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Multi-sensor data fusion and nonlinear
programming-based path prediction for escaping

from engagement in combat

Enver Nurullah GÖKALo and Ufuk SAKARYAo

One of the most important factors that bring success in modern warfare is to show air
superiority. Unmanned aerial vehicles (UAVs) have now become an essential component of
military air operations. UAVs can be operated in two ways: by pilots from remote control
stations or by flying autonomously. Under the condition of disconnection from the control
station, UAVs have trouble maintaining navigation and maneuverability. By applying multi-
sensor data fusion, an escape path prediction algorithm was developed and presented as an
engagement escape method in this study. To develop the algorithm for prediction of the optimal
escape route, data from various sensors are collected and processed under the influence of
noise. The data from the distance and angle sensors are interpreted in the Extended Kalman
Filter and estimations are made. The instant optimal escape route is created by applying the
constrained optimization method on the estimations made. The main motivation of this study
is developing a deterministic-based method to get the certification of it in aviation. Therefore,
instead of stochastic-based learning approaches, a deterministic approach is preferred. Nonlinear
programming is used as the constraint optimization method because the constraints and objective
function are nonlinear. In the selected scenarios, it can be seen in the simulation results that the
proposed method shows a promising result in terms of escape from engagement.
Key words: escaping from engagement, nonlinear programming, multi-sensor data fusion

1. Introduction

Among the factors that bring success in modern warfare, one of the most
important factors is to show air superiority. When an aircraft is in a man-made
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hostile environment, having survivability features ready to use and hidden in the
aircraft is of great importance in terms of providing air dominance. To make
combat aircraft have better maneuverability in engagement conditions, it is fo-
cused on a decision-making algorithm in this study. In military jargon, the term
“engagement” is used to refer to the interaction between the two parties. The
attacking side initiates the engagement to perform a mission. When the mission
ends with failure or success, the engagement ends [9]. It is important for an air-
craft to perform fast decision making based on the maneuverability of the aircraft
and the opponent’s position to successfully escape the engagement. The main
scenario in this study is a dogfight engagement with an attacking aircraft. The
aim is to ensure that the attacked makes its escape from engagement in the most
optimized way. In the discussed scenarios in this study, both the attacked and
the attacking parties are unmanned aerial vehicles (UAVs). The attacking side
also may be Surface-to-Air Missile (SAM) or Air-to-Air Missile (AAM), instead
of a UAV.

The most basic feature of UAVs is that there is no human inside the UAV; thus,
avoiding the risk of pilots being harmed in battle [8]. UAVs have now become
an indispensable element of air operations in the military. Due to the absence
of a human pilot operating the aircraft, nations can perform military operations
with less risk using UAVs. In addition, UAVs, with their functions, provide great
efficiency contribution to armies in military operations. Some of the uses of UAVs,
which can be used in a wide variety of ways in war, are as follows; surveillance,
assigning a target to other armed systems, attacking the target by itself. UAVs can
attack fixed or moving targets [12]. Medium Altitude Long Endurance (MALE)
Anka UAV produced by Turkish Aerospace Industries can serve as an example
of a UAV [1]. Anka is the military UAV designed and manufactured to perform
surveillance, reconnaissance, target detection and target recognition tasks.

Movement control of UAVs can be performed in two ways; UAVs are controlled
by pilots from remote control stations or can fly autonomously. In addition to
the remote-control station, communication satellites and GNSS satellites can
also be used in flight control. When a UAV controlled from a remote-control
station is disconnected from the control station, it should be able to continue
its flight autonomously in order to avoid a catastrophic result [6]. The basic
methods that provide autonomous flight in UAVs are as follows; artificial neural
networks, machine learning and real-time path planning with artificial intelligence
or numerical methods [7]. Other works based on different approaches are present
for this subject. A guidance and navigation system for Remotely Piloted Aircraft
Systems (RPAS) based on particle filter has proposed by Capello et al. [5].
In the proposed method, particle filter-based estimation method was examined,
and a comparison is made between particle filter, Extended Kalman Filter and
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Unscented Kalman Filter. An autonomous decision-making algorithm with 14
different maneuvering options for unmanned combat aircraft (UCAV) has been
proposed by López and Zbikowski [25]. A score equation considering external
constraints is used to evaluate each decision. Zhang et al. [23] proposed a method
of sequential convex programming for path planning to be used in UAVs. When
the problem is a nonlinear control problem which is non-convex, a method for
optimization by conversion of the non-convex problem to a convex problem or
series of convex problems is proposed.

Tisdale et al. [30] proposed a camera-based estimation and path prediction
method for a search and locating task for a group of UAVs. In the proposed method,
recursive Bayesian estimation was used as the estimation method, and non-convex
constrained optimization was used in the path planning stage. Bortoff [2] proposed
a UAV path planning algorithm. Aim of the proposed two-stage path planning
algorithm is to determine an optimal path for UAVs by making a trade-off between
stealth and path length in areas with radar. Jiang and Liang [15] have proposed
a case-based path planning algorithm with a standoff distance for autonomous
UAVs. In the proposed method, target trajectory estimation has been made with
quadratic functions. For target localization, a nonlinear least squares estimation
method is used. Finally, a case-based decision-making algorithm stepped in to
accomplish the path planning with a standoff distance. In the proposed method,
sensor noise is considered when using the measured values of the sensors. A new
case-based guidance method has been proposed to make a balanced trade-off
between the optimal path planning method and real-time performance.

Yang et al. [33] proposed a path planning method using passive detection
system for target detection. The use of radar in the target detection system makes
it easier for the aircraft to reveal its position by other systems, so a method
using a passive detection system as a target detection system has been proposed.
In the proposed method, Partially Observable Markov Decision Process is used
as the decision-making algorithm. Kang et al. [16] proposed a Kalman filter
algorithm for UAV path planning. In this study, it is aimed to eliminate the
negativities caused by the uncertainties in the flight environment. With a Kalman
filter-based module developed by taking into account sensor noises, GPS sensor
noise and model noise, threats were modeled and a safe distance for the UAV
has attempted to be determined. Wu et al. [32] proposed a path planning method
which uses a Kalman filter-based prediction algorithm for collision avoidance in
UAV groups. To eliminate the inconsistencies coming from the noise caused by
the communication of many UAVs in a dynamic environment, a Kalman filter
based estimation method has been proposed.

Luo et al. [19] proposed a position estimation and collision avoidance method
for UAVs. Due to the colored noise received in the signal strength measurement
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coming from the communication module, the distance estimation was performed
using the colored noise model in the Extended Kalman Filter. Mao et al. [20]
proposed an Extended Kalman Filter design for position estimation for UAVs.
The proposed design concerns situation where the UAVs temporarily lost their
GPS connection. In the scenario created, a group of UAVs cooperating with each
other is considered.

In this study, it is aimed developing a path planning algorithm so that the
UAV can survive engagement on its own when the connection between the UAV
and the ground control station is broken during engagement. It is significant for
a UAV to use its autonomous flight features to prevent any catastrophic results in
an engagement when the connection link from ground control station or satellite
has cut down. These autonomous flight features include optimal escape path
prediction. When the scenario stated above is occurred, UAV shall generate its
path using optimal path prediction algorithm to escape from engagement. For this
purpose, in the optimal escape path prediction algorithm to be developed in this
study, data from different sensors are processed and combined under the influence
of noise. The main motivation of this study is developing a deterministic-based
method to get the certification of it in aviation. Therefore, instead of stochastic-
based learning approaches, a deterministic approach is preferred.

In addition, in this study, the standard deviation values of the measurement
noise representing the noise in the sensors and the process noise representing the
noise in the environment are applied as user inputs to the Extended Kalman Filter
model used for estimation. It is aimed to observe how the Extended Kalman Filter
affects the operation of this method at different noise levels by making simulations
at different noise values. This observation is important to determine the impact
of the proposed method on the resource utilization of the UAV. As the constraint
optimization method of this study, the nonlinear programming method [3] is
used. In this study, it is also aimed to observe the effects of the following parts of
the nonlinear programming algorithm, objective function, linear and nonlinear
equality, and inequality constraints on the optimal escape path of the UAV. While
constraint optimization is made, weight values of the distance and the angle have
a decisive effect on the planned escape path. In other words, the weight values of
the distance and the angle effects the resource utilization of the UAV.

The method presented in this article is an Extended Kalman Filter and non-
linear programming-based UAV navigation and guidance method. As a first step
in this method, data from different sensors are combined in the Extended Kalman
Filter to estimate the position of the enemy aircraft. The two sensors used are
the range and angle sensors. In the second step of the method, after estimating
the position and direction of the enemy aircraft, the constraint optimization is
performed using the nonlinear programming method. The constraints are made
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on the escaping UAV’s coordinate axes and the maneuverability of the UAV
changes in the pitch, yaw and roll axes. Nonlinear programming is applied on
the escaping UAV’s coordinate axes and an appropriate optimization is made for
the axes. The optimal solution found according to the UAV coordinate axes is
applied to the original coordinate axis by three-dimensional transformation. In
summary, an Extended Kalman Filter and nonlinear programming-based escape
path prediction algorithm has been developed.

The preliminary version of this study is available in [13]. The main difference
between [13] and this article is inclusion of the angle constraints in the nonlinear
programming. The angular constraints are important for the model to realize more
realistic scenarios. Moreover, according to this improvement in the model, the
new scenarios are simulated and demonstrated in this article.

The paper is organized as follows. In Section 2, necessary background infor-
mation about the methods and algorithms used in this study is given. In Section 3,
the proposed method is presented. In Section 4, the three scenarios run on the
simulation are described first. Then, results of the simulation are examined for
the three different scenarios separately. In addition, a ground truth calculation is
described as well. Conclusion is presented in Section 5.

2. Background

2.1. The extended Kalman filter

Kalman Filter is often used when a state of a system cannot be measured
directly [27]. To estimate the state of the system optimally, Kalman Filter is used.
In the case of multiple sensors with noise, Kalman Filter can be used to combine
data from sensors and make an estimation of the signal that cannot be directly
measured. This is called sensor fusion [31]. Position estimation methods, inertia
measurement unit, navigation and guidance, aviation monitoring, vehicle control,
statistics and economics are a few of the major areas where the Kalman filter is
used [22]. In multi-sensor data fusion, the Kalman Filter is of great importance.

Since the Kalman Filter is based on the Gaussian distribution, the Gaussian
distribution is preserved after a linear transformation [31]. Nonetheless, the prob-
lem in this article and most of the practical problems are not linear. The output of a
nonlinear function does not have a Gaussian distribution if Gaussian distribution
is applied to the function [26]. Accordingly, when making an estimation of a non-
linear function, the Extended Kalman Filter (EKF) is used. The Extended Kalman
Filter becomes applicable to nonlinear functions by linearizing the system model
around the estimation of the mean of the current state. The linearization is made
by using Taylor series expansion [28]. To get an approximation of the estimation,
locally linearized model is used [26]. Navigation systems is one of the numerous
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real-time applications where Extended Kalman Filters are used. Compared to
other non-linear filtration methods such as particle filters and point-mass filters,
the Extended Kalman Filter is less expensive in terms of computational cost [17].

Kalman filters predicts next states of the system, considering of the current
noise characteristics and the previous states of the system. The transition between
the states of 𝑘−1 and 𝑘 is given as:

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1 . (1)

In equation (1), 𝑥 represents the state vector, 𝐹 represents the state transition
matrix, 𝐵 represents control matrix of the input u and w represents the zero mean
Gaussian process noise [17].

State transition and measurement models for EKF are given as:

𝑥𝑘 = 𝑓 (𝑥 | 𝑘 − 1, 𝑢𝑘−1) + 𝑤𝑘−1 , (2)
𝑧𝑘 = ℎ (𝑥𝑘 ) + 𝑣𝑘 , (3)

where 𝑓 is the function of 𝑥𝑘−1 and 𝑢𝑘−1, and it provides the current state 𝑥𝑘−1.
The measurement is 𝑧𝑘 , the measurement noise is 𝑣𝑘 and ℎ is the measurement
function. There are two stages in the Extended Kalman Filter. These two stages
are called update stage and prediction stage. Input of the prediction stage is the
output of the update stage from previous time step. In the update stage, updated
state estimates and Kalman gain are calculated with the outputs of the prediction
stage. The model of prediction stage is presented as:

𝑥−𝑘 = 𝑓
(
𝑥+𝑘−1, 𝑢𝑘−1

)
, (4)

𝑃−
𝑘 = 𝐹𝑘−1 𝑃

+
𝑘−1 𝐹

𝑇
𝑘−1 +𝑄, (5)

where the estimate is denoted by hat operator ‘̂’, prior is signified by ‘+’, posterior
is signified by ‘−’, predicted state estimate is denoted by 𝑥−

𝑘
is and predicted error

covariance is denoted by 𝑃−
𝑘

[17]. The update stage model is presented as:

𝑦𝑘 = 𝑧𝑘 − ℎ
(
𝑥−𝑘

)
, (6)

𝐾𝑘 = 𝑃
−
𝑘𝐻

𝑇
𝑘

(
𝑅 + 𝐻𝑘𝑃−

𝑘𝐻
𝑇
𝑘

)−1
, (7)

𝑥+𝑘 = 𝑥
−
𝑘 + 𝐾𝑘 𝑦, (8)

𝑃+
𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘 ) 𝑃−

𝑘 , (9)

where measurement residual is 𝑦𝑘 , Kalman gain is 𝐾𝑘 , updated state estimate
is 𝑥+

𝑘
and updated error covariance is 𝑃+

𝑘
[17]. Jacobian matrices of 𝑓 and ℎ

are 𝐹 and 𝐻. 𝑅 represents the covariance matrix of measurement noise and 𝑄
represents the covariance matrix of process noise. More information in-depth
about the subject can be found in [17].
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2.2. The nonlinear programming

Nonlinear programming tackles optimization problems where either the ob-
jective function or the constraints (or both) exhibit nonlinear behavior. Unlike lin-
ear programming, which deals with optimizing linear objective functions within
linear constraints, nonlinear programming extends this approach to more complex
mathematical models.

In nonlinear optimization, the objective is to minimize or maximize a nonlin-
ear objective function while satisfying a set of constraints. These constraints can
be either inequality or equality constraints, adding complexity to the optimization
process [24]]. To solve nonlinear problems with constraints, there are numerous
methods, the choice of which depends on the type of nonlinearity of the objec-
tive function and the constraints. Examples of the methods are interior-point,
sequential quadratic programming (SQP) and trust-region reflective [24]. Large-
scale nonlinear optimization problems with sparseness or structure are where the
interior-point method is particularly useful. Sequential Quadratic Programming
(SQP), which is used as a general solution to nonlinear problems, takes con-
straints into account at each iteration [24]. The trust-region reflective method is
used for solving linear and nonlinear problems where constraints are the bounds
only [24].

Nonlinear programming applied in this study is modeled as following:

𝑓 (𝑋), (10)
𝐿𝐵 ¬ 𝑋 ¬ 𝑈𝐵, (11)
𝐴eq𝑋 = 𝑏eq , (12)
𝐴𝑋 ¬ 𝑏, (13)

𝐶eq(𝑋) = 0, (14)
𝐶 (𝑋) ¬ 0. (15)

In equation (10), objective function is denoted by 𝑓 (𝑋). In the nonlinear
programming method, the objective function 𝑓 (𝑋) is tried to be minimized by
considering the given constraints. In equation (11), upper and lower boundaries
of the input 𝑋 are denoted by UB and LB. This means that at each iteration, the
minimum and maximum values that 𝑋 , the input value of the objective function
𝑓 (𝑋), can take are determined by LB and UB. In equation (12) 𝐴eq and 𝑏eq
are linear equality constraints. 𝐴eq and 𝑏eq determine the restrictions in form of
linear equality equations for the 𝑋 . In equation (13), linear equality constraints
are represented by 𝐴 and 𝑏. 𝐴 and 𝑏 determine the restrictions in form of linear
inequality equations for the 𝑋 . In equation (14), 𝐶eq(𝑋) is nonlinear equality
function.𝐶eq(𝑋) determines the restrictions in form of nonlinear equality function
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for the 𝑋 . In equation (15), 𝐶 (𝑋) is nonlinear inequality function [11]. 𝐶 (𝑋)
determines the restrictions in form of nonlinear inequality function for the 𝑋 .

2.3. Homogeneous transformation matrices

The transformation of a point to another point in three-dimensional space
can be expressed with the homogeneous transformation matrix [18, 29]. The
three-dimensional transformation matrix consists of the rotation matrix and the
transformation vector. A homogeneous transformation matrix in 3D space is
4 × 4 dimensional. For example, let’s take the rotation matrix 𝑅(𝛼, 𝛽, 𝛾) =

𝑅𝑧(𝛼) 𝑅𝑦(𝛽) 𝑅𝑧(𝛾) and the 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 translation and create a homogeneous trans-
formation matrix. The obtained 𝑇 homogeneous transformation matrix is seen in
equation (16):

𝑇 =

©«
cos𝛼 cos 𝛽 𝑀𝐴 𝑀𝐶 𝑥𝑡
sin𝛼 cos 𝛽 𝑀𝐵 𝑀𝐷 𝑦𝑡
− sin 𝛽 cos 𝛽 sin 𝛾 cos 𝛽 cos 𝛾 𝑧𝑡

0 0 0 1

ª®®®¬ , (16)

where 𝑀𝐴 = cos𝛼 sin 𝛽 sin 𝛾 − sin𝛼 cos 𝛾, 𝑀𝐵 = sin𝛼 sin 𝛽 sin 𝛾 + cos𝛼 cos 𝛾,
𝑀𝐶 = cos𝛼 sin 𝛽 cos 𝛾 + sin𝛼 sin 𝛾, 𝑀𝐷 = sin𝛼 sin 𝛽 cos 𝛾 − cos𝛼 sin 𝛾.

In the 𝑇 homogeneous transformation matrix in the formula, first the rotation
process 𝑅(𝛼, 𝛽, 𝛾), and then the translation process 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 is applied. The order
of operations is as follows: roll as 𝛾, pitch as 𝛽, yaw as 𝛼 and translate as 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ,
respectively. A point 𝐴 that is transformed has six degrees of freedom, including
rotation in three axes and translation in three axes [18].

3. The proposed method

The proposed method of this study concerns an escape path prediction algo-
rithm using Extended Kalman Filter and Nonlinear Programming methods. To
develop the proposed algorithm with necessary implementations and simulations,
MATLAB is used as a tool. Figure 1 shows simplified architecture of the proposed
method. The position of the friendly aircraft in the 𝑥, 𝑦, and 𝑧 coordinate axes to
which the escape path prediction algorithm will be applied, is denoted by 𝑝_ally.
Position of the enemy aircraft in the 𝑥, 𝑦, 𝑧 coordinates is denoted by 𝑝_enemy.
Positions 𝑝_est (enemy aircraft’s position obtained from the Extended Kalman
Filter) and 𝑝_NLP (optimal escape vector) are evaluated for each time step in a
loop, in each time interval.

MATLAB’s built-in function for nonlinear constraint optimization is called
“fmincon”. The estimation value 𝑝_est is sent to the fmincon function as in-
put [11]. The optimal escape vector 𝑝_NLP comes as an output of the fmincon
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Figure 1: The proposed method system architecture

function. The next position of 𝑝_ally is obtained by adding the vector 𝑝_NLP
to the previous position of 𝑝_ally. In this way, an optimal escape route for the
friendly aircraft is determined based on the attacking aircraft’s position estima-
tion. As the different maneuvers are performed by the ally UAV at each time step,
the ally UAV’ coordinate axes changes. Therefore, solution and the nonlinear
constraints must be in the ally UAV’s coordinate system at each time step. Before
passing the relative distance between the attacking UAV and the ally UAV to
the nonlinear programming method fmincon, it must undergo a homogeneous
transformation to the ally UAV’s coordinate system from the original coordinate
system. The escape vector obtained as the optimal solution undergoes an inverse
homogeneous transformation. This transformation is made to transfer the escape
vector to the original coordinate system before being applied to the allied UAV.

The Extended Kalman Filter model implemented in this study is convenient
for the scenarios selected. As mentioned in the previous section, compared to
other non-linear filtration methods such as particle filters and point-mass filters,
the Extended Kalman Filter is less expensive in terms of computational cost [17].
In this model, two sensors on the allied aircraft are used: the angle sensor and
the range sensor. Attacking aircraft’s position is estimated using the Extended
Kalman Filter, using the angle and distance data coming from these two sensors
on the allied aircraft under the noise [17]. Standard deviation of measurement
noise 𝑣𝑘 and standard deviation of process noise 𝑤𝑘−1 are passed as inputs to
the Extended Kalman Filter. Hence, the EKF can perform and be tested under
different noise characteristics as desired. A detailed Extended Kalman Filter
diagram can be seen in Fig. 2.

Starting positions of the enemy and allied aircrafts has been set in the initial-
ization stage. Predictions of state estimate and error covariance has been made
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Figure 2: The extended Kalman filter model

as in equations (4) and (5), in the prediction stage. Measurement residual and
Kalman gain are evaluated as in equations (6) and (7), in the update stage. State
estimate and error covariance are also updated as in equations (8) and (9). In the
Extended Kalman Filter model, the radar distance sensor and angle sensor of the
ally UAV measure the distance and angle values of the enemy UAV. The distance
sensor measures the distance 𝑟 between two planes of the spherical coordinate
system shown in Fig. 3. The angle sensor measures the azimuth 𝜑 and polar 𝜃
angles shown in Fig. 3. EKF estimates the position of the enemy.

Fmincon function solves minima problems of constrained multivariable func-
tions. As described in equations (10), (11), (12), (13), (14) and (15), the constraints
for the objective function and the mentioned function are defined for fmincon.
Fmincon begins from an initial point 𝑥0 and goes to the 𝑥 value which minimizes
the function with defined constraints [11]. The main use of fmincon is to find
a minimizing value for an objective function. In this proposed method, a basic
score function, which is frequently used in aerospace and aviation fields, is used
as the objective function. It is used to evaluate the relative distance and collision
between two aircrafts [4, 21]. The objective score function is defined as [25]:

𝑆𝑐 =

(
1 − |𝜀 + 𝜆 |

𝜋

)
𝑒−

𝑑−𝑑opt
𝐾 𝜋 . (17)
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Figure 3: The spherical coordinate system

In equation (17), 𝑆𝑐 represents the score value obtained from angle and
position of the two aircrafts relative to each other. 𝜀 and 𝜆 represent the angles
between the LOS (Line of Sight) line and the movement vectors of two aircraft,
respectively. The 𝜀 and 𝜆, relative angles of two aircrafts are described in Fig. 4.
Distance between the two aircrafts is represented by 𝑑. Desired optimal distance
value is represented by 𝑑opt. Lastly, proportional adjustment between the distance
and angle is made using the 𝐾 constant. When determining the values of 𝐾
and 𝑑opt parameters, values of 600 for 𝐾 and 700 for 𝑑opt were chosen, as used
in a similar study [25]. This choice is based on both established practices in
the literature and experimental findings aimed at improving the accuracy of the
method. By adopting these values, the method is expected to provide comparable
results and facilitate appropriate generalization. For these reasons, 𝐾 and 𝑑opt
variables are fixed to these values. An example design in which these values are
also variable can be designed in future studies.

Figure 4: Relative angles of the two aircrafts (adapted from [25])
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In the fmincon function used in the constrained optimization, linear inequality
constraints are used to give the escaping UAV a conical angle. In addition, non-
linear inequality constraints are applied to constrain the resultant velocity vector
of the escaping UAV. These constraints will be discussed later in this section.
Angular constraints have been applied to the constrained optimization function
fmincon to ensure that the escaping plane’s motion vector stays inside the circular
sector with a desired angle. These constraints are applied for the angles of the
𝑥-axis of the motion vector with the 𝑦 and 𝑧 axes. Figure 5 shows the motion
vector remaining inside the representative circular sector.

Figure 5: Motion vector inside the circular sector

It is aimed to ensure that vMotion (Fig. 5), stays between 𝑣1 and 𝑣2 vectors
representing a circular sector with the desired angle. To do so, it is necessary to
determine whether the motion vector vMotion stays clockwise relative to the 𝑣1
vector and counterclockwise relative to the 𝑣2 vector. To determine whether the
vMotion vector remains clockwise relative to the 𝑣1 vector, the normal vector of
the 𝑣1 vector is calculated and the dot product of the vMotion vector and the normal
vector is taken. If the result from the dot product is positive, the vMotion vector
is located counterclockwise relative to the 𝑣1 vector. If the result is negative, the
vMotion vector is located clockwise relative to the 𝑣1 vector. The same procedure
is applied to the 𝑣2 vector. With this method, the matrices required to apply the
angular constraints to fmincon are determined. These matrices are the 𝐴 and 𝑏
matrices in equation (13). 𝐴 and 𝑏 matrices seen in equation (13) are given to
fmincon as in equations (18) and (19), according to the angular constraint finding
method described in this section.

𝐴 =


−MRV ∗ sin𝛼 MRV ∗ cos𝛼 0
−MRV ∗ sin𝛼 −MRV ∗ cos𝛼 0
−MRV ∗ sin 𝛽 0 MRV ∗ cos 𝛽
−MRV ∗ sin 𝛽 0 −MRV ∗ cos 𝛽

 , (18)
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𝑏 =


0
0
0
0

 . (19)

In equation (18), MRV is the maximum resultant velocity constraint of input
𝑋 = 𝑥, 𝑦, 𝑧 in terms of m/s. The angle 𝛼 is the yaw angle between the 𝑥 and 𝑦
axis. The angle 𝛽 is the pitch angle between the 𝑥 and 𝑧 axis.

To represent the maximum speed the escaping UAV can reach, a resultant
velocity constraint to be applied in fmincon is given. This is a constraint in form
of non-linear inequality shown in the following equation.

𝐶 (𝑋) = 𝑋 (1)2 + 𝑋 (2)2 + 𝑋 (3)2 − (MRV)2 ¬ 0, (20)

where 𝑋 is the input of the coordinates 𝑥, 𝑦, 𝑧 of the escaping UAV. In the
simulations MRV is set to 277. The value 1000 is the maximum velocity of the
escaping UAV in terms of km/h. It is desired to convert km/h to m/s since a time
step in the simulation is 1 second.

After the estimation of the direction and position of the enemy aircraft, the
constraint optimization is performed. As UAV’s maneuverability changes accord-
ing to current angle made in the pitch, the roll, and the yaw axes, constraints get
determined on the coordinate system of the escaping UAV. In this way, nonlinear
programming is run according to coordinate axes of the escaping UAV. Moreover,
the UAV can make a different maneuver in each time step. As a result, for each
time step escaping UAV’ coordinate axes get altered. The original coordinate axes
and the coordinate axes of the escaping UAV should be carefully considered in the
algorithm. Therefore, the solution requires rotating and translating the optimal
UAV position and direction obtained from nonlinear programming to the original
coordinate axes from the coordinate axes of the escaping UAV. This algorithm
uses a method similar to the one described in [10].

A flight mechanism must be taken into account to determine the UAV’s
direction. In this article, the approach used for UAV maneuverability is selected as
in [13]. There are three axes of the UAV: the pitch, the roll, and the yaw. Elevators
are used to change the altitude (alter the pitch). After achieving the desired
altitude, the UAV updates its position as flat to the ground. As a result, during the
optimization process, the 𝑧 axis in the UAV and the original coordinate 𝑧 axis are
identical. However, in addition to 𝑧 axis movement, 𝑥 and 𝑦 axes motions are also
considered while moving to various positions in three-dimensional space. It is
presumable that the UAV has a great maneuvering capacity. Here, the following
flight mechanism is considered when turning right or left: Instead of utilizing
the rudder to change the yaw angle, roll control is accomplished by first using
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the ailerons or flaperons, followed by the elevator, and the targeted direction is
determined with the aircraft’s nose. The UAV adjusts its position such that it is
flat to the ground after moving in the desired direction in the 𝑥−𝑦 plane.

In summary, based on the two methods; EKF and Nonlinear Programming
and flight mechanism, an escape path prediction algorithm is realized.

4. Simulations and results

In this section, the simulation scenarios are explained, and the test results
are examined. The simulation results are realized using MATLAB. It has been
assisted from [14] while implementing the Extended Kalman Filter for simulation
of these scenarios. The following is a description of the scenarios: There are two
UAVs flying in the open space, one of them is the escaping allied UAV and the
hostile one is enemy UAV. The enemy UAV’s initial point is (0, 0, 0) meters in
𝑥, 𝑦, and 𝑧 coordinates and just along the 𝑥-axis, it moves at 1000 km/h. The
ally UAV’s initial point is (500, 0, 0) meters in 𝑥, 𝑦, and 𝑧 coordinates. The radar
system with angle and range sensors is the source of input of the ally UAV for
target tracking. For velocity in all three dimensions, the process noise’s standard
deviation is set at 0.5 m/s. The selected simulation scenarios were run for a 30
second period.

The upper and lower boundaries for input 𝑋 in nonlinear programming
are applied as follows for 𝑥, 𝑦, and 𝑧: 𝑈𝐵 = [277.8, 69.4, 69.4], 𝐿𝐵 =

[−69.4,−69.4,−69.4] in meters. The solution of the fmincon can have a range
of values between UB and LB, which are expressed in meters per second. UB and
LB were chosen according to the mobility of the ally UAV and were calculated
by unit converting 1000 km/h to m/s in 𝑥 axis and 250 km/h to m/s in 𝑦 and 𝑧
axes. The highest consequent value for the solution of fmincon in the combined
𝑥, 𝑦, and 𝑧 axes is the nonlinear inequality function 𝐶 (𝑋). Equation (20) is used
to compute 𝐶 (𝑋), where 1000 is the maximum velocity in km/h and 0.28 is the
constant used to convert km/h to m/s. In the last three scenarios, linear inequality
constraints are used as in 7 (13) to constrain the movement angle of the motion
vector in a desired angle. The used linear inequality constraints are equal to the
expression in equations (18) and (19). Values of the 𝛼 and the 𝛽 in equation (18)
are given 𝜋/9 radians.

The first scenario has run on MATLAB, and the standard deviation of mea-
surement noise input was set to [0.1, 0.1, 5] for the angles and distance, respec-
tively. Construction of the measurement covariance matrix has made applying
noise characteristics as [0.5, 0.5, 10]. Figure 6 presents the 𝑥𝑦-axis trajectories
of the ally UAV and the enemy UAV. Figure 7 presents the three-dimensional
trajectories of UAVs. In the figures where the trajectories are shown, unit of the
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values is meter. As seen in Figs. 6 and 7, the ally UAV escaped by deviating in the
𝑦 and 𝑧 axes along the escape path. As the enemy UAV’s estimated position sways
over time in the 𝑧 axis, the ally UAV slopes in the 𝑧 axis in positive direction

Figure 6: Trajectories of the UAVs in the Scenario 1 in 𝑥𝑦-axis

Figure 7: Trajectories of the UAVs in the Scenario 1 in 3D
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and escapes. Since the measurement noise characteristic values are low, ally UAV
escaping by drawing the trajectory close to the ground truth. In this scenario, the
angular constraints are not used like the method given in [13].

The second scenario has run on MATLAB, and the standard deviation of
measurement noise input was set to [0.1, 0.1, 5] for the angles and the distance
respectively. Construction of the measurement covariance matrix has made ap-
plying noise characteristics as [0.5, 0.5, 10]. The trajectories in the 𝑥𝑦-axis and
the 3D-axis of enemy UAV and ally UAV are shown in Fig. 8 and Fig. 9. The input
of standard deviation of measurement noise of this scenario is the same as in the
first scenario. The difference between this scenario and the first one is that angular
constraints are applied to fmincon as linear inequalities. With the application of
angular constraints, the movements of the escaping UAV for each time step are
more constrained than in the first scenario. The turns of the escaping UAV for
each time step are also limited by the angles determined in these constraints.

Figure 8: Trajectories of the UAVs in the Scenario 2 in 𝑥𝑦-axis

In the third scenario, the standard deviation of measurement noise input was
set to [0.5, 0.5, 10] for the angles and the distance respectively. The trajectories
in the 𝑥𝑦-axis and the 3D-axis of enemy UAV and ally UAV are shown in Fig. 10
and Fig. 11. The turns of the escaping UAV for each time step are also limited by
the angles determined in these constraints.
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Figure 9: Trajectories of the UAVs in the Scenario 2 in 3D

Figure 10: Trajectories of the UAVs in the Scenario 3 in 𝑥𝑦-axis

In the fourth scenario, the standard deviation of measurement noise input was
set to [1.5, 1.5, 50] for the angles and the distance respectively. The trajectories
in the 𝑥𝑦-axis and the 3D-axis of enemy UAV and ally UAV are shown in Fig. 12
and Fig. 13.
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Figure 11: Trajectories of the UAVs in the Scenario 3 in 3D

The ground truth calculation is made by calculating the escape route for the
ally UAV according to the actual position of the enemy UAV, not according to
the estimated position on which EKF was applied. In other words, constrained
optimization method NLP is applied based on real trajectory of the enemy UAV.

Figure 12: Trajectories of the UAVs in the Scenario 4 in 𝑥𝑦-axis
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Figure 13: Trajectories of the UAVs in the Scenario 4 in 3D

In order to make a comparison with the allied UAV’s escape trajectories that
planned according to estimated enemy UAV positions by applying EKF, ground
truth version of the allied UAV’s escape trajectory can be seen in Fig. 14 and
Fig. 15.

Figure 14: Trajectories of the UAVs in the ground truth in 𝑥𝑦-axis
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Figure 15: Trajectories of the UAVs in the ground truth in 3D

5. Conclusion

In this work, an algorithm for predicting escape paths that combines the Ex-
tended Kalman Filter and Nonlinear Programming using maneuverability angle
constraints is presented. Extended Kalman Filter is used as the estimation method
since the Extended Kalman Filter is less expensive in terms of computational cost
compared to other non-linear filtration methods such as point-mass filters and par-
ticle filters [17]. Nonlinear Programming is used for the constraint optimization.
Coordinate system transformations are made for the UAV positions by using ho-
mogeneous transformation matrices. Distance and angle measurements coming
from allied UAV’s sensors and standard deviation values for measurement noise
are used as inputs for Extended Kalman Filter. Thus, a sensor fusion and escape
path planning method has been developed. The algorithm has been implemented
on MATLAB, and the simulations for different scenarios has been tested. A
ground truth of the escape path of allied UAV is calculated. In the ground truth,
escape path planned by performing constrained optimization based on real po-
sition of the enemy UAV, not the estimations obtained from Extended Kalman
Filter.

It can be seen from the simulation results that varying measurement noise
standard deviation values produce various EKF outcomes. Therefore, nonlinear
programming comes with different solutions. For lower values of standard devi-
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ation of measurement noise, escape path of the allied UAV becomes more alike
with the ground truth. For higher values, escape path of the allied UAV becomes
more inefficient in terms of results and resource use. As is clear, the effectiveness
of the radars in UAVs can be a crucial component of artificial intelligence-based
algorithms like the one created in this work. Additionally, the results of scenar-
ios with angular constraints applied and the scenario (the first scenario) without
angular constraints applied are compared. It has been observed that, with angular
constraints applied considering a desired angle, the UAV model has more realistic
constraints and moves closer to reality. However, the model used in this study
does not have enough inputs to make the inference to determine the end of the
engagement. Determining the end of the engagement depends on factors such as
the effect of the distance between the two aircraft on the measurements from the
radars, the type of enemy, the type of engagement. Besides of these, the most im-
portant factor in determining the termination of engagement is knowing the type
of missile on the enemy aircraft and how the enemy aircraft will use the missiles
on it. Since the enemy missiles are not modeled in this study, the determination
of the end of the engagement is not made. However, this process may be added
in future studies. For future studies, more efficient and more flexible Extended
Kalman Filter models for various situations can be developed. Also, a system
model can be developed in which enemy missiles are analyzed and modeled.
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