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The fractional order, inertial discrete transfer function
using Atangana-Baleanu and FOBD operators

Krzysztof OPRZĘDKIEWICZo

In the paper a new, fractional order, discrete transfer function model of an elementary inertial
plant is proposed. The model uses Atangana-Baleanu and discrete Fractional Order Backward
Difference operators to describe of the fractional derivative. Such a transfer models have not be
presented yet. The analytical formula of the step response for time-continuous transfer function
is given. The similarity of the proposed model to “classic” one using Caputo operator is also
considered. The stability and the convergence of the discrete transfer function are analyzed.
Theoretical results are expanded by simulations. The proposed discrete, approximated model is
accurate and its numerical complexity is low. It can be useful in modeling of different physical
phenomena, for example thermal processes.
Key words: fractional order transfer function, Grünwald-Letnikov definition, Atangana Baleanu
operator, FOBD operator, convergence

1. Introduction

The new fractional operator with nonsingular kernel has been proposed by
Atangana and Baleanu in the paper [2]. The approximations od the Atangana-
Bealeanu operator (AB operator) are analyzed in papers [11, 13].

Interesting collections of results presenting the use of AB operator in modeling
of different physical, biological, and social phenomena can be found e.g. in
papers [7] or [8]. There are models of population growth, logistic equation, blood
alcohol models.

Some recent results presenting the use of AB operator can be found in the
papers: [3] considers the modeling of COVID-19 dynamics in Ethiopia, in the
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paper [19] deals with the use of AB operator in nonlinear fractional differen-
tial equations, the paper [1] presents the application of AB operator in advec-
tion–dispersion equations. The use of AB operator to modeling of heat transfer
was considered for example in [18] and [12, 14].

It is characteristic that all known models employing the AB operator have the
form of a state equation. A transfer function model using this operator has not
been proposed yet.

This paper proposes two versions of a new, fractional order transfer function
model using AB operator. Firstly, the time-continuous model and its step response
is given. This step response is compared to the step response of the Fractional
Order (FO) inertial plant using Caputo definition.

Next the approximated, discrete time version of the transfer function using
Fractional Order Backward Difference (FOBD) approximation is proposed and
analyzed. The new proposed model can be used to modeling of different real
physical phenomena.

The paper is organized as follows. Preliminaries give theoretical background
to present of main results. Next the proposed transfer function in both forms is
discussed. Furthermore, theoretical results are expanded by simulations.

2. Preliminaries

2.1. Basics of fractional calculus

Elementary ideas from fractional calculus can be found in many books, e.g.
[6,9,16] or [17]. Here only some definitions necessary to present of main results
will be recalled.

First of all the fractional-order, integro-differential operator (see e.g. [6, 10,
17]) needs to be given. Is is as follows:

Definition 1. (The elementary fractional order operator) The fractional-order
integro-differential operator is defined as follows:

𝑡𝑠𝐷
𝛼
𝑡 𝑓
𝑓 (𝑡) =



d𝛼 𝑓 (𝑡)
d𝑡𝛼

𝛼 > 0,

𝑓 (𝑡) 𝛼 = 0,
𝑡 𝑓∫

𝑡𝑠

𝑓 (𝜏) (d𝜏)𝛼 𝛼 < 0,

(1)

where 𝑡𝑠 and 𝑡 𝑓 denote time limits for operator calculation, 𝛼 ∈ R denotes the
non integer order of the operation.



THE FRACTIONAL ORDER, INERTIAL DISCRETE TRANSFER FUNCTION
USING ATANGANA-BALEANU AND FOBD OPERATORS 417

Next recall the Gamma Euler function (see e.g. [10]):

Definition 2. (The Gamma function)

Γ(𝑥) =
∞∫

0

𝑡𝑥−1𝑒−𝑡 d𝑡. (2)

Mittag-Leffler function is a non-integer order generalization of exponential
function 𝑒𝜆𝑡 and it plays crucial role in solution of FO state equation. The one
parameter Mittag-Leffler function is defined as follows:

Definition 3. (The one parameter Mittag-Leffler function)

𝐸𝛼 (𝑥) =
∞∑︁
𝑘=0

𝑥𝑘

Γ(𝑘𝛼 + 1) . (3)

The two parameter Mittag-Leffler function is defined as follows:

Definition 4. (The two parameters Mittag-Leffler function)

𝐸𝛼,𝛽 (𝑥) =
∞∑︁
𝑘=0

𝑥𝑘

Γ(𝑘𝛼 + 𝛽) . (4)

For 𝛽 = 1 the two parameter function (4) turns to one parameter function (3).
The fractional-order, integro-differential operator can be described by differ-

ent definitions, given by Grünvald and Letnikov (GL defintion), Riemann and
Liouville (RL definition) and Caputo (C definition). In the further consideration
C and GL definitions will be used. They are given below ( [5, 15]).

Definition 5. (The Caputo definition of the FO operator)

𝐶
0 𝐷

𝛼
𝑡 𝑓 (𝑡) =

1
Γ(𝑁 − 𝛼)

∞∫
0

𝑓 (𝑁) (𝜏)
(𝑡 − 𝜏)𝛼+1−𝑁 d𝜏 (5)

where 𝑁 − 1 < 𝛼 < 𝑁 denotes the non-integer order of operation and Γ(.) is the
complete Gamma function expressed by (2).

For the Caputo operator the Laplace transform can be defined (see for exam-
ple [9]):
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Definition 6. (The Laplace transform of the Caputo operator)

L(𝐶0 𝐷
𝛼
𝑡 𝑓 (𝑡)) = 𝑠𝛼𝐹 (𝑠), 𝛼 < 0,

L(𝐶0 𝐷
𝛼
𝑡 𝑓 (𝑡)) = 𝑠𝛼𝐹 (𝑠) −

𝑛−1∑︁
𝑘=0

𝑠𝛼−𝑘−1
0𝐷

𝑘
𝑡 𝑓 (0),

𝛼 > 0, 𝑛 − 1 < 𝛼 ¬ 𝑛 ∈ 𝑁.

(6)

Consequently, the inverse Laplace transform for non integer order function is
expressed as follows ( [10]):

L−1 [𝑠𝛼𝐹 (𝑠)] =0 𝐷
𝛼
𝑡 𝑓 (𝑡) +

𝑛−1∑︁
𝑘=0

𝑡𝑘−1

Γ(𝑘 − 𝛼 + 1) 𝑓
(𝑘) (0+)

𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ Z.

(7)

The GL derivative along the time from function 𝑔(𝑡) is defined as follows [5,15]:

Definition 7. (The Grünwald-Letnikov definition)

𝐺𝐿
0 𝐷𝛼

𝑡 𝑔(𝑡) = lim
ℎ→0

ℎ−𝛼
[ 𝑡
ℎ ]∑︁
𝑙=0

(−1)𝑙
(
𝛼

𝑙

)
𝑔(𝑡 − 𝑙ℎ). (8)

In (8) 0.0 < 𝛼 ¬ 1.0 is the fractional order along the time, ℎ is the sample
time, [.] is the nearest integer value,

(𝛼
𝑙

)
is the binomial coefficient:(

𝛼

𝑙

)
=


1, 𝑙 = 0

𝛼(𝛼 − 1) . . . (𝛼 − 𝑙 + 1)
𝑙!

, 𝑙 > 0

 . (9)

2.2. Elementary FO transfer function

The elementary, scalar input-output differential equation using elementary
fractional operator (1) takes the following form:

𝑇𝛼0𝐷
𝛼
𝑡 𝑦(𝑡) = −𝑦(𝑡) + 𝑢(𝑡). (10)

where 𝑇𝛼 is the time constant, 𝑢(𝑡) is the control signal and 𝑦(𝑡) is the output.
Assume homogenous initial condition. Applying (6) in (10) gives the elemen-

tary, fractional order transfer function:

𝐺𝐶 (𝑠) =
1

𝑇𝛼𝑠
𝛼 + 1

. (11)
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For this transfer function its impulse and step responses are as beneath (see
e.g. [5, p. 11]):

𝑔𝐶 (𝑡) =
𝑡𝛼−1

𝑇𝛼
𝐸𝛼

(
− 𝑡

𝛼

𝑇𝛼

)
, (12)

𝑦𝐶 (𝑡) = 1(𝑡) − 𝐸𝛼
(
− 𝑡

𝛼

𝑇𝛼

)
. (13)

In (12) and (13) 𝐸𝛼 (.) is the one parameter Mittag-Leffler function (3).

2.3. The FOBD approximation

The GL definition is the limit case for ℎ → 0, Δ𝑥 → 0 of the FOBD,
commonly employed in discrete FO calculations (see e.g. [16, p. 68]).

Definition 8. (The Fractional Order Backward Difference along the time –
FOBDT)

Δ𝛼𝑔(𝑡) = 1
ℎ𝛼

𝐿∑︁
𝑙=0

(−1)𝑙
(
𝛼

𝑙

)
𝑔(𝑡 − 𝑙ℎ). (14)

In (14) 𝐿 denotes a memory length necessary to correct approximation of
a non integer order operator. Unfortunately, good accuracy of approximation
requires to use a long memory 𝐿 which can make implementation difficult.

Denote coefficients (−1)𝑙
(𝛼
𝑙

)
by 𝑑𝑙 :

𝑑𝑙 = (−1)𝑙
(
𝛼

𝑙

)
. (15)

The coefficients (15) can be also computed using the following, equivalent,
recursive formula (e.g. [5, p. 12]), useful in numerical calculations:

𝑑0 = 1,

𝑑𝑙 =

(
1 − 1 + 𝛼

𝑙

)
𝑑𝑙−1, 𝑙 = 1, . . . , 𝐿.

(16)

In [4] it is given that:
∞∑︁
𝑙=1

𝑑𝑙 = 1 − 𝛼, (17)

∞∑︁
𝑙=0

𝑑𝑙 = 0. (18)
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Using (15) the operator (14) can be expressed in shorter form:

Δ𝛼𝑔(𝑡) = 1
ℎ𝛼

𝐿∑︁
𝑙=0

𝑑𝑙𝑔(𝑡 − 𝑙ℎ), (19)

and consequently its discrete transfer function 𝐺𝐹𝑂𝐵𝐷 (𝑧−1) takes the following
form:

𝐺𝐹𝑂𝐵𝐷 (𝑧−1) = 1
ℎ𝛼

𝐿∑︁
𝑙=0

𝑑𝑙𝑧
−𝑙 . (20)

2.4. Discrete systems: selected results

Let recall two theorems from theory of discrete time dynamic systems, nec-
essary to present of main results: there are Final Value Theorem (FVT) and
necessary condition of the asymptotic stability of a system described by a dis-
crete transfer function 𝐺+(𝑧).

Theorem 1. (Final Value Theorem for discrete time)
Let 𝑔(𝑘) is a discrete function of time, defined in 𝑘 time instants and 𝐺 (𝑧) is

its 𝑧-transform. Assume that 𝐺+(𝑧):
1) has no poles outside the unit circle,
2) has maximally one pole on the unit circle: 𝑧 = 1,

then:
lim
𝑘→∞

𝑔(𝑘) = lim
𝑧→1

(𝑧 − 1)𝐺 (𝑧). (21)

Theorem 2. (Necessary condition of the asymptotic stability of the discrete poly-
nomial)

Consider the characteristic polynomial of a discrete system:
𝑤(𝑧) = 𝑎𝑁 𝑧𝑁 + . . . + 𝑎1𝑧 + 𝑎0.
The necessary condition of its asymptotic stability is as follows:

𝑤(1) > 0 ∧ (−1)𝑁𝑤(−1) > 0 ∧ |𝑎0 | < 𝑎𝑁 . (22)

2.5. The Atangana-Baleanu fractional operator

The fractional order derivative Atangana-Baleanu operator is obtained via
replacing the exponential kernel in the Caputo-Fabrizio (CF) operator by the
Mittag-Leffler kernel. It is defined using the C or RL definition of fractional
order derivative. Using these definitions we obtain the Atangana-Baleanu-Caputo
(ABC) or Atangana-Baleanu-Riemann (ABR)operator respectively [2]:
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Definition 9. (The Atangana-Baleanu-Caputo (ABC) operator)

𝐴𝐵𝐶
𝑎𝐷

𝛼
𝑡 ( 𝑓 (𝑡)) = 𝑀 (𝛼)

𝑡∫
𝑎

𝑓 ′(𝑥)𝐸𝛼
(
−𝛼 (𝑡 − 𝑥)

𝛼

1 − 𝛼

)
d𝑥, (23)

where 𝐸𝛼 (.) is the one parameter Mittag-Leffler function,𝑀𝛼 is the normalization
function equal:

𝑀 (𝛼) = 1 − 𝛼 + 𝛼

Γ(𝛼) . (24)

In (24) Γ(.) is the Gamma function.

Definition 10. (The Atangana-Baleanu-Riemann (ABR) operator)

𝐴𝐵𝑅
𝑎𝐷

𝛼
𝑡 ( 𝑓 (𝑡)) = 𝑀 (𝛼) d

d𝑡

𝑡∫
𝑎

𝑓 (𝑥)𝐸𝛼
(
−𝛼 (𝑡 − 𝑥)

𝛼

1 − 𝛼

)
d𝑥. (25)

where 𝐸𝛼 (.) is the one parameter Mittag-Leffler function, 𝑀 (𝛼) is the normal-
ization function expressed by (24), Γ(.) is the Gamma function.

The Laplace transforms for the ABC and ABR derivatives are as follows:

Definition 11. (The Laplace transform of the ABC operator)

L{𝐴𝐵𝐶𝑎𝐷𝛼
𝑡 ( 𝑓 (𝑡))}(𝑠) =

𝑀 (𝛼)
1 − 𝛼

𝑠𝛼{ 𝑓 (𝑡)}(𝑠) − 𝑠𝛼−1 𝑓 (0)
𝑠𝛼 + 𝛼

1−𝛼
. (26)

Definition 12. (The Laplace transform of the ABR operator)

L{𝐴𝐵𝑅𝑎𝐷𝛼
𝑡 ( 𝑓 (𝑡))}(𝑠) =

𝑀 (𝛼)
1 − 𝛼

𝑠𝛼{ 𝑓 (𝑡)}(𝑠)
𝑠𝛼 + 𝛼

1−𝛼
. (27)

For the homogenous initial condition: 𝑓 (0) = 0 both Laplace transforms are
equal:

L{𝐴𝐵𝑅𝑎𝐷𝛼
𝑡 ( 𝑓 (𝑡))}(𝑠) = L{𝐴𝐵𝐶𝑎𝐷𝛼

𝑡 ( 𝑓 (𝑡))}(𝑠). (28)

In further considerations it will be used the common notation 𝐴𝐵 to denote
this operator in both versions, becuase the initial conditions are equal zero during
analysis of a transfer function. To simplify, introduce the following short notation:

L{𝐴𝐵𝑎𝐷𝛼
𝑡 ( 𝑓 (𝑡))}(𝑠) =

𝑏𝛼𝑠
𝛼

𝑠𝛼 + 𝑎𝛼
(29)

where:
𝑎𝛼 =

𝛼

1 − 𝛼, (30)
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𝑏𝛼 =
𝑀 (𝛼)
1 − 𝛼 . (31)

The form 𝑎𝛼 and 𝑏𝛼 require to assume that 0.0 ¬ 𝛼 < 1.0.

3. Main results

3.1. The time-continuous transfer function

The application of the AB operator (23) or (25) in the elementary FO differ-
ential equation (10) yields:

𝑇𝛼

(
𝐴𝐵
𝑎 𝐷𝛼

𝑡 𝑦(𝑡)
)
+ 𝑦(𝑡) = 𝑢(𝑡). (32)

Assume homogenous initial condition. Using of (29) in (32) we obtain:

𝑇𝛼𝑏𝛼𝑠
𝛼

𝑠𝛼 + 𝑎𝛼
𝑌 (𝑠) + 𝑌 (𝑠) = 𝑈 (𝑠). (33)

Consequently the transfer function 𝐺 (𝑠) = 𝑌 (𝑠)
𝑈 (𝑠) takes the following form:

𝐺𝐴𝐵 (𝑠) =
𝑠𝛼 + 𝑎𝛼

𝑇𝐴𝐵𝑠
𝛼 + 𝑎𝛼

. (34)

where 𝑎𝛼 and 𝑏𝛼 are expressed by (30) and (31), respectively, and:

𝑇𝐴𝐵 = 1 + 𝑇𝛼𝑏𝛼 . (35)

The step response of the transfer function is described by the following proposi-
tion:

Proposition 1. (The step response of the transfer function using AB operator)
Consider the FO transfer function 𝐺𝐴𝐵 (𝑠) described by (34).

Its step response takes the following form:

𝑦𝐴𝐵 (𝑡) = 1(𝑡) +
(

1
𝑇𝐴𝐵

− 1
)
𝐸𝛼

(
−𝑎𝛼𝑡

𝛼

𝑇𝐴𝐵

)
, (36)

where 𝑇𝐴𝐵 is expressed by (35).

Proof. The transfer function (34) can be expressed as the sum of two following
transfer functions:

𝐺𝐴𝐵1(𝑠) =
𝑠𝛼

𝑇𝐴𝐵𝑠
𝛼 + 1

, (37)

𝐺𝐴𝐵2(𝑠) =
𝑎𝛼

𝑇𝐴𝐵𝑠
𝛼 + 1

. (38)
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The step response we are looking for is the sum of step responses of both com-
ponents (37), (38). Denote these responses as 𝑦𝐴𝐵1(𝑡) and 𝑦𝐴𝐵2(𝑡), respectively.
They are equal:

𝑦𝐴𝐵1,2(𝑡) = L−1
{

1
𝑠
𝐺𝐴𝐵1,2(𝑠)

}
. (39)

The step response 𝑦𝐴𝐵1(𝑡) is obtained using Equation (1.34), page 11 in book [5].
It takes the following form:

𝑦𝐴𝐵1(𝑡) =
1
𝑇𝐴𝐵

𝐸𝛼

(
−𝑎𝛼𝑡𝛼
𝑇𝐴𝐵

)
. (40)

Next, the step response 𝑦𝐴𝐵2(𝑡) we obtain using (13):

𝑦𝐴𝐵2(𝑡) = 1(𝑡) − 𝐸𝛼
(
−𝑎𝛼𝑡𝛼
𝑇𝐴𝐵

)
. (41)

After adding (40) to (41) we obtain (36) and the proof is completed. 2

Next the steady-state response of the considered transfer function (34) is
described by the following remark.

Remark 1. (The steady-state response of the time-continuous transfer function)
Consider the transfer function using AB operator (34). Its steady-state re-

sponse is equal:
𝑦𝑠𝑠 = 1. (42)

Proof. The Laplace transform of the step response of the transfer function (34)
is as follows:

𝑌 (𝑠) = 1
𝑠
𝐺𝐴𝐵 (𝑠). (43)

The steady-state value of (43) is obtained using Final Value Theorem (FVT):

𝑦𝑠𝑠 = lim
𝑠→0

𝑠𝑌 (𝑠) = lim
𝑠→0

𝐺𝐴𝐵 (𝑠) = lim
𝑠→0

𝑠𝛼 + 𝑎𝛼
𝑇𝛼𝑏𝛼𝑠

𝛼 + 𝑎𝛼
= 1. (44)

An interesting issue is to compare the proposed transfer function (34) with the
well known transfer function using Caputo operator (11). To do this the following
“quasi-norms” 𝐻 describing the distance between step responses of both transfer
functions are proposed:

𝐻max = max
0𝑡𝑇 𝑓

|𝑦𝐶 (𝑡) − 𝑦𝐴𝐵 (𝑡) | , (45)

𝐻2 =

𝑇 𝑓∫
0

(𝑦𝐶 (𝑡) − 𝑦𝐴𝐵 (𝑡))2 d𝑡, (46)
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where 𝑇 𝑓 is the final time of the response caclulation.
The fundametal parameter describing dynamics of each system is damping

rate 𝜉that can be easily defined for scalar systems considered here. It is equal for
each considered transfer function:

𝜉𝐶 =
1
𝑇𝛼
, (47)

𝜉𝐴𝐵 =
𝑎𝛼

𝑇𝐴𝐵
. (48)

Association of both damping rates is described by the following remark.

Remark 2. (The damping rate of AB transfer function)
Consider the inertial transfer function using C operator (11) with damping

rate (47) and inertial transfer function using AB operator (34) with damping rate
(48).

Both damping rates are associated as beneath:

lim
𝛼→1

𝜉𝐴𝐵 = 𝜉𝐶 . (49)

Proof.
lim
𝛼→1

𝜉𝐴𝐵 = lim
𝛼→1

𝑎𝛼

𝑇𝐴𝐵
. (50)

Recalling (30) and (35) yields:

lim
𝛼→1

𝜉𝐴𝐵 = lim
𝛼→1

𝛼
1−𝛼

1 + 𝑇𝛼 𝑀 (𝛼)
1−𝛼

= lim
𝛼→1

𝛼

1 − 𝛼 + 𝑇𝛼𝑀 (𝛼) . (51)

Next, using (24) we obtain:
lim
𝛼→1

𝑀 (𝛼) = 1. (52)

Taking into consideration (52) in (51) gives:

lim
𝛼→1

𝜉𝐴𝐵 =
1
𝑇𝛼

(53)

which completes the proof. 2

The remarks (42) and (49) allow to conclude that:

lim
𝛼→1

𝐻max = 0,

lim
𝛼→1

𝐻2 = 0.
(54)
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3.2. The approximated, discrete transfer function

The discrete-time transfer function using FOBD operator with fixed memory
length 𝐿 is obtained by employing of (20) in (34):

𝐺𝐴𝐵𝐿 (𝑧−1) = 𝑁𝐿 (𝑧−1)
𝐷𝐿 (𝑧−1)

, (55)

where:

𝑁𝐿 (𝑧−1) = ℎ−𝛼
𝐿∑︁
𝑙=0

𝑑𝑙𝑧
−𝑙 + 𝑎𝛼 , (56)

𝐷𝐿 (𝑧−1) = ℎ−𝛼𝑇𝐴𝐵
𝐿∑︁
𝑙=0

𝑑𝑙𝑧
−𝑙 + 𝑎𝛼 . (57)

For each memory length it is expressed as:

𝐺𝐴𝐵∞(𝑧−1) = 𝑁∞(𝑧−1)
𝐷∞(𝑧−1)

, (58)

where:

𝑁∞(𝑧−1) = ℎ−𝛼
∞∑︁
𝑙=0

𝑑𝑙𝑧
−𝑙 + 𝑎𝛼 , (59)

𝐷∞(𝑧−1) = ℎ−𝛼𝑇𝐴𝐵
∞∑︁
𝑙=0

𝑑𝑙𝑧
−𝑙 + 𝑎𝛼 . (60)

The 𝑍 transform of the step response of both considered transfer functions takes
the following form:

𝑌𝐿,∞(𝑧−1) =
𝐺+
𝐹𝑂𝐵𝐷

(𝑧−1)
1 − 𝑧−1 (61)

and consequently the step response of the discrete, approximated transfer function
is as follows:

𝑦𝐿,∞(𝑘) = Z−1{𝑌+
𝐿,∞(𝑧−1)}, (62)

where 𝑘 = 1, 2, . . . denotes discrete time instants. The formula (62) can be solved
numerically using e.g. MATLAB, which was used for numerical validation of
results discussed in the next section.

The steady-state responses to the Heaviside function of transfer functions (55)
and (58) are described by the following remarks.

Remark 3. (The steady-state response of the discrete, fixed memory length trans-
fer function)
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Consider the discrete transfer function with fixed memory length 𝐿 (55). Its
steady-state response is equal:

𝑦𝑠𝑠𝐿 =
𝑆𝐿 + ℎ𝛼𝑎𝛼

𝑇𝐴𝐵𝑆𝐿 + ℎ𝛼𝑎𝛼
, (63)

where:

𝑆𝐿 =

𝐿∑︁
𝑙=0

𝑑𝑙 . (64)

Proof. The 𝑍 transform of the step response of transfer function (55) is given
by (61). The use of Final Value Theorem for discrete system yields:

𝑌𝑠𝑠𝐿 = lim
𝑘→∞

𝑦(𝑘) = lim
𝑧−1→1

(1 − 𝑧−1)𝑌 (𝑧−1) = lim
𝑧−1→1

𝐺𝐴𝐵𝐿 (𝑧−1). (65)

Calculating of the limit (65) with the use of (64) gives directly (63) and the proof
is completed. 2

Remark 4. (The steady-state response of the discrete, each memory length trans-
fer function)

Consider the discrete transfer function with each memory length (58). Its
steady-state response is equal:

𝑦𝑠𝑠∞ = 1. (66)

Proof. To prove (66) remember that:
∞∑︁
𝑙=0

𝑑𝑙 = 0. (67)

Taking (67) to (65) gives (66). 2

3.3. The stability of the approximated discrete transfer function

The proposed approximated transfer function (55) or (58) is the integer-order,
discrete transfer function. This allows to analyze its stability with the use of well
known tools. The necessary condition of its asymptotic stability is described by
the following proposition.

Proposition 2. (The necessary condition of the asymptotic stability of the transfer
function (55), (58))

Consider the discrete transfer function (55), (58), being the discrete FOBD
approximation of the FO transfer function (34) with fractional order 0.0 < 𝛼 <
1.0.
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The denominator of the FOBD approximation (57) or (60) meets the necessary
condition of the asymptotic stability (22) for each value of sample time ℎ and
memory length 𝐿.

Proof. The proof consists in examination all the conditions given in (22).
The characteristic polynomial of the transfer function (34) as a function of 𝑧

with respect to (16) takes the following form:

𝑤(𝑧) =
(
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼

)
𝑧𝐿 − 𝛼𝑧𝐿−1 +

𝐿∑︁
𝑙=0

𝑑𝑙𝑧
𝐿−𝑙 . (68)

The first condition is written as:

𝑤(1) = 𝑇𝐴𝐵
ℎ𝛼

+ 𝑎𝛼 − 𝛼 +
𝐿∑︁
𝑙=0

𝑑𝑙 . (69)

The sum in (69) for 𝐿 → ∞ goes to zero (see (18)). Remember that 𝑎𝛼 = 𝛼
1−𝛼 .

After elementary transformation we obtain:

𝑤(1) = 𝑇𝐴𝐵
ℎ𝛼

+ 𝛼2

1 − 𝛼 . (70)

Expression (69) is positive for each 𝑇𝐴𝐵, ℎ > 0 and 0.0 < 𝛼 < 1.0, thus the 1’st
condition from (22) is met.

The second condition from (22) takes the following form:

(−1)𝐿𝑤(−1) = (−1)𝐿
((
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼

)
(−1)𝐿 − 𝛼(−1)𝐿−1 +

𝐿∑︁
𝑙=2

(−1)𝐿−𝑙𝑑𝑙

)
. (71)

The sum in the bracket can be also ingnored. This yields:

(−1)𝐿𝑤(−1) = (−1)𝐿
((
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼

)
(−1)𝐿 − 𝛼(−1)𝐿−1

)
. (72)

For even 𝐿 the condition (72) turns to:

(−1)𝐿𝑤(−1) =
((
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼

)
− 𝛼(−1)

)
=
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼 + 𝛼. (73)

For odd 𝐿 we obtain:

(−1)𝐿𝑤(−1) = −
(
−

(
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼

)
− 𝛼

)
=
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼 + 𝛼. (74)

Both expressions (73) and (74) are positive for each value of 𝐿, 𝑇𝐴𝐵, ℎ > 0 and
0.0 < 𝛼 < 1.0.
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Finally the last condition from (22) needs to be analyzed. It takes the following
form:

|𝑑𝐿 | <
𝑇𝐴𝐵

ℎ𝛼
+ 𝑎𝛼 . (75)

The coefficients 𝑑𝑙 , expressed by (16) are descreasing function of 𝐿. In the range
𝑙 = 1, . . . , 𝐿 the maximum value has the coefficient |𝑑1 | = 𝛼 and it can be
employed to testing of the condition (75) due to it gives the strongest limitation.
With respect to (16) and (30) it is as follows:

𝛼 <
𝑇𝐴𝐵

ℎ𝛼
+ 𝛼

1 − 𝛼 ⇐⇒ 𝑇𝐴𝐵

ℎ𝛼
+ 𝛼2

1 − 𝛼 > 0. (76)

The condition (76) is met any for value of 𝐿, 𝑇𝐴𝐵, ℎ > 0 and 0.0 < 𝛼 < 1.0. This
finishes the proof. 2

3.4. The convergence of the discrete approximation

The Rate of Convergence (ROC) of the proposed, discrete, approximated
model can be defined as follows:

Definition 13. (The Rate of Convergence)
ROC of the discrete transfer function (55) constructed with the fixed memory

length 𝐿 is equal to its steady state value (63):

𝑅𝑂𝐶𝐿 = 𝑦𝑠𝑠𝐿 (77)

where 𝑦𝑠𝑠𝐿 is described by (63).

It is obvious that lim𝐿→∞ 𝑅𝑂𝐶𝐿 = 1. The ROC is a function of parameters of
FOBD: sample time ℎ and memory length 𝐿. It is also a function of parameters
of the model: fractional order 𝛼 and time constant 𝑇𝛼.

The value of the sample time ℎ assuring the minimum value Δ𝐿 of ROC is
described by the following proposition:

Proposition 3. (The value of sample time ℎ assuring the minimum value of ROC)
Consider the discrete FO transfer function (55). The minimum value of the

sample time ℎ assuring the minimum, predefined value of Δ𝐿 is described as
follows:

ℎ 
(
𝑆𝐿 (1 − Δ𝐿𝑇𝐴𝐵)
𝑎𝛼 (Δ𝐿 − 1)

) 1
𝛼

. (78)
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Proof. The minimum predefined value of ROC using (63) is expressed as follows:

Δ𝐿 
𝑆𝐿 + ℎ𝛼𝑎𝛼

𝑇𝐴𝐵𝑆𝐿 + ℎ𝛼𝑎𝛼
⇐⇒

⇐⇒ ℎ𝛼𝑎𝛼 (Δ𝐿 − 1)  𝑆𝐿 (1 − Δ𝐿𝑇𝐴𝐵) ⇐⇒

⇐⇒ ℎ𝛼 
(
𝑆𝐿 (1 − Δ𝐿𝑇𝐴𝐵)
𝑎𝛼 (Δ𝐿 − 1)

)
⇐⇒

⇐⇒ ℎ 
(
𝑆𝐿 (1 − Δ𝐿𝑇𝐴𝐵)
𝑎𝛼 (Δ𝐿 − 1)

) 1
𝛼

.

4. Simulations

4.1. The time continuous transfer function

Firstly, the step responses using analytical formula (36) were examined. Time
trends obtained using MATLAB for different values of fractional order 𝛼 and
time constants 𝑇𝛼 are shown in Figures 1 and 2. These analytical responses will
be used as a reference to estimate the quality of the discrete approximation.

Figure 1: The analytical step responses of the
proposed transfer function for 𝑇𝛼 = 1𝑠 and dif-
ferent 𝛼 computed with the use of (36)

Figure 2: The step responses of the proposed
transfer function for 𝛼 = 0.5 and different 𝑇𝛼
computed with the use of (36)

Secondly, the step responses were compared with step responses of the transfer
function using𝐶 operator, computed using (13). The comparison was run for time
constant 𝑇𝛼 = 1𝑠 and final time 𝑇 𝑓 = 100𝑠. The quasi norms (45) and (46) for
varying 𝛼 are given in Table 1. The comparison of the step responses for the same
parameters is presented in Fig. 3.
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Table 1: Quasi norms (45) and (46) for 𝑇𝛼 = 1𝑠, 𝑇 𝑓 = 100𝑠 and various fractional orders 𝛼

𝛼 𝐻max 𝐻2

0.25 0.4780 1.1417

0.50 0.3900 0.1888

0.75 0.2248 0.0167

0.95 0.0490 7.9049e-04
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Figure 3: The comparing of step responses 𝑦𝐶 (𝑡) vs 𝑦𝐴𝐵 (𝑡) for 𝑇𝛼 = 1𝑠, 𝑇 𝑓 = 100𝑠 and 𝛼 = 0.25,
0.50, 0.75, 0.95 (top-bottom)

4.2. The approximated transfer function using FOBD

In this section the discrete transfer function using FOBD approximation was
examined. Its accuracy was estimated using known Integral Absolute Error (IAE)
cost function:

𝐼 𝐴𝐸 = ℎ

𝐾∑︁
𝑘=1

|𝑦𝐴𝐵 (𝑘ℎ) − 𝑦𝐿 (𝑘ℎ) | , (79)
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where 𝑦𝐴𝐵 (𝑘ℎ) is the analytical response (36) and 𝑦𝐿 (𝑘ℎ) is the step response of
approximation (62). For fixed 𝛼 and 𝑇 this cost function is a function of memory
length 𝐿 and sample time ℎ. Its 3D plot for 𝐿 = 100−500 and ℎ = 0.1−10 s is
shown in Fig. 4.

Figure 4: The IAE cost function as a function of memory length 𝐿 and sample time ℎ for 𝛼 = 0.25,
0.50, 0.75

Comparison of 𝑦𝐴𝐵 (𝑡) and 𝑦𝐿 (𝑘ℎ) for different values of fractional order 𝛼
is shown in Fig. 5 and respective ISE values are given in Table 2.

Table 2: The cost function (79) for 𝑇𝛼 = 1s, ℎ = 1s, 𝐿 = 100 and various fractional orders 𝛼

𝛼 0.25 0.50 0.75

𝐼𝑆𝐸 0.1372 0.3312 0.4554

In the next step the ROC coefficient (77) as a function of memory length 𝐿
and sample time ℎ was numerically estimated. Its 3D plots for various values of
fractional order 𝛼 are given in Fig. 6.

Next, the value of the sample time ℎ assuring the predefined value Δ𝐿 of
ROC is to be calculated with the use of (78). Assume that the required value of
Δ𝐿 = 0.90, the memory length 𝐿 = 200. The parameters of the plant are: 𝛼 = 0.5
and 𝑇𝛼 = 5 s. The use of (78) yields: ℎ  7.6524 s.

To verify this result assume ℎ= 8s for the same values of other parameters.
The use of (63) gives the value of 𝑅𝑂𝐶 = 0.9019.
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Figure 5: The comparing of step responses 𝑦𝐴𝐵 (𝑡) vs 𝑦𝐿 (𝑘ℎ) for 𝑇𝛼 = 1 s, 𝑇 𝑓 = 100 s, 𝐿 = 100,
ℎ = 1 s and 𝛼 = 0.25, 0.50, 0.75, 0.95 (top-bottom)
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Figure 6: The ROC (77) as a function of memory length 𝐿 and sample time ℎ
for different orders 𝛼

5. Discussion of results and final conclusions

For the time continuous transfer function (34) the most important remark is
that for fractional order 𝛼 close to 1.0 its step response is tending to the step
response of the “classic” FO transfer function using 𝐶 operator (11). This is
illustrated by Fig. 3 and Table 1. From this observation it can be concluded
that the use of the proposed transfer function in modeling has a sense only for
fractional orders 𝛼 significantly smaller than 1.0. For fractional order 𝛼 close to
1.0 the “classic” transfer function (11) assures very similar behavior in the sense
of the step response and it is simplier to implement.

The analysis of the discrete transfer function using FOBD approximation (55),
(58) shows valuable advantage of the proposed model. Namely, its good accuracy
achieved for long sample time ℎ is associated with low memory length 𝐿. It can
be observed in the 3D plots 4 and 6. This property can be very useful during its
digital implementation at bounded platform (e.g. PLC or microcontroller).

Simultaneously, the shortening of the sample time ℎ requires to increasing of
the memory length 𝐿 to obtain the same accuracy and convergence.

The spectrum of further investigations of the proposed transfer function covers
first of all its use to describe of real physical phenomena, e.g. thermal processes
previously considered by author.
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Next, theoretical considerations presented in this paper should be supple-
mented with deeper analysis of a stability. Here necessary and sufficient stability
condition is expected to prove. Interesting is also the expanding of the fractional
order to range 1.0 < 𝛼 < 2.0.

An another issue is the construction of the approximated transfer function
with the use of the CFE approximation instead of the FOBD. This should further
reduce the numerical complexity of the model.
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