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PLASTIC DEFORMATION OF LAYERED COMPOSITE MATERIAL WITH
DIFFERENT FEATURES OF COMPONENTS UNDER COMPRESSION TEST

PLASTYCZNE ODKSZTAŁCENIE WARSTWOWYCH MATERIAŁÓW KOMPOZYTOWYCH
O RÓŻNYCH CECHACH SKŁADNIKÓW W WARUNKACH TESTU ŚCISKANIA

Deformation of a composite material being compressed between two parallel plates is
analyzed from the point of view of changing the relative thickness of particular layers during
the process. The three layer composite consists of two different materials: one of them is
assumed to be viscoplastic while the other one is perfectly plastic. Variation of the relative
thickness of the different layers is investigated with respect to values of material constants,
geometrical arrangements of the materials as well as the loading history.

W pracy przedstawiono analizę plastycznego odksztalcenia mateiału kompozytowego w wa
runkach ściskania między dwoma równoległymi sztywnymi płytami z punktu widzania zmian
relatywnej grubości poszczególnych warstw podczas procesu odkształlcenia. Rozważano kom
pozyt składający się z trzech symetrycznie położonych warstw z dwóch różnych materiałów:
jeden z nich wykazuje własności lepko plastyczne, a drugi jest idealnie plastyczny. Zróż
nicowanie względnych grubości różnych warstw przebadano z uwzględnieniem wartości stałych
materiałowych, geometryczne aranżacji odksztalcanych materiałów oraz historii i rodzaju
obciążenia. Wykazano, że w zależności od wszystkich w/w czynników charakter warunków
zachodzących na powierzchni kontaktu różnych materiałów może się zmieniać w trakcie
odkształcenia od połączenia idealnego materiałów do poślizgu między nimi. Udowodniono, że
zmiana relatywnej grubości poszczególnych warstw jest możliwa wyłącznie w przypadku
wystąpienia poślizgu pomiędzy warstwami.
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1. Introduction 

Compressing a strip between rough long parallel plates is one of the more famous 
tests in experimental methods. Such a test enables analysis of plastic deformability of 
the material. Theoretically such a problem was first formulated by Pr a n d t I [I) for 
a rigid/perfectly plastic material. His solution was completed by N ad a i (see for 
example [2 p. 234]. Kuznets o v in his paper [3] has investigated the compression of 
a non-homogeneous isotropic strip. The effect of the inertia terms has been studied by 
Najar [4]. Ad ams et.al [5] have extended the original problem for viscoplastic 
materials. The progressive compression of a strip was first considered by Col li n s and 
Meg u id [6] for both isotropic and anisotropic strain-hardening materials. Other 
aspects of the compression of a three-layer strip have been investigated in [7-9]. 

A further generalization of Prandtl's problem the compression of a three-layer 
symmetric strip consisting of two different materials has been done in the paper [IO]. 
One of the materials is assumed to be rigid/perfectly plastic and the other is ri 
gid/viscoplastic. Qualitatively different solutions have been obtained depending on the 
combination of the layers: (a) the viscoplastic layer is between two rigid/perfectly 
plastic layers and (b) the rigid /perfectly plastic layer is between two viscoplastic layers. 
Instantaneous solutions of the problem have been found and discussed. However, it is 
very important not only to have information about the velocity, strain-rate and stress 
distributions within the composite, but also to have a control for variation of the 
thickness of the composite as well as the relative thickness of the different layers during 
the deformation. Moreover, it has been shown in paper [ I OJ that various boundary 
conditions along the bi-material interface (sticking or sliding) can occur during the 
compression, depending on relationships between all mechanical, geometrical parame 
ters of the problem at each considered moment of time. The object of the present study 
is to analyze the process of deformation itself depending on all the material parameters 
as well as on the deformation path. 

2. Problem formulation and the preliminary analysis 

Below we present the indispensable information from paper [10] necessary for further 
analysis. Let us consider a model issue of compressing three layers consisting of 
different materials situated symmetrically towards each other (See Fig. l ). The plastic 
material is characterized by the appropriate maximal shear stress k whereas the 
viscoplastic material is described in accordance with the law proposed by Ad am s 
et al. [5]: 

(I) 

where k1, t0 and n are certain material constants, while E; is the effective strain-rate 
calculated at the particular points in the area of the viscoplastic material [ I OJ . 
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Fig. I. The general scheme of the three layer composite under compression 

At the outside boundary, the friction is defined by the Tresca' s law with the 
friction factor m (O::; m::; 1 ). The thickness of the three-layer material is 2H, the 
thickness of the internal layer is 2H2, and the relative thickness of this layer with respect 
to the overall thickness is denoted as H2 = H2/ H(O < H2 < I). It is known that the upper 
and the lower boundaries of the composite are approaching each other at the velocity V. 
Note that the parameters H, V and fl generally speaking depend on time. Assuming that 
H = H (t) (and what follows V= V(t) = - H' (t)) is known (depends on the loading 
applied), unknown relative thickness H2 = H2 (t) can be found from the solution to the 
problem. The following notation will also be used: 

. V(t) H' (t) 
[ (t) = --- = -- 
c H(t) H(t) 

(2) 

which characterizes the overall strain-rate of the whole composite. In the conditions of 
the loading (unloading does not occur during the whole plastic deformation) this value is 
al ways non-positive. 

In paper [ 1 O] it was shown that, in the case when the viscoplastic material is situated 
between the layers of the plastic material, there always exists a solution of the modeling 
problem corresponding to the perfect bonding between the materials in the three-layer 
composite. In such a case the distribution of the velocities in the direction of OY axis 
(Fig. 1) is as follows: 

V 
vy(y) = ---,p = EcY (3) 

independent of whether the particle is in the plastic or viscoplastic material. Therefore 
the relative thickness of this kind of composite materials during deformation does not 
change. 

However, this conclusion becomes to be false, in general, when the plastic material 
is between the layers of the viscoplastic one. In such a case there are three 
possibilities: 
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I. The first of them occurs when 

ko - 
--~H2, 
mk, 

(4) 

then the viscoplastic material is in the rigid state, and only the plastic material undergoes 
deformation with sliding along the bi-material interface. Thus we have: 
H/(t) = H'(t) = -V(t) or H2(t) = H(t)-H1, where H1 is a constant thickness of the 
viscoplastic material situated in the rigid state. In a period of time when condition (4) is 
satisfied, the relative thickness of the internal layer changes according to the law: 

- H(O)-H2(0) H,(t) = l ------. 
- H (t) 

Let us note for further considerations that function H2(t) from (5) can be defined as 
the solution of the differential equation: 

(5) 

- , H' (t) - 
H2 (t) = --(1-H2(t)), H(t) 

(6) 

with the initial condition: 

H2(0) = H2(0)/H(O). (7) 

As results, under condition (4), the relative thickness H2(t) of the internal perfectly 
plastic layer does not depend on the history of the deformation represented by the 
function tc(t). 

The remaining two cases occur when condition (4) is not true: 

ko - 
-->H2, 
mk, 

(8) 

and depend on whether an auxiliary parameter 

V Q [ ko ]-I/n ate [ ko ]-I/n t=---- - -1 -1 ----- ----1 -1 
H ~ mk1H2 - ~ mk1H2 

is greater or smal ler than zero (see [ l Ol). Note that this parameter essentially depends on 
the deformation history. We have also introduced here a new constant which is actually 
a material constant: 

(9) 

o =-2-. 
~ 

( l 0) 

Let us not, that the formula (9) always makes sense because the term in the square 
brackets is positive what follows from condition (8). Apart from that it should be 
underlined that the parameters defined in (9) varies during the deformation depending 
on the relative thickness of the internal layer H2 = H2(t) and on the overall strain-rate 
t, = Ec(t) Cs= s(Ec, H2)). 
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II. Let us assume that: 

(] I) 

where 

and 

k [ ( ó · )"]- 
1 

as H2 = h2 = -0
- I + - ~ 

mk, l -m2 
(12) 

In other words, condition (11) is equivalent to 

- ko h2(tJ~H2<--. 
mk, 

Then, as follows from [IO], only the instantaneous solution which assumes sliding 
between the layers is possible. The velocities of the external and internal (bi-material) 
boundaries are written as: 

(I 3) 

vU>(H) = - V y , v<t>(H) = v<Pl(H) = - V(H2+'sH) 
Y . 2 Y 2 H ( 1 + 'r;) , (14) 

where the parameter 'r; = 'r;(H(t), H2(t)) was described in (8). 
To derive the equation describing how the relative thickness of the internal layer 

changes in time, let us consider the thickness of the particular layers in time momentums 
t and t + li t. Some simple transformations lead to: 

- (l+'r;)H2+(H2+s)tcllt 
H2(t+L'lt) = (I +'r;)(l +t~t) . (15) 

This makes it possible to calculate the derivative of the sought-for function: 

. , H' - 'r; 
H2 (t) = -(1-H2(t))--r. H I +s 

(] 6) 

This is an ordinary differential equation describing together with the initial condition 
(7) the functions i-12 = i-12 (t). 

III. Let us consider the last of the possible cases: 

(17) 

As it was shown in paper [IO], under such an assumption there exists the 
instantaneous solution of the problem with sticking conditions along the bi-material 
interface. This solution leads to formula (3) which means that relative thickness of 
the materials does not change during that portion of deformation where condition 
( 17) is satisfied. 
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In other words in this case: 

( 18) 

We can rewrite ( 18) in the form of ordinary differential equation: 

(I 9) 

with the initial condition (7) and assuming that additional condition ( 17) is fulfilled. 
In paper [IO] it was also shown that in the transitional position between the 

assumptions (11) and ( 17) 

s = O, (20) 

conditions of sticking and sliding are satisfied at the same time so that the velocity jump 
towards OX axis equals zero, but, at the same time, the value of the shear stress in the 
plastic material assumes its greatest value at the interface of the layers. 

3. Basic equation 

The above considerations lead us to the statement that the sought-for function 
H2 = H2(t) satisfies the differential equations (6), (16) and (19) depending on which of 
the conditions (4), (I I) or (17) is satisfied at a given moment. This can be described by 
means of one differential equation: 

- H' - - - - 
H2'(t) =-H(H2-1)·g(H2,-H'/H) =tc(H2-1)·g(H2,tJ, (21) 

g= I 

g=O 

Fig. 2. Schematic distribution of the values of function g 
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with the initial condition (7). In this equation, g is a smooth and piece-wise differentiab 
le function of its parameters described as follows: 

( 

1, 
g(H2, t,) = t,/(1 +t,) 

O, 

gdy if2 ~ ko/ (mk1), 

gdy O :::; t,(H2,t,) < 00, 
gdy (, (H2,t C) < O. 

(22) 

Fig. 2 shows the distribution of the values of this function depending on the values of 
the arguments H2 = H2(t) and te= tc(t). 

4. Quantitative analysis of the Cauchy problem (21), (7). 

Assuming that all the functions are known then an equivalent to the problem under 
consideration integral representation of the solution can be derived: 

- , H' - 
ln(]-H2'(t)) = f-g(H2,-H'/H)dr+lnc. 

o H 

Taking into account the initial condition (7) the formula can be written as: 

H(O)[l-H2(0)] - - 
1 ------:::; H2(t):::; H2(0). H(t) 

(23) 

As function g is bounded (O :::; g ::; 1 ), one can get the estimate at any time t regardless 
of the method of loading: 

(24) 

Here the upper bound corresponds to the process under perfect bonding of different 
materials during the whole process. The lower bound occurs if during the entire time of 
deformation the viscoplastic material remains in the rigid state and the only plastic 
material is deformed. 

Let us assume that the process of deformation proceeds in such a way that the overall 
strain-rate takes a constant value (a > O): 

tc(t) = const = -a ⇒ H(t) = exp[-at]. (25) 

The solution of equation (23) depends on whether the initial value i-12(0) is greater or 
smaller than h2(tJ described in (12) and for which the parameter t, = O. Namely if 
f-12 (O) :::; h2 (t c) then the right hand side of the differential equation (21) equals to zero, 
therefore the value of the function does not change: H2(t) = H2(0). As in this case the 
value of h2 (tJ is constant, this characteristic of deformation is retained throughout the 
process. 

However, if f-12 (0) > h2 (tJ then the variables in the differential equation (21) can be 
separated thus deriving: 
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il,(IJ I ~ ( { k })l/nl-l ds 
il,L I - ao max O, mk:s - I 1-s = lnH(t) = -at. 

Function il 2 (t) described in (26) is smooth and monotonically decreasing and satisfies 
the following inequality: 

(26) 

(27) 

with the lower bound never to be reached and the following estimate: 

k [ ( o )"]-I H2(t) ➔ h2(-a) = -0 1 + ~ , 
mk, l -m2 

when t ➔ oo (H(t) ➔ O). (28) 

Regarding tc(t) described in (2) as external control function which belongs to a certain 
functional space we can formulate the following mathematical problem: 

Find such test function tc(t) belonging to the set S of continuous, piece-wise 
differentiable non-positive functions in the interval O ~ t ~ T so that the solution to 
the Cauchy problem (21), (7) satisfies the additional conditions: H

2 
(T) = ir; 

<P(H2, te) ➔ min where functional <P(H2, te) determines, for example, the total plastic 
energy performed during the process of compression. 

5. Numerical simulations 

In this part of the paper we will investigate the behavior of the relative thickness of 
the internal layer with respect to various parameters of the problems. All values of the 
parametes will be given in dimensionless form. Thus, everywhere later we assume that 
the initial thickness of the composite is equal to unit H(O) = 1.0. Also the time in some 
dimensionless parameter. 

A) Effect of the strain-rate value. 
Let us assume that that the process of deformation occurs at the overall constant strain-rate 
with different values of the parameter a (see (25)). The external friction factor in the 
calculations equaled m = 0.5, the viscoplastic factor n = 0.5, and the ratio of the shear 
stresses were k1/k0 = 0.3. The value of the parameter o describing viscosity of the external 
material (see (10)) was equal to o = O.O 1. The initial relative thickness of the internal 
plastic layer if 2 (0) = 0.8 was chosen to satisfy condition (4) at the initial moment. Fig. 3a 
shows us given changing of the total composite thickness during the compression process 
from the initial unit value to the same final thickness reached at different time (what 
corresponds, due to (25), to the different values of the parameter a). Fig. 3b shows the 
corresponding variation of the relative thickness of the internal layer if 2. 

According to the results obtained above, the way of loading does not matter as long 
as the relative thickness if 2 (t) satisfies condition ( 4) which in our case occurs when 
H2 (t) 2 0.6. Then only the internal perfectly plastic material is being under deformation 
whereas the viscoplastic material remains in the rigid state. This result is visible from 
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Fig. 3. (a) - given variations in overall thickness of the composite layer H(t); (b) - behavior of the relative 
thickness of the plastic layer depending on different history of entire deformation. The lower dashed line 5 in 

Fig. 3b represents the lower bound estimate for ff2 obtained in (24) 

Fig. 3b where all the lines coincides themselves at values 0.6 :::; n. (t) :::; 0.8. However, 
after exceeding these values, the constant a determining the total strain-rate t, c (t) affects 
remarkably the final result (Fig. 3b.) The greater absolute value of the total strain-rate 
(the greater value of the parameter a) corresponds to the smaller relative thickness of the 
internal layer. The lower bound from the estimate (24) is drawn as the dashed line 
5 which corresponds as has been mentioned above to the deformation the internal layer 
only while the external material is situated in the rigid state. The horizontal parts of the 
curves correspond to the sticking conditions between the different materials. 

B) Effect of the value of the viscosity parameter o. 
Let us investigate now the influence of one of the most important viscosity parameter 
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t0 from the relation (1) or what is equivalent, due to (10), to the parameter o. Namely 
we consider four different values of this parameter o= 10-1; 10-2; 10-3; 10-4. As in the 
previous case, we still assume that the total strain-rate is a constant during the 
deformation (the respective curve 3 in Fig. 3a). Other values of the parameters were: the 
external friction factor equals m = 0.5 and the ratio of kif k0 = 0.3. In Fig. 4 variation of 
the relative thickness of the internal layer if 2 with respect to the changing of the total 
thickness of the composite are presented. 

At the beginning of the process, the initial relative thickness if 2 (O) = 0.8 satisfies 
condition (4) and the loading history does not influence the relative thickness if 
0.6 ~ if 2 (t) ~ 0.8. It is easy to note that diminishing o to zero (which means that 
mechanical properties of the viscoplastic material approach those of the perfect-plastic 
one) eliminates the effects of viscosity as it could be expected. In the limited case o = O 
the external material is rigid first and the internal material is only deformed until its 
relative thickness reaches the value if 2 (t) = 0.6, and then the simultaneous flow of the 
materials with the perfect layer bonding follows. Such kind of composite behavior has 
been reported in experimental [7] and theoretical [11] works for combinations of two 
perfectly plastic materials. On the other hand, the greater viscosity of the external 

Ll 2 3 5 
o 0,2 0,4 0,6 0,8 

1-H 
Fig. 4. Variation of the relative thickness of the plastic layer for different values of the viscosity parameter 
o= 10-1; 10-'; 10-3; 10-4 (the curves I, 2, 3, 4, respecively). The lower dotted line corresponds with the lower 
estimate for A, obtained from (24). Compression under given constant total strain-rate defined by the curve 

3 in Fig. 3a 

material leads to the smaller relative thickness of the internal layer at the end of the 
process with all the other parameters being equal. (For smaller values of o the 
corresponding lines are higher situated.) 
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Fig. 5. Variation of the relative thickness of the plastic layer H2 for different values of the friction parameter 
along the bi-material interface m. = 0.4; 0.6: 0.8: 0.95 (the curves I, 2, 3, 4, respecively). The total strain-rate is 

a constant value (defined by the curve 3 in Fig. 3a) 

CJ. Effect of the friction factor m. 
Let us still assume the same loading history as in the previous case (the curve 3 in Fig. 
3a), but the friction parameter takes the values: m = 0.4; 0.6; 0.8; 0.95. The ratio 
k1/k0 = 0.3 and the viscosity parameter ó = O.Ol were chosen. Fig. 5 shows correspon 
ding results of numerical simulation of the relative thickness of the internal layer i-12 for 
each value of the friction factors m. 

Now the relative thickness H2 (t) satisfies condition (4) at various segments depending 
on the value of the friction factor m. It is easy to observe different points where the 
respective lines for different values of the friction factor start to depart from the lower 
boundary of the solution described in (24). Note that the greater value of the parameter 
m influences the greater segment at which the method of loading does not affect i-12 (t). 
The final value of H2(t) is the smallest for the greater value of m. (For the smaller values 
of m the corresponding curves are higher.) 

D ). Effect of the loading history. 
Let us consider different ways of deformation such that the overall thickness of the 
composite changes to the same magnitude during the same periods of time (see Fig. 6a ). 
Let us assume as before that the friction factor m = 0.5, and the ratio k1/k0 = 0.3. The 
value of the viscosity parameter ó is equal to ó =O.Ol. The initial thickness of the 
internal layer is i-12(0) = 0.8 and satisfies condition (4). Fig. 6b shows us the respective 
variation of the relative thickness of the internal layer with respect to the total thickness 
of the composite. _ 

As in Figs. 3b and 4 the loading history does not influence the relative thickness H2 

within the interval 0.6 ::::'. H2(t) ::::'. 0.8. It is easy to conclude from Fig. 6b that this occurs 
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Fig. 6. (a) - various external loading history of deformation of the composite; (b) - the corresponding 
variation of the relative thickness of the internal plastic layer H2 

when 0.5 ::; H(r)::; I .O. Note that, if the velocity of the external platen V is nonnegative 
during the entire process (V is equal to zero in particular points) there does not exist any 
unloading (see the curve 4 in Fig. 6a). In this special case character of the response of 
the relative thickness H2 becomes to be more complicated than it was in all other cases 
with the strictly positive value of velocity. Namely, the regime of deformation in this 
case changes several times within the interval H2 (t) < 0.6 (sticking regime changes to 
the sliding regime then to the sticking one and vice versa - see the curve 4 in Fig. 6b). 
As it was shown above, such behavior is impossible for the loading under a constant 
total strain-rate. 

To examine better this phenomenon we have considered various paths of deformation 
according to following relation defining a function oscillating around a straight line: 

1 - H (T) [ T nl ] H(t) = 1---- t±-sin-t. 
T nl T 

(29) 
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In Fig. 7a the curves for the different values of l = 3 and 6 as well as the different 
signs in equation (29) are presented. Here T is a moment of time at the end of 
deformation which is the common for all loading history due to the assumptions. 
Essential differences in the final relative thickness of the internal layer n, as well as in 
the variation of the quantity itself during the deformation indicate us that it is always 
necessary to accurately check the method of loading during experimental tests. This 
enables us to take into account the influence of the path of deformation on the final 
product. 
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Fig. 7. a) Various deformation paths of the composite layer; 
b) the respective response of the relative thickness of the plastic layer H2 

It would be interesting to learn whether there exists a convergence of results when the 
number of vacillations remarkably increases whereas the amplitude of vacillations 
decreases. Mathematical description (29) enables us to carry out such an analysis by 
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means of increasing the number n in the expression. The fact that in such case the 
amplitude of oscillations is decreasing can be checked directly. In Fig. 8a the variation 
of the total thickness of the composite for the different values of l = 6 and 12 and for the 
different signs in equation (29) are presented. 
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Fig. 8. (a) Various deformation paths of the composite layer; (b) the corresponding variation of the relative 
thickness of the plastic layer H2 for different initial values 

To investigate also the influence of the initial relative thickness of the internal layer 
let us consider three different values of f!.2 (0) = 0.8, 0.6, 0.4 (which means that the 
simultaneous deformation of the two materials would start at different stages of 
deformation). Namely, for the initial thickness f!.2 (O)= 0.8 the external material is in 
a rigid state at the beginning of the deformation, for f!.2 (O) = 0.6 both the materials 
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become under deformation from the very beginning, but the sliding occurs along the
bi-material interface and finally, if H2 (0) = 0.4 both the materials exhibit the plastic
flow with the sticking conditions along the interface from the beginning.

As it follows from the Fig. 8b there is a good convergence to the limit type loading
(straight line at this assumptions), but only when the global thickness of the composite
does not become to be sufficiently small in comparison with the initial one. At this last
stage of the deformation process not the initial thickness but mostly the loading history
plays an important role.

6. Conclusions 

The new solution of model problem concerning compression of three layers of two
different materials has been proposed. Numerical simulations showing behaviour of all
output process parameters have been presented with respect to various relationships of
all input parameters.

Basing on comparison of the numerical results with experiment ones (e.g. [7, 12]), the
following conclusions can be drawn:

- geometrical parameters of the deformed materials and their arrangement (thick
ness ratio)

- mechanical features of the materials (plastic/viscoplastic behaviour with vanous
values of the material constants)

- friction effect at the material/tool and material/material interfaces
have been taken into account in the proposed model in an adequate way, what allows to
predict the main peculiarities of the process.

Thus, the relative thickness of the simultaneously deformed layers consisted of
different materials changes during the compression process only in the case when sliding
boundary conditions occurs along the bi-material interface. In the case of sticking
boundary conditions, the proportional flow is only possible. However, what kind of
friction regime (the type of the interface boundary conditions) is appropriated at each
time moment depends in a complicated way on the instantaneous geometrical parameters
as well as mechanical and friction parameters).

Among other, this makes us possible to extract information about the type of the
interfacial boundary conditions analysing simple measured values such as relative
thickness of the materials during the real process.

Acknowledgements

This work was carried out under Grant 7 T 08B 02818.
Paper presented at the 2nd Symposium "Integrated Study on Basics of Plasie Deformaiton of Metals", which
was held in Łańcut on April 24--27, 2001.



232 

REFERE 1CES

[I] L. Pr a n d t I, Practical application of the Hencky equation to plastic equilibrium. ZAMM 3, 401-406
(1923)

[2] R. Hi I I. The mathematical theory of plasticity. Oxford: Clarendon Press 1983.
[3] A.I. Kuznetsov, The problem of a nonhomogeneous plastic layer. Arch. Mech. Stos. 12, 163-172

(1960).
[4] J. Najar, Inertia effects in the problem of compression of a perfectly plastic layer between two rigid

plates. Arch. Mech. Stos. 19, 129-149 ( 1967).
[5] M.J. Adams, B.J. Briscoe, G.M. Corfield, C.J. Lawrence, T.D. Papathanasiou, An

analysis of the plane - strain compression of viscoplastic materials. Trans. ASME J. Appl. Mech. 64, 
420-424 ( 1997)

[6] W.H. Harde n, A.S. We i n stein, The application of slip - line theory to predict forming loads for
sandwich metal strips. In: Proc. 5"' North American metalworking research conference. 219-230.
Dearborn: Soc. of Manufacturing Engineers 1977.

[7] R.E. SI i w a, A test determining the ability of different materials to undergo simultaneous plastic
deformation to produce metal composites. Mater. Sci. Engng. Al35, 259-265 ( I 99 I).

[8] N.O. Luk as ch ki n, A.P. Boris so w, Interface surface behaviour in the upsetting of sandwich metal
sheets. J. Mater. Proc. Techno!. 61, 292-297 ( I 996).

[9] J.L. A I car a z, Instabilities in bimetallic layers. Int. J. Plasticity 15, I 342-1358 ( I 999).
[IO] S. A Ie x a n dr o v, G. Mish ur is, W. Mis z ur is, An analysis of the plane - strain compression of

a three layer strip. Archives of Applied Mechanics 71, 8, 555-566 (2001).
[ 11] R.E. S I i w a, W. M i szur i s, S. A Ie x a n dr o v, Effect of material parameters on fracture in upsetting

of three layer strip, Euromech Colloquim on Fracture Aspects in Manufacturing, 25-29 September, 2000,
Book of Abstracts, 52.

[ 12] G. Mish ur is, R.E. SI i w a, Some kinematically admissible velocity fields in multimaterial extrusion.
Engng. Trans. 47, 3-4, 369-387 (1999).

REVIEWED BY: ZDZISŁAW JASIEŃSKI

Received: IO January 2002. 


