Lc=10 21.6 24.2 22.1 24.4 

Lc=20 21.3 24.2 22.7 24.3 

Lc=30 22.6 23.7 22.8 25.1 

Lc=40 22.3 23.9 22.4 26.2 

Lc=50 22.7 24.4 23.3 26.3 

 

Tables VIII and IX show respectively the maximum number 

of maximum cliques and the minimum sum of the clique 

weights depending on the number of cycles 𝐿𝑐∊{10, 20, 30, 40. 

50} with constants of other parameters of the ant algorithm such 

as the number of ants, which was 10, and the evaporation 

coefficient of 0.005. 

Tables X and XI show respectively the maximum number of 

maximum cliques and the minimum sum of the clique weights 

depending on the number of ants 𝐿𝑚∊{10, 20, 30, 40, 50} with 

constants of other parameters of the ant algorithm such as the 

number of cycles, which was 30, and the evaporation coefficient 

of 0.005. 

TABLE  IX 

MINIMUM SUM OF CLIQUES WEIGHTS – NUMBER OF CYCLES 

 
 Lc=10 Lc=20 Lc=30 Lc=40 Lc=50 

ALG1 115 395 114 848 114 786 114 658 114 480 

ALG2 112 407 111 922 111 766 111 317 111 324 

ALG3 109 500 109 509 109 223 108 909 108 663 

ALG4 109 546 109 504 109 018 109 009 108 935 

ALG5 108 847 108 356 106 959 108 143 108 027 

ALG6 108 718 108 823 107 424 108 168 108 184 

 

TABLE  X 

MAXIMUM NUMBER OF MAXIMUM CLIQUES – NUMBER OF ANTS 

 
 ALG_N1 ALG_N2 ALG_N3 ALG_N4 

Lm=10 22.6 23.7 22.9 25.1 

Lm=20 23.2 24.9 23.6 25.8 

Lm=30 23.1 24.8 24.1 26.6 

Lm=40 23.4 25.3 23.9 26.2 

Lm=50 23.1 25.2 23.9 26.5 

 

TABLE  XI 

MINIMUM SUM OF MAXIMUM CLIQUES – NUMBER OF ANTS 

 
 Lm=10 Lm=20 Lm=30 Lm=40 Lm=50 

ALG1 114 786 114 326 114 312 114 327 114 154 

ALG2 111 766 111 306 110 833 111 129 110 781 

ALG3 109 223 108 783 108 303 108 367 107 957 

ALG4 109 018 108 826 108 923 108 763 108 572 

ALG5 106 959 108 115 107 807 107 852 107 247 

ALG6 107 424 108 121 107 985 107 816 107 683 

 

TABLE  XII 

MAXIMUM NUMBER OF MAXIMUM CLIQUES – EVAPORATION RATE 

 
 ALG_N1 ALG_N2 ALG_N3 ALG_N4 

ρ=0.001 22.2 23.4 22.8 24.6 

ρ=0.003 22.4 24.3 22.8 25.3 

ρ=0.005 22.6 23.7 22.9 25.1 

ρ=0.007 22.2 23.1 23.0 25.1 

ρ=0.009 22.4 24.0 23.1 25.5 
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Tables XII and XIII present respectively the obtained 

maximum number of maximum cliques and the obtained 

minimum sum of weights of maximum cliques depending on the 

evaporation coefficient 𝜌∊{0.001, 0.003, 0.005, 0.007, 0.009} 

with constants of other parameters of the ant algorithm such as 

the number of cycles, which was 30, and the number of ants, 

which was 10. 

TABLE  XIII 

MINIMUM SUM OF CLIQUES WEIGHTS – EVAPORATION RATE 

 
 ρ=0.001 ρ=0.003 ρ=0.005 ρ=0.007 ρ=0.009 

ALG1 114 871 114 888 114 786 114 172 114 779 

ALG2 111 733 111 484 111 766 111 891 111 569 

ALG3 108 967 108 899 109 223 108 962 108 781 

ALG4 108 980 109 056 109 018 109 199 109 079 

ALG5 108 172 108 360 106 959 108 252 108 310 

ALG6 108 306 108 617 107 424 108 391 108 704 

VI. CONCLUSIONS 

The conducted comparative tests of ant algorithms with 

various functions of desire show that the functions of desire 

taking into account not only the direct choice of the ant but also 

its subsequent choices turn out to be more effective in achieving 

the goals in which these algorithms operate. For both ant 

algorithms, the desired functions developed with regard to 

future ant choices allowed to achieve better results with 

different input parameters such as the number of divisions of the 

d-division graph, the number of vertices in the graph divisions, 

and the density of the graph 𝑞. 
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