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Static anti-windup compensator based on BMI optimisation for 
discrete-time systems with directional change in controls avoidance
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Abstract. In the paper, a design method of a static anti-windup compensator for systems with input saturations is proposed. First, an anti- 
windup controller is presented for system with cut-off saturations, and, secondly, the design problem of the compensator is presented to be a 
non-convex optimization problem easily solved using bilinear matrix inequalities formulation. This approach guarantees stability of the closed-
loop system against saturation nonlinearities and optimizes the robust control performance while the saturation is active.
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1. Introduction
In this paper, we explore directional change phenomenon from
the viewpoint of compensation of negative effects of control
vector saturation. This approach is crucial for maintaining the
stability and performance of discrete-time control systems un-
der saturation conditions with directional change in controls
avoidance. The paper extends the bilinear matrix inequality
(BMI) formulation presented in paper [1] which has been the
first stage in this research, to a more demanding control sce-
nario. Static compensation is a research topic still currently
developed, such as in [2] for nonlinear systems, satisfying Lip-
schitz conditions, [3] for nonlinear time-delayed systems, or
[4] for time-delayed systems.

One can list a number of strategies present to avoid changes
in direction of a control vector, such as vector control tech-
niques to drive inverters and motor drives, to fit the require-
ment of precise control of voltage, current and flux space vec-
tors by avoiding direction changes in a control vector [5].

The other might be a switched control strategy to incorpo-
rate control constraints to preserve the initial control direction
and, at the same time, to prevent the state vector to leave the
domain of control authority, to keep the system both stable and
work under constraints [6].

In electrical machines, especially in induction motors, there
is a space vector modulation algorithms to keep the direction
of a control vector unaltered by flux or torque ripple reduction,
due to varying switching frequency [7].

It is not only the case of stability as the problem, but also it is
related to dynamic decoupling problem, tackled out in, e.g. [8,
9], where the preservation of direction of a control vector is
bound with coupling its components to suit certain aim.

The problem of decoupling becomes even more impeding
if nonlinear multiple-input multiple-output plants are consid-
ered, see [10] with uncertainty taken into account. The ap-
proach presented in the current paper can also be extended to
uncertainty-related case by adding a polytopic uncertainty in-
formation, to present the conditions by a set of BMIs for the
polytopic information [11, 12, 13].
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Recent research of the author of the paper, see the D.Sc.
monograph [14] or [15], or the research of the other authors,
[16, 17, 18], provide some detailed information on control
quality improvement with simultaneous anti-windup compen-
sation scheme, also for the case when directional change is to
be avoided. However, there was a gap in the current literature
concerning extension of this research to discrete-time mod-
els, leading to an optimization-based way to obtain optimal
static anti-windup compensator. The optimisation problems
presented in the paper concern all minimisation task of a linear
function subject to BMI constraints [17, 19]. These problems
will not be solvable using linear matrix inequality approach,
and require other software, such as PENBMI (PENOPT suite)
[19], TOMLAB-PENBMI or other. The basic formulation of
the problem is coded down in Yalmip [20, 21, 22].

The results reported at the previous stage of the research [1],
present design of static compensators for discrete-time models
with cut-off constraints, whereas the results for no directional
change in controls are presented in this paper. It is a first try
to formalise the conditions, by introducing a scaling factor to
the conditions, to lead to an off-line calculation of the mapping
between the saturation level (expressed by the scaling factor)
versus compensator feedback matrix. The major contribution
of the paper, is not only the introduction of a scaling factor, but
also deriving the BMI conditions.

2. Directional change in controls
2.1. Introduction The directional change in controls issue
can be easily depicted for a system with two control inputs,
each with a prescribed cut-off level. As it can be observed in
Fig. 1 the calculated control vector v t has a different direction
than the constrained control vector u t [15].

A change in control vector direction should not be connected
to coupling avoidance task only, but rather in maintaining the
information stored in the original, i.e., calculated control vec-
tor, to preserve balance between separate control inputs, what
could be met in various robotics-correlated problems. The di-
rectional change problem can be avoided/miminized by the use
of a posteriori anti-windup compensators, or a priori ones, see
the description in [15].

1

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,
but has not been fully edited. Content may change prior to final publication.



D. Horla

v1

v2

v t

u t
u1

u2 directional
change

Fig. 1. Directional change issue

2.2. Optimization problem formulation of directional
change A task of taking constraints into account, which are
imposed on the calculated control vector, is connected with
solving the optimization problem by the direction-preserving
(DP) algorithm. Let the constraints be given by affine func-
tions in the form

Hu t ≤ α (1)

One needs to seek for the vector u t which is as close as pos-
sible (in the sense of some norm) to v t , what in turn having
introduced a weighting matrix QDP > 0 can be stated as

min
u t

(u t − v t)
T Q−1

DP(u t − v t)

s.t. Hu t ≤ α , (2)
u t of the same direction as v t .

As an example, let us consider the case with m = 2 control
inputs and constraints in the form −α ≤ u1,t ≤ α , −α ≤ u2,t ≤
α . On the basis of (1) one gets:

H =


1 0
0 1

−1 0
0 −1

 , α =


α
α
α
α

 .

The problem (2) can be transformed to finding a scalar mul-
tiplier γ which enters as a product into v t to satisfy the require-
ments (1), thus:

min
γ

(u t − v t)
T Q−1

DP(u t − v t)

s.t. Hu t ≤ α , (3)
u t = γv t ,

what simplifies to the form

min
γ

(γ −1)2vT
t Q−1

DPv t

s.t. γHv t ≤ α , (4)

The problem (4) is convex (minimisation of a convex function
over a convex set). As can be seen, when no constraints are
active, one gets γ∗ = 1 as the optimal solution. Otherwise 0 ≤
γ∗ < 1 (the calculated control vector gets contracted).

Usually the matrix H is not of full rank, and the problem
cannot be solved analytically via a Lagrange dual problem, as
per its connection with the inversion of a matrix XT HTY HX
(where the introduced matrices are of appropriate dimensions),
and the other solution methods must apply, such as KKT
condition-based.

First, it can be assumed that the constraints from (4) can be
presented in a compact form as a set of nconst inequalities

γHconstv t ≤ b ,

where nconst is the smallest number of constraints describing
the feasible set and:

Hconstv t =


h1

h2
...

hnconst

 , b =


b1

b2
...

bnconst

 .

It is important to verify what value of γ makes all constraints
inactive only in the case whenever bi ≤ hi (1 ≤ i ≤ nconst),
where

γ = min

 min
bi<hi

1≤i≤nconst

bi

hi
,1


corresponds to the multiplier γ , which should be used to multi-
ply the calculated control vector v t , to avoid directional change
in controls (satisfying bi < hi guaranteed the inactive and
equality conditions are eliminated). As a summary one can
formulate the complete DP algorithms in which the inner min
function defines the minimal ratio (provided it exists), and the
outer function – the lesser of two: bi

hi
and 1.

2.3. DP algorithm

1) for given H, v t and defined constraints transform (4) into

min
γ

(γ −1)2vT
t Q−1

DPv t

s.t. γHconstv t ≤ b ; (5)

2) evaluate the optimal multiplier of v t , as

γ∗ = min

 min
bi<hi

1≤i≤nconst

bi

hi
,1

 ; (6)

3) calculate the constrained control vector

u t = γ∗v t (7)

and use to impose constraints on the control vector.

The proposed DP algorithm can be used to any general set
of constraints defined by affine functons. In the other cases
one has to approximate the feasible set by a set defined by
inequalities with affine functions.

As an example, let H =


1 0
0 1

−1 0
0 −1

, α =


3
2
4
4

, v t =

[
4
3

]
be given. As can be seen, the first two constraints are

active, and:

Hconst =

[
1 0
0 1

]
, Hconstv t =

[
4
3

]
, b =

[
3
2

]
,
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with

min
bi<hi

1≤i≤nconst

bi

hi
= min

(
3
4
,

2
3

)
=

2
3
,

resulting in γ∗ = min
( 2

3 , 1
)
= 2

3 and u t = [ 8
3 , 2]T satisfies the

constraints and is of the same direction as v t (see Fig. 2).
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Fig. 2. Control vector: a) calculated, b) DP-constrained

3. Discrete-time model of the control system
The plant is modeled by a set of difference equations

xP,t+1 = APxP,t +BPu t , (8)
y t = CPxP,t +DPut , (9)

with the matrices AP ∈ Rn×n, BP ∈ Rn×m, CP ∈ Rp×n, DP ∈
Rp×m, whereas the controller is described as

xc,t+1 = Acxc,t +Bce t +ξ
t
, (10)

v t = Ccxc,t +Dce t , (11)

with Ac ∈ Rnc×nc , Bc ∈ Rnc×p, Cc ∈ Rm×nc , Dc ∈ Rm×p. The
static anti-windup compensation action is carried out by cal-
culation of the ξ to alter interior states of the controller (nc
states). The general block diagram is the same as in [1] and
has been omitted here for the sake of brevity.

The state-space vector of the model of the plant has n com-
ponents, xP ∈ Rn, whereas the output vector (to track the ref-
erence vector r ∈ Rp) has p elements as well, y ∈ Rp, and fi-
nally control vectors have m components, namely u, v ∈ Rm.
As has already been stated the full-state anti-windup compen-
sator modifies nc states of the controller, i.e. ξ ∈ Rnc .

A special version of a cut-off saturation is considered, re-
lated to DP the algorithm, which for the amplitude-constrained
can be presented as a result of the operation γv t , where γ ≤ 1
corresponds to the saturation level of all the components of the
calculated control vector.

As in [1], the compensator modifies controller states via ξ ,

ξ = Λη = Λ(u− v) . (12)

Taking (8)–(11) into account, and introducing q operator,
the state-space description in a linear-fractional form is given
by [16]

qx =

[
qxP

qxc

]
=

[
APxP +BPu
Acxc +Bc(w− y)+ξ

]
=

=

[
APxP+BPu
Acxc+Bcw−Bc (CPxP+DPu)+ξ

]
=

= A x+Buu+Bww+Bξ ξ , (13)

where w = r, z = e and:

A =

[
AP 0n×nc

−BcCP Ac

]
, (14)

Bu =

[
BP

−BcDP

]
, (15)

Bw =

[
0n×p

Bc

]
, (16)

Bξ =

[
0n×nc

Inc×nc

]
. (17)

Following [12, 17], like in [1] one can write

v = Ccxc +Dce =Ccxc +Dc(w− y) =

= C vx+Dvuu+Dvww+Dvξ ξ , (18)

where:

C v = [−DcCP ,Cc] , Dvu =−DcDP , (19)
Dvw = Dc , Dvξ = 0m×nc . (20)

The output vector of a linear-fractional transformation form,
from Figure 3, becomes

z = e = w− y = w−CPxP −DPu =

= C zx+D zuu+D zww+D zξ ξ , (21)

with:

C z =
[
−CP , 0p×nc

]
, D zu =−DP , (22)

D zw = Ip×p , D zξ = 0p×nc . (23)

As per η = u−v, and according to [1], the ξ can be removed
from the linear-fractional form by introduction of

ξ = −XC vx+X (I −Dvu)u−XDvww , (24)

X =
(
Inc×nc +ΛDvξ

)−1 Λ . (25)

Shortly, by substitution of (24) to (13), (18) and (21), one
obtains:

Dx = Ax+Buu+Bww , (26)
v = Cvx+Dvuu+Dvww , (27)
z = Czx+Dzuu+Dzww , (28)

CONTROL
SYSTEM

∆

Λ

w t z t

u t v t

η tξ
t

Fig. 3. Linear-fractional transformation-related description of the
discrete-time model of the control system
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where:

A = A −Bξ XC v , (29)
Bu = Bu +Bξ X (I −Dvu) , (30)
Bw = Bw −Bξ XDvw , (31)
Cv = C v −Dvξ XC v , (32)

Dvu = Dvu +Dvξ X (I −Dvu) , (33)
Dvw = Dvw −Dvξ XDvw , (34)

Cz = C z −D zξ XC v , (35)
Dzu = D zu +D zξ X (I −Dvu) , (36)
Dzw = D zw −D zξ XDvw . (37)

When the constraints are imposed with respect to the DP
algorithm, thus u = γv holds, then on the basis of (26), (27)
and (28) a new description coherent with the linear-fractional
transformation form – LFT – for is obtained (LTF does not
change for a system with constraints):

Dx = Ax+ γBuv+Bww =

= (A+ γBuCv)x+ γBuDvuu+

+(γBuDvw +Bw)w =

= Aγ x+Bγ
uu+Bγ

ww , (38)
z = Czx+ γDzuv+Dzww =

= (Cz + γDzuCv)x+ γDzuDvuu+(γDzuDvw+

+Dzw)w =

= Cγ
z x+Dγ

zuu+Dγ
zww , (39)

where:

Aγ = A+ γBuCv , Bγ
u = γBuDvu ,

Bγ
w = γBuDvw +Bw , Cγ

z =Cz + γDzuCv ,

Dγ
zu = γDzuDvu , Dγ

zw = γDzuDvw +Dzw .

(40)

4. On imposing performance requirements with
respect to the closed-loop system

The basic performance requirement imposed on the system is
the stability property, which below, and following the deriva-
tions in [1], is cast to a matrix inequality-related form. Sec-
ondly, and in order to avoid repetitions, an induced norm helps
to formulate the other constraint, eventually leading to a BMI-
constrained optimization task. On the basis of the representa-
tion of a system with a DP algorithm, see (38), (39), the basic
performance requirement is the mean-square stability condi-
tion, related to the existence of a Lyapunov function

V (x t+1)−V (x t) = xT
t+1Px t+1 − xT

t Px t < 0 , (41)

from where Aγ T PAγ −P ⋆ ⋆

Bγ
u

T PAγ Bγ
u

T PBγ
u ⋆

Bγ
w

T PAγ Bγ
w

T PBγ
u Bγ

w
T PBγ

w

< 0 , (42)

or 
−P ⋆⋆⋆

00 ⋆⋆

00 0 ⋆

PAγ PBγ
u PBγ

w −P

< 0 . (43)

Table 1. Nomenclature

Symbol Role
P positive-definite matrix, forming Lyapunov function
Γ Γ = [Γ1, . . . , Γm] used to incorporate u2

i ≤ v2
i

(i = 1, . . . , m) conditions using the S-procedure
δ supremum estimate of the norm-induced gain mentioned below
γ contraction ratio of the calculated control vector

The nomenclature used in this Section is briefly character-
ized in Table 1.

Using the S-procedure, and on the basis of (42) one obtains Aγ T PAγ −P+Cv
T ΓCv

Bγ
u

T PAγ +Dvu
T ΓCv

Bγ
w

T PAγ +Dvw
T ΓCv

⋆

Bγ
u

T PBγ
u +Dvu

T ΓDvu −Γ
Bγ

w
T PBγ

u +Dvw
T ΓDvu

⋆

⋆

Bγ
w

T PBγ
w +Dvw

T ΓDvw

≤ 0

(44)

that can be transformed into
−P ⋆⋆⋆⋆

0 −Γ ⋆⋆⋆

0 00 ⋆⋆

PAγ PBγ
u PBγ

w −P ⋆

ΓCv ΓDvu ΓDvw 0 −Γ

≤ 0 . (45)

The next step, following a similar derivation for a cut-off
constrained system, with the L2 induced norm between z and
w used, one gets

V (x t+1)−V (x t)+ zT z−δwT w ≤ 0 (46)

where in the case of a discrete-time system one can write: Aγ T PAγ −P+Cγ
z

TCγ
z ⋆

Bγ
u

T PAγ +Dγ
zu

TCγ
z Bγ

u
T PBγ

u +Dγ
zu

T Dγ
zu

Bγ
w

T PAγ +Dγ
zw

TCγ
z Bγ

w
T PBγ

u +Dγ
zw

T Dγ
zu

⋆

⋆

Bγ
w

T PBγ
w +Dγ

zw
T Dγ

zw −δ

≤ 0 . (47)

By using the S-procedure again: Aγ T PAγ −P+Cγ
z

TCγ
z +Cv

T ΓCv

Bγ
u

T PAγ +Dγ
zu

TCγ
z +Dvu

T ΓCv

Bγ
w

T PAγ +Dγ
zw

TCγ
z +Dvw

T ΓCv

⋆

Bγ
u

T PBγ
u +Dγ

zu
T Dγ

zu +Dvu
T ΓDvu −Γ

Bγ
w

T PBγ
u +Dγ

zw
T Dγ

zu +Dvw
T ΓDvu

⋆

⋆

Bγ
w

T PBγ
w +Dγ

zw
T Dγ

zw −δ +Dvw
T ΓDvw

 ≤ 0 ,

(48)

what is synonymous with
Aγ T PAγ−P ⋆ ⋆ ⋆⋆

Bγ
u

T PAγ Bγ
u

T PBγ
u−Γ ⋆ ⋆⋆

Bγ
w

T PAγ Bγ
w

T PBγ
u Bγ

w
T PBγ

w−δ ⋆ ⋆

ΓCv ΓDvu ΓDvw −Γ ⋆

Cγ
z Dγ

zu Dγ
zw 0 −I

 ≤ 0

(49)
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or



−P ⋆⋆⋆⋆

0 −Γ ⋆⋆ ⋆⋆

0 0 −δ ⋆⋆⋆

PAγ PBγ
u PBγ

w −P ⋆⋆

ΓCv ΓDvu ΓDvw 0 −Γ ⋆

Cγ
z Dγ

zu Dγ
zw 00 −I


≤ 0 . (50)

In order to derive the final form of the inequality conditions
one needs to define:

PAγ = P(A+ γBuCv) =

= P
(
A −Bξ XC v + γBuC v − γBuDvξ XC v+

+γBξ X (I −Dvu)C v +

− γBξ X (I −Dvu)Dvξ XC v
)
, (51)

PBγ
u = P(γBuDvu) =

= P
(
γBuDvu + γBuDvξ X (I −Dvu)+

+γBξ X (I −Dvu)Dvu +

+γBξ X (I −Dvu)Dvξ X (I −Dvu)
)
, (52)

PBγ
w = P(γBuDvw +Bw) =

= P
(
Bw −Bξ XDvw+

+γBuDvw − γBuDvξ XDvw +

+γBξ X (I −Dvu)Dvw +

− γBξ X (I −Dvu)Dvξ XDvw
)
, (53)

and ΓCv, Cγ
z , ΓDvu, Dγ

zu, ΓDvw, Dγ
zw defined as in [1].

The optimisation task enabling one to find the optimal com-
pensator feedback gains is

min
γ,P,X ,Γ,δ

δ

s.t. (50)
γ > 0, P > 0, Γ > 0, δ > 0

(54)

and it is solved as a sequence of optimization tasks for a fixed
value of γ related to how severe the DP constraints are and
P, X , Γ, δ as decision variables in

min
P,X ,Γ,δ

δ

s.t. (50)
P > 0, Γ > 0, δ > 0

(55)

which has BMI constraints only. The optimal solution corre-
sponds to the minimal value of δ achieved. It can be easily
presented as a series of solutions, δ vs. γ to understand the
interplay. Strict inequalities in the optimization problems re-
sult mainly from the fact the interior-point methods are used to
obtain solutions, and with reference to properties of selected
matrices.

5. Simulation results
The simulation for the two-input two-output plant has been
conducted, with:

AP =

[
0.9048 0
0 0.9048

]
, (56)

BP =

[
9.516 0
0 9.516

]
, (57)

CP =

[
0.4 −0.5

−0.3 0.4

]
, (58)

DP =

[
0 0
0 0

]
(59)

and the controller with nc = 1 given by:

Ac = 1 , (60)
Bc = [7.0710, 7.0710] , (61)
Cc = [0.0318, 0.0247]T , (62)

Dc =

[
2.0 2.5
1.5 2.0

]
(63)

It is assumed that for t = 0 in accordance with [1] a step
change in reference vector takes place between w = 0 and
w = [0.63, 0.79]T , and the control vector is saturated at the
level ±1, see Fig. 4 to observe tracking properties.

6. Summary
The paper presented an optimization-based compensator de-
sign method to ensure superior performance of a control sys-
tem. The proposed method can form a lookup table of vari-
ous compensators for different values of γ to swiftly change
the controller feedback gains for various constraint violation
conditions in dynamic states. That would open the door to
another interesting research on the topic, based on switched-
system formulation, or linear-piecewise description, and will
be topic of the further research.
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