
 

 

1. Introduction 

A new area of research that connects energy generation and con-

sumption is thermal energy storage. Phase change materials with 

high energy storage density and isothermal working qualities are 

particularly significant in latent heat storage units. The effective 

and efficient heat storage of the thermal energy storage system 

depends on the use of phase change material (PCM). Finding 

a compromise between competing PCM selection attributes is 

usually necessary when choosing the best PCM to meet specific 

requirements. Thermal properties (e.g., latent heat of transition, 

thermal conductivity, specific heat, thermal stability, etc.); phys-

ical properties (e.g., density, volume change, vapour pressure); 

chemical properties (e.g., recycle, toxicity, flammability); ki-

netic properties (e.g., supercooling, phase separation); economic 

performance (e.g., cost); and certain managerial considerations 

are among the important requirements that must be met. All 

these requirements are considered as the PCM selection attribu- 
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Nomenclature 

Cp – specific heat, kJ/(kg K) 

K – thermal conductivity, W/(m K) 

LH – latent heat of fusion, kJ/kg 

t – time, min 

T – temperature, oC 

 

Greek symbols 

ρ – density, kg/m3  

 

Subscripts and Superscripts 

i – attribute  

j – alternative  

l – liquid 

s – solid  

 

Abbreviations and Acronyms 

AHP – analytic hierarchy process 

 

BWM – best-worst method 

CoCoSo – combined compromise solution 

COPRAS – complex proportional assessment 

CRITIC – criteria importance through intercriteria correlation 

EDAS – evaluation based on distance from average solution 

EXPROM2– extension of PROMETHEE 

MADM – multi-attribute decision-making 

MEREC – method based on the removal effect of criteria 

MOORA – multi-objective optimization of ratio analysis 

MULTIMOORA – multi-objective optimization of ratio analysis  

                                plus the full multiplicative form 

PCM  – phase change material 

PROMETHEE – preference ranking organization method for enrich- 

                            ment evaluations 

TOPSIS  – technique for order preference by similarity to ideal  

                  solution 

VIKOR  – višekriterijumsko kompromisno rangiranje 

WASPAS– weighted aggregated sum product assessment 

WPM – weighted product method  

tes. As a number of PCM materials are available in the market, 

selecting the right PCM for a particular application becomes dif-

ficult and challenging. No single PCM can possess all the re-

quired properties and characteristics and hence selection of 

a best PCM for a given energy storage application is considered 

as a multi-attribute decision-making (MADM) problem.  

Any MADM method for PCM selection involves the (i). 

PCM alternatives, (ii). PCM selection attributes, (iii). weights of 

importance assigned to the PCM selection attributes, and (iv). 

performance data of the PCM alternatives corresponding to the 

selection attributes. The chosen MADM method process the 

given data keeping in view of these four components and sug-

gests the best PCM for the given energy storage application for 

optimal storage performance. The person making the decision 

(known as decision-maker) considers the importance of each se-

lection attribute for the particular application based on his/her 

expertise and professional judgment.  

Over the past ten years, researchers used several MADM 

methods to establish reliable methodologies for selecting the 

best PCMs for certain applications [1–16]. It is observed from 

the literature review on PCM selection that the researchers used 

different MADM methods. Even a particular MADM method 

like TOPSIS (technique for order preference by similarity to 

ideal solution) was used by the researchers for different applica-

tions. Two or more MADM methods were also used for a given 

application by many researchers in their works. Some of the 

widely used MADM methods for PCM selection were: tech-

nique for order preference by similarity to ideal solution (TOP-

SIS) [1–3,5,7–12,15,16], višekriterijumsko kompromisno rang-

iranje (VIKOR) [2,11,16], multi-objective optimization of ratio 

analysis (MOORA) [6,7], multi-objective optimization of ratio 

analysis plus the full multiplicative form (MULTIMOORA) [6], 

complex proportional assessment (COPRAS) and weighted ag-

gregated sum product assessment (WASPAS) [11], preference 

ranking organization method for enrichment evaluations (PRO-

METHEE) [2], extension of PROMETHEE (EXPROM2) [16], 

evaluation based on distance from average solution (EDAS) [7], 

combined compromise solution (CoCoSo) [6], weighted product 

method (WPM) [14], etc. For obtaining the weights of im-

portance of the PCM selection attributes, the methods like ana-

lytic hierarchy process (AHP) and fuzzy AHP [2], entropy 

method [3], best-worst method (BWM) [6], criteria importance 

through intercriteria correlation (CRITIC) [7], method based on 

the removal effect of criteria (MEREC) [11], range analysis 

[15], compromise weights approach [16], etc. were used by the 

researchers and those weights were utilized in the MADM meth-

ods for processing the data. Fuzzy scales were also used for con-

verting the qualitative attributes into quantitative ones [2,16]. 

However, the fuzzy logic uses different membership functions 

and defuzzification methods and application of these functions 

and approaches may produce different results [17]. It is also ob-

served that TOPSIS method is the widely used method by the 

researchers for PCM selection.  

An important observation is that the researchers [116] used 

the properties and characteristics of the phase change materials 

such as latent heat of fusion, thermal conductivity for solid state 

(and liquid state), specific heat for solid state (and liquid state), 

density for solid state (and liquid state), cost, maintenance and 

operational costs, technological complexities, compatibility, 

flammability, risk levels, etc. for selection of a best PCM from 

amongst the available PCMs. Using the available data related to 

the properties and characteristics a large number of PCMs, the 

researchers used MADM methods and conducted simulation 

studies to choose a best PCM for the given application. After 

choosing a particular PCM, the researchers had then suggested 

that particular PCM for use in the given application. However, 

real experimentation was not conducted by the researchers 

[1−16] on the alternative PCMs to decide the selection of right 

PCM. It was because of the difficulty of experimenting on 

a large number of PCMs which is a costly and time-consuming 

activity.  

Only limited number of research works are available on the 

real experimentation conducted on the PCMs for the purpose of 

selecting a best PCM out of the available ones. However, the 

number of PCMs experimented in such works is very less, be-

cause of the difficulty of experimenting on a large number of 
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PCMs. Oró et al. [18] studied a thermal energy storage system 

using PCM for low temperature applications such as commercial 

freezers. A set of PCM formulations based on ammonium chlo-

ride-water binary system were tested and analyzed to provide 

information useful for the selection of PCM with regard to their 

melting range, latent heat, stability under cycling, and cost. Yu 

et al. [19] conducted testing of GH-33 and GH-37 PCMs in 

boards mounted on internal surfaces of the main sun-facing 

walls of buildings for heating and curing of construction ele-

ments made of precast concrete. The theoretical and experi-

mental study results suggested that the use of 50 mm thick board 

made of GH-37 composite PCM on the internal surface of the 

main sun-facing wall of the curing building provided the best 

thermal performance. Prieto et al. [20] tested thermal energy 

storage systems containing PCMs such as LiOH-LiBr and 

LiOH-KOH for direct steam generation concentrating solar 

power plants. After a deep characterization process, the LiOH-

KOH was selected. Thus, it can be understood that the selection 

of best PCM for a given application was carried out by most of 

the researchers using MADM methods and simulations only.  

Even though the above-mentioned MADM methods are use-

ful for selection of right PCM for a given application, they also 

have drawbacks. For example, the TOPSIS approach necessi-

tates extensive computations that become more difficult as the 

number of alternatives and attributes increases. The ranks of al-

ternatives provided by the TOPSIS method can vary depending 

on the different normalization techniques applied to standardize 

the data. In the case of VIKOR method, there is additional pro-

cessing needed. The method could lead to different outcomes for 

the same attribute weights in different ranking lists depending 

upon the weight allotted to "the majority of attributes". The other 

MADM techniques have drawbacks of their own and require  

a significant amount of processing [21,22].  

The weights of the PCM selection attributes decided by the 

decision-maker are called the subjective weights. The AHP 

method [2] generates a large number of comparison matrices by 

comparing attributes and alternatives on a scale from 1 to 9. The 

issue of contradictory judgements occasionally comes up. Fur-

thermore, the way the weights are determined (arithmetic mean, 

geometric mean, etc.) can affect the choice results. The BWM 

strategy [6] outperforms the AHP method in terms of judgment 

consistency, but it also requires a significant amount of compu-

tational work due to the increase in pairwise comparisons be-

tween the worst, best, and other criteria.  

The weights of the PCM selection attributes can also be de-

termined using objective approaches by utilizing methods like 

the entropy method [3], CRITIC [7], MEREC [11], etc. These 

weights are called the objective weights since the decision-

maker has no control over how they are determined. It should be 

highlighted, nevertheless, that the decision-maker has no role in 

the objective weights, which are determined by the given nu-

merical values of the attributes. These objective weights may be 

(most probably) entirely different from the decision-maker's 

opined subjective weights. The opinions of the decision-makers 

who actually deal with the practical values of the attributes in 

a given decision-making situation are therefore not taken into 

consideration, which makes the evaluation and ranking of the  

 

alternatives using such objective attribute weights potentially 

meaningless. Recently, a few studies have begun using compo-

site weights in PCM selection, which combine the objective and 

subjective weights [16]. These compromise weights might not 

be utilized at all in actual decision-making scenarios and simply 

remain as an academic exercise.  

The research questions (RQs) related to selection of a right 

alternative PCM using MADM methods are: 

1. RQ1: Is there a simple and effective MADM method to 

weigh the PCM selection attributes logically and evaluate 

the performance of alternative PCMs used in different en-

ergy storage units?  

2. RQ2: Can such chosen MADM method handle both quali-

tative and quantitative PCM selection attributes?  

3. RQ3: If such simple and effective MADM method exists, 

will it be easy to comprehend and practical to use for selec-

tion of best PCM for different energy storage applications?  

4. RQ4: Will the objective weights obtained from the perfor-

mance data of the PCM selection attributes really meaning-

ful? 

5. RQ5: Is it feasible to have an appropriate MADM method 

that is both reliable and resistant to changes in the PCM 

selection attributes’ weights? Can such kind of MADM 

method regarded as best? 

The main objective of this research paper is to answer to the 

above-mentioned RQs. Hence, an attempt is made in this paper 

to develop an improved MADM method based on simple rank-

ing procedure. The proposed decision-making method addresses 

the above research questions. The proposed method is a simple, 

systematic, logical, and effective MADM method to process the 

performance data of the alternative PCMs corresponding to dif-

ferent PCM selection attributes (both quantitative and qualita-

tive), to logically decide the weights of importance of the PCM 

selection attributes, and to rank the alternative PCMs based on 

their total performance. The proposed method is applied for 

PCM selection in three different thermal energy storage appli-

cations.  

The proposed decision-making methodology, named as, 

BHARAT-II, is explained in detail in the next section. 

2. Proposed decision-making methodology for 

PCM selection 

The following is a description of the steps of the proposed meth-

odology for PCM selection. 

Step 1: Determine the PCM selection attributes Ai (i = 1, 2,..., 

m), and the alternative PCMs Bj (for j = 1, 2,..., n). The PCM 

selection attributes are both non-beneficial (i.e., lower values are 

desired) and beneficial (i.e., higher values are desired).  

Step 2: Decide the order of importance of the PCM selection 

attributes to obtain the weights wi (for i = 1, 2,..., m). The order 

of importance is in terms of 1, 2, 3, 4, and so on, based on how 

significant they are in relation to each other. An average rank 

will be given if two or more attributes are thought to be equally 

important.  

For example, let there are four PCM selection attributes − 

W, X, Y, and Z − and the ranks of 1, 2, 3, and 4 are assigned to 
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them. Matrix A1 shows the rank relations:  

               W       X        Y        Z 
 

 A1 = 

𝑊
𝑋
𝑌
𝑍

  [

1 2 3 4
1/2 1 3/2 4/2
1/3 2/3 1 4/3
1/4 2/4 3/4 1

].  

It may be noted that in matrix A1, the diagonal elements are 

1 (i.e., rWW = 1, rXX = 1, rYY = 1, and rZZ = 1) and the elements 

below the diagonal are the reciprocals of the rank relations of 

the selection attributes given above the diagonal (i.e. 

rXW = 1/rWX, rYW = 1/rWY, rZW = 1/rWZ, rYX = 1/rXY, rZX = 1/rXZ, 

rZY = 1/rYZ).  

The arithmetic means of each row of the A1 matrix are cal-

culated and these are 2.5 (i.e., 10/4), 1.25 (i.e., 5/4), 0.833333 

(i.e., 3.33333/4) and 0.625 (i.e., 2.5/4), respectively. The grand 

summation of these row sums is equal to 5.208333 (i.e., 2.5 + 

1.25 + 0.83333 + 0.625). Now dividing each row sum with the 

grand sum of 5.208333 gives the A2 matrix, which corresponds 

to the weights of the four selection attributes considered:  

 A2 = [

0.48
0.24
0.16
0.12

] .  

Similar to the AHP and BWM approaches, if the consistency 

check is performed to check for consistency of rank relations 

provided in matrix A1, the matrix A3 is computed as A1*A2: 

 A3 = A1*A2 = [

1.92
0.96
0.64
0.48

].   

Now A4 matrix is computed as A3/A2: 

 A4 = A3/A2 = [

1.92/0.48
0.96/0.24
0.64/0.16
0.48/0.12

] =  [

4
4
4
4

].  

Now the maximum eigen value (λmax) is computed: 

 λmax = average of A4 = (4+4+4+4)/4 = 4.   

Consistency index (CI) = (λmax–m)/(m1) = (44)/(41) = 0; 

the no. of attributes = size of A1 matrix = 4. 

The CI value of 0 indicates that the rank relations provided 

in A1 matrix are absolutely consistent and there is no error pre-

sent in the judgements of rank relations. As a result, weights of 

0.48, 0.24, 0.16, and 0.12 can be assigned to the attributes W, X, 

Y, and Z respectively. By expanding this method to any number 

of attributes and giving each one a rank, the attributes’ weights 

may be found. It may be stated here that techniques such as AHP 

and BWM seldom provide absolute consistency in the assess-

ments of relative importance. Thus, the proposed method is 

more dependable. 

Step 3: For every alternative PCM, obtain the performance 

data corresponding to the PCM selection attributes. The perfor-

mances may be in qualitative or quantitative terms. Transform 

the qualitative attribute data (expressed in descriptive language) 

into quantitative data by applying a straightforward scale and 

avoiding the use of fuzzy logic. Rao [21−23] proved that there 

is no need of using fuzzy scales and simple ordinary scales will 

serve the same purpose. Simple ordinary scales can simply re-

place the fuzzy scales provided by different researchers to deal 

with linguistic or qualitative attributes using different member-

ship functions. Table 1, for example, shows the transformation 

of a qualitative or linguistic attribute into a quantitative attribute 

on 11-point scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: Normalize the data for a PCM selection attribute by 

comparing it to the attribute's "best" value for various alternative 

PCMs. To obtain the normalized data, repeat this normalization 

process for each attribute. When referring to a beneficial attrib-

ute, the term "best" denotes the highest value that is available, 

and when referring to a non-beneficial attribute, the lowest value 

that is available. Normalization is required for the performance 

measurements of alternative PCMs. For a beneficial attribute, 

the normalized value (xji)norm is xji/xi.best; and for a non-beneficial 

attribute, it is xi.best/xji. The i-th attribute's best value is repre-

sented by xi.best. The standing positions of the alternative PCMs 

in relation to the "best" values of the attributes are clearly dis-

played by this kind of normalization of the data with reference 

to the "best" values.  

Step 5: Total score of an alternative PCM is ∑ wi*(xji)norm 

and it is the result of multiplying the selection attributes’ weights 

with the corresponding normalized data of the attributes for the 

alternatives.  

Step 6: Arrange the alternative PCMs in decreasing order, 

based on their total scores. The alternative PCM that receives 

the highest total score is considered best for the particular PCM 

selection problem investigated.  

The flowchart of the proposed decision-making method is 

shown in Fig. 1. 

Table 1. Transformation of a qualitative attribute into a quantitative at-

tribute using a 11-point scale.  

Linguistic  
expression 

Fuzzy 
scale 

value for 
a benefi-
cial at-
tribute 

[23] 

Fuzzy 
scale 

value for 
a non-

beneficial 
attribute 

[23] 

Simple 
scale 

value for 
a benefi-
cial at-
tribute 

Simple 
scale 

value for 
a non-
benefi-
cial at-
tribute 

Exceptionally 
low 

0.0455 0.9545 0.0 1.0 

Extremely low  0.1364 0.8636 0.1 0.9 

Very low 0.2273 0.7727 0.2 0.8 

Low 0.3182 0.6818 0.3 0.7 

Below average 0.4091 0.5909 0.4 0.6 

Average  0.5 0.5 0.5 0.5 

Above average 0.5909 0.4091 0.6 0.4 

High 0.6818 0.3182 0.7 0.3 

Very high 0.7727 0.2273 0.8 0.2 

Extremely high 0.8636 0.1364 0.9 0.1 

Exceptionally 
high 

0.9545 0.0455 1.0 0 
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3. Applications of proposed decision-making 

method to the case studies of phase change ma-

terial selection for energy storage 

3.1. Case study 1: PCM selection for a domestic water 

heating system using LH storage unit 

Gadhave et al. [16] conducted a case study to decide the right 

PCM for a domestic water heating system containing a PCM-

based LH storage system, a storage tank with water, and addi-

tional accessories such as a circulation pump, flowmeter, valve, 

etc. The decision-making problem considered 15 alternative 

PCMs, designated from M1 to M15, analyzed under 5 selection 

attributes. Figure 2 shows the goal, selection attributes, and the 

alternative PCMs for case study 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now to select a best PCM out of 15 PCMs, the steps of the 

proposed decision-making method are carried out as described 

below. 

Step 1: Table 2 shows the PCM selection attributes and the 

alternative PCMs considered by Gadhave et al. [16]. The selec-

tion attributes are the material properties: latent heat of fusion 

(LH), thermal conductivity for solid state (Ks), thermal conduc-

tivity for liquid state (Kl), specific heat for solid state (Cps), spe-

cific heat for liquid state (Cpl), density for solid state (ρs), den-

sity for liquid state (ρl), and cost (C). The attributes LH, Ks, Kl, 

Cps, Cpl, and ρs, and ρl are beneficial and C is non-beneficial. 

The cost (C) is expressed linguistically and the corresponding 

quantitative values on a simple ordinary scale are assigned using 

Table 1 and shown in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: To determine the weights of the 8 PCM selection at-

tributes, ranks are assigned. The rank 1 is assigned to LH as it is 

considered much more important for the given application. In 

this case study, the attributes ρs and ρl are considered equally 

significant. Hence, an average rank of 2.5 (i.e., (2+3)/2) is allo- 

cated. Comparably, Ks and Kl have an average rank of 4.5 (i.e., 

(4+5)/2); Cps and Cpl have an average rank of 6.5 (i.e., (6+7)/2); 

and C has a rank of 8. The attributes have been assigned the 

same ranks as those shown in Table 3. The rank relationships 

and weights of the 8 attributes are shown in Table 3. 

 

 

Fig. 2. Goal, selection attributes, and the alternative PCMs of case study 1. 

  

Fig. 1. Flowchart of the proposed decision-making method. 

Table 2. Data of the 8 attributes and 15 alternative PCMs of case study 1.  

PCM 
LH 

kJ/kg 
Ks 

W/(m K) 
Kl 

W/(m K) 
Cps 

kJ/(kg K) 
Cpl 

kJ/(kg K) 
ρs 

kg/m3 
ρl 

kg/m3 
C 

P116-Wax (M1) 209 0.14 0.277 2.89 2.89 786 786 H (0.3) 

Stearic acid (M2) 211.6 1.6 0.3 1.76 2.27 940 940 VH (0.2) 

Lauric acid (M3) 178 1.6 0.147 1.6 2.27 870 870 A (0.5) 

Palmitic acid (M4) 201 0.29 0.21 2 2.37 942 862 A (0.5) 

n-Eicosane (M5) 248 0.426 0.146 1.926 2.4 910 769 L (0.7) 

Medicinal paraffin (M6) 146 0.3 2.1 2.25 2.2 830 830 L (0.7) 

Paraffin wax (M7) 210 0.24 0.15 2.9 2.1 860 780 L (0.7) 

Paraffin wax (M8) 190 0.24 0.22 2 2.15 910 790 L (0.7) 

Stearic acid (M9) 169 0.29 0.29 1.59 1.59 965 847 A (0.5) 

Sodium sulphate decahy-
drate (M10) 

180 0.15 0.3 2 2 1460 1458 H (0.3) 

Sodium acetate trihydrate 
(90%)+graphite (10%) (M11) 

190 2.5 2.5 2.5 2.5 1350 1350 H (0.3) 

RT55 (M12) 172 0.2 0.2 2 2 880 770 L (0.7) 

RT60 (M13) 167.6 0.2 0.2 2 2 880 770 VL (0.8) 

n-Hexacosane (M14) 256 0.21 0.21 2 2 778.3 770 A (0.5) 

RT50 (M15) 160 0.2 0.2 2 2 880 760 L (0.7) 
 

VH: Very High; H: High; A: Average; L: Low; VL: Very Low 
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The CR value for the rank relations matrix containing 8 PCM 

selection attributes is 0. Thus, there exists absolute consistency 

in the judgments of rank relations. The last column of Table 3 

gives the weights of the 8 PCM selection attributes. 

Step 3: The linguistic expressions of the attribute C are trans-

formed to quantitative values using Table 1 without the need of 

using fuzzy logic. These values are shown in Table 2 in paren-

theses. The values are assigned to non-beneficial C based on Ta 

ble 1. After assigning like this, the assigned values for C can be 

considered beneficial for the sake of normalization.  

Step 4: The data is normalized based on the "best" PCM for 

each attribute. The best values of the attributes are shown in bold 

inside Table 2. Table 4 shows the normalized values. For exam-

ple, the normalized value of 0.816406 for LH corresponding to 

M1 is obtained by (209/256); the value of 0.056 for Ks corre-

sponding to M1 is obtained by (0.14/2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 5: Total scores of alternative PCMs are calculated by 

multiplying the selection attributes’ weights with the corre-

sponding normalized data of the attributes for the alternatives. 

For example, the total score of PCM designated as M1 is com-

puted as: 

 Total score (M1) = 0.37353*0.816406 + 0.083 + 0.056 +   

 0.083*0.1108 + 0.05746*0.996552 + 0.05746*1 +   

 0.14941*0.538356 + 0.14941*0.539095 +   

 0.04669*0.375 = 0.612029.   

The total scores of the PCMs are given in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Rank relationships of the 8 attributes in case study 1. 

Attributes 

Attributes 

LH Ks Kl Cps Cpl ρs ρl C 
Means 
of rows 

Weights 
of attributes 

LH 1 4.5 4.5 6.5 6.5 2.5 2.5 8 36 0.37353 

Ks 1/4.5 1 1 6.5/4.5 6.5/4.5 2.5/4.5 2.5/4.5 8/4.5 8 0.083 

Kl 1/4.5 1 1 6.5/4.5 6.5/4.5 2.5/4.5 2.5/4.5 8/4.5 8 0.083 

Cps 1/6.5 4.5/6.5 4.5/6.5 1 1 2.5/6.5 2.5/6.5 8/6.5 5.53843 0.05746 

Cpl 1/6.5 4.5/6.5 4.5/6.5 1 1 2.5/6.5 2.5/6.5 8/6.5 5.53843 0.05746 

ρs 1/2.5 4.5/2.5 4.5/2.5 6.5/2.5 6.5/2.5 1 1 8/2.5 14.4 0.14941 

ρl 1/2.5 4.5/2.5 4.5/2.5 6.5/2.5 6.5/2.5 1 1 8/2.5 14.4 0.14941 

C 1/8 4.5/8 4.5/8 6.5/8 6.5/8 2.5/8 2.5/8 1 4.5 0.04669 

Total = 96.3768 1.000 

 

Table 4. Normalized values for case study 1.  

PCM Normalized values 

LH Ks Kl Cps Cpl ρs ρl C 

M1 0.816406 0.056 0.1108 0.996552 1 0.538356 0.539095 0.375 

M2 0.826563 0.64 0.12 0.606897 0.785467 0.643836 0.644719 0.25 

M3 0.695313 0.64 0.0588 0.551724 0.785467 0.59589 0.596708 0.625 

M4 0.785156 0.116 0.084 0.689655 0.820069 0.645205 0.591221 0.625 

M5 0.96875 0.1704 0.0584 0.664138 0.83045 0.623288 0.527435 0.875 

M6 0.570313 0.12 0.84 0.775862 0.761246 0.568493 0.569273 0.875 

M7 0.820313 0.096 0.06 1 0.726644 0.589041 0.534979 0.875 

M8 0.742188 0.096 0.088 0.689655 0.743945 0.623288 0.541838 0.875 

M9 0.660156 0.116 0.116 0.548276 0.550173 0.660959 0.580933 0.625 

M10 0.703125 0.06 0.12 0.689655 0.692042 1 1 0.375 

M11 0.742188 1 1 0.862069 0.865052 0.924658 0.925926 0.375 

M12 0.671875 0.08 0.08 0.689655 0.692042 0.60274 0.528121 0.875 

M13 0.654688 0.08 0.08 0.689655 0.692042 0.60274 0.528121 1 

M14 1 0.084 0.084 0.689655 0.692042 0.533082 0.528121 0.625 

M15 0.625 0.08 0.08 0.689655 0.692042 0.60274 0.521262 0.875 

 

Table 5. Total scores of 15 PCMs of case study 1.  

PCM No. PCM Total score PCM No. PCM Total score 

M1 P116-Wax 0.612029 M9 Stearic acid 0.543704 

M2 Stearic acid 0.65604 M10 Sodium sulphate decahydrate 0.673313 

M3 Lauric acid 0.601936 M11 Sodium acetate trihydrate (90%) +  
graphite (10%) 

0.836491 

M4 Palmitic acid 0.610559 

M5 n-Eicosane 0.679525 M12 RT55 0.553467 

M6 Medicinal paraffin 0.591894 M13 RT60 0.552883 

M7 Paraffin wax 0.627383 M14 n-Hexacosane 0.654616 

M8 Paraffin wax 0.589825 M15 RT50 0.534933 
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Step 6: The alternative PCMs are arranged in decreasing or-

der of their total scores. The PCMs are ranked from highest to 

lowest total scores as follows: M11-M5-M10-M2-M14-M7-

M1-M4-M3-M6-M8-M12-M13-M9-M15. 

With the highest total score, the PCM identified as M11 can 

be considered as the best choice for the given application of do-

mestic water heating system. Gadhave et al. [16] used entropy 

and AHP methods for obtaining the weights of the attributes and 

finally combined those weights to get the compromised weights 

of 0.4208, 0.0853, 0.0805, 0.0353, 0.0354, 0.1624, 0.1616, and 

0.0187 for LH, Ks, Kl, Cps, Cpl, ρs, ρl, and C, respectively. The 

compromise weights were then used by Gadhave et al. [16] in 

TOPSIS, VIKOR, and EXPROM2 methods to calculate the 

scores and then ranked the PCMs.  The PCMs were ranked from 

highest to lowest total scores as follows: 

 TOPSIS [16]: M11-M2-M14-M5-M10-M6-M3-M7-M1-

M4-M8-M9-M12-M13-M15, 

 VIKOR [16]: M11-M5-M14-M2-M1-M7-M10-M4-M8-

M3-M12-M9-M13-M15-M6, 

 EXPROM2 [16]: M11-M2-M5-M10-M14-M7-M1-M4-

M3-M8-M9-M6-M12-M13-M15. 

These methods also suggested M11 as the best choice. How-

ever, it may be noted that the compromise weights were obtained 

by combining the objective weights obtained by entropy method 

and the subjective weights obtained by AHP method. In fact, the 

objective weights obtained and the subjective weights obtained 

by Gadhave et al. [16] were completely different. The objective 

and subjective weights were then combined to form the compro-

mise weights. The compromise weights might not be utilized at 

all in actual decision-making scenarios and it simply remains as 

an academic exercise. However, for fair comparison, if the com-

promise weights used by Gadhave et al. [16] in TOPSIS, VI-

KOR, and EXPROM2 methods are used in the proposed deci-

sion-making method, then the PCMs can be arranged in the fol-

lowing order. 

 Proposed method (using the compromise weights):  

M11-M10-M5-M2-M14-M7-M4-M1-M3-M8-M6-M9-

M12-M13-M15. 

Using the same compromise weights as those used in VI-

KOR, TOPSIS, and EXPROM2, the proposed decision-making 

method also suggested M11 as the best choice. The last choice 

is M15. It may be noted once again that the proposed decision-

making method is involved in simple normalization procedure 

and the calculation of total scores of PCMs compared to the 

computationally intensive TOPSIS, VIKOR, and EXPROM2 

methods. The ranks assignment procedure and the subsequent 

determinations of the weights of the PCM selection attributes by 

the decision maker are more logical compared to the compro-

mise or combined weights used by Gadhave et al. [16]. The pro-

posed method makes it easy to convert qualitative attributes into 

quantitative, does not require the use of fuzzy scale as that used 

by Gadhave et al. [16].  

3.2. Case study 2: PCM selection for a triple tube heat 

exchanger unit 

Yang et al. [15] presented the results of simulation conducted to 

investigate the impact of PCMs’ thermophysical characteristics 

on a triple tube heat exchanger (TTHX) unit's heat storage ratio. 

The weights assigned to the attributes were obtained using range 

analysis at various time scales. Lastly, the ranking and selection 

process was carried out using the TOPSIS method. Figure 3 

shows the goal, selection attributes, and the alternative PCMs 

for case study 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The findings showed that the heat storage rate was signifi-

cantly influenced by the thermophysical characteristics. The 

PCM PlusICE-S117 was found to be the ideal PCM when the 

melting time was 20 minutes, since the PCM density and ther-

mal conductivity attributes were given greater weights. But 

when the melting time was 150 or 250 min, the most important 

attributes to take into account were the PCM density and melting 

enthalpy, and the alternative urea-NaCl was considered as the 

best one. 

The decision-making problem considered 12 alternative 

PCMs, designated from P1 to P12, analyzed under 5 selection 

attributes. Now to select a best PCM out of the 15 PCMs, the 

steps of the proposed decision-making method are carried out as 

described below. 

Step 1: Table 6 shows the PCM selection attributes and the 

alternative PCMs considered by Yang et al. [15]. The selection 

attributes are the material properties: melting temperature (Tm), 

density (ρ), latent heat of fusion (LH), specific heat (Cp), and 

thermal conductivity (K).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Goal, selection attributes, and the alternative PCMs 

of case study 2. 

Table 6. Data of the 5 attributes and 12 alternative PCMs of case study 2. 

PCM 
No. 

PCM 
Tm 
°C 

Ρ 
kg/m3 

LH 
kJ/kg 

Cp 
kJ/(kgK) 

K 
W/(mK) 

P1 RT82 82 770 170 2000 0.2 

P2 RT90HC 90 850 170 2000 0.2 

P3 Urea-NH4Cl 102 1348 214 2090 0.58 

P4 Urea-NaCl 112 1372 230 2020 0.6 

P5 Urea-K2CO3 102 1415 206 2020 0.58 

P6 MgCl2·6H2O 116 1450 167 2610 0.57 

P7 Mg(NO3)2·6H2 90 1550 163 2480 0.49 

P8 PlusICE-S117 117 1450 160 2610 0.7 

P9 PlusICE-H105 105 1700 125 1500 0.5 

P10 PlusICE-X120 120 1245 180 1500 0.36 

P11 PlusICE-A95 95 900 205 2200 0.22 

P12 PlusICE-X90 90 1200 135 1510 0.36 
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Yang et al. [15] ignored the thickness of the tube walls and 

assumed the thermophysical properties of the PCM as equal in 

the liquid and solid phases. All these 5 selection attributes are 

beneficial.  

Step 2: For sub-case 1 of Yang et al. [15], when the heat 

storage rate was considered for the first 20 minutes, density ρ 

was considered much more important followed by thermal con-

ductivity K. Hence, rank 1 is given to ρ, rank 2 is given to K, 

rank 3 is given to LH, rank 4 is given to Tm, and rank 5 is given 

to Cp. Table 7 displays the rankings assigned to the 5 attributes 

along with the weights derived (similar to the procedure ex-

plained in section 2). 

 

 

 

 

 

 

 

 

 

 

 
 

 

It may be noted that the CR value for the rank relations ma-

trix containing 5 PCM selection attributes is 0. Thus, there exists 

absolute consistency in the judgments of rank relations. The last 

column of Table 7 gives the weights of the 5 PCM selection at-

tributes. 

Step 3: The values shown in Table 6 are already quantitative 

in nature and there is no need of transformation. All 5 attributes 

are of beneficial type.  

Step 4: The data shown in Table 6 is normalized based on 

the "best" PCM for each attribute. The best values of the attrib-

utes are shown in bold in Table 6. The normalized values are 

shown in Table 8. For example, the normalized value of 

0.683333 for Tm corresponding to P1 is obtained by (82/120). 

Similarly, the other data is normalized and given in Table 8.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Step 5: Total scores of alternative PCMs are calculated by 

multiplying the selection attributes’ weights with the corre-

sponding normalized data of the attributes for the alternatives. 

For example, the total score of PCM designated as P1 is com-

puted as: 

 Total score (P1) = 0.109489*0.683333 +   

 0.437956*0.452941 + 0.145985*0.73913 +   

 0.087591*0.766284 + 0.218978*0.285714 = 0510773.   

The total scores of the PCMs are given in Table 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6: The alternative PCMs are arranged in decreasing or-

der of their total scores. The PCMs are ranked from highest to 

lowest total scores as follows: 

 P8-P4-P6-P5-P3-P7-P9-P10-P12-P11-P2-P1.  

With the highest total score, the PCM identified as P8 (i.e. 

PlusICE-S117) can be considered as the best choice for the 

given application of PCM selection for a triple tube heat ex-

changer unit (for the sub-case-1 of case study-2).  

For sub-case 2 of Yang et al. [15], when the heat storage rate 

was considered for the first 150 minutes, density ρ was consid-

ered much more important followed by latent heat L. Hence, 

rank 1 is given to ρ, rank 2 is given to LH, rank 3 is given to Tm, 

rank 4 is given to K, and rank 5 is given to Cp. Table 10 displays 

the rankings assigned to the 5 attributes along with the weights 

derived. 

 

 

 

 

 

 

 

 

 

 

 

 

For sub-case 3 of Yang et al. [15], when the heat storage rate 

was considered for the first 250 minutes, density ρ was consid-

ered much more important followed by latent heat LH, K, Tm, 

and Cp. Hence, rank 1 is given to ρ, rank 2 is given to LH, rank 

3 is given to K, rank 4 is given to Tm, and rank 5 is given to Cp. 

Table 11 displays the rankings assigned to the 5 attributes along 

with the weights derived (similar to the procedure explained in 

section 2). 

Table 7. Rank relationships of the 5 attributes of case study 2 and the cor-

responding weights (sub-case 1 of considering heat storage rate when the 

melting process continues up to 20 minutes).  

Attrib-
utes 

Tm ρ LH Cp K 
Means  
of rows 

Weights  
of attributes 

Tm 1 1/4 3/4 5/4 2/4 3.75/5=0.75 0.75/6.85=0.109489 

ρ 4 1 3 5 2 15/5=3 3/6.85=0.437956 

L 4/3 1/3 1 5/3 2/3 (15/3)/5=1 1/6.85=0.145985 

Cp 4/5 1/5 3/5 1 2/5 (15/5)/5=0.60 0.6/6.85=0.087591 

K 2 1/2 3/2 5/2 1 7.5/5=1.5 1.5/6.85=0.218978 

Total = 6.85 1.000000 

 

Table 8. Normalized values for sub-case 1 of case study 2.  

PCM Tm ρ L Cp K 

P1 0.683333 0.452941 0.73913 0.766284 0.285714 

P2 0.75 0.5 0.73913 0.766284 0.285714 

P3 0.85 0.792941 0.930435 0.800766 0.828571 

P4 0.933333 0.807059 1 0.773946 0.857143 

P5 0.85 0.832353 0.895652 0.773946 0.828571 

P6 0.966667 0.852941 0.726087 1 0.814286 

P7 0.75 0.911765 0.708696 0.950192 0.7 

P8 0.975 0.852941 0.695652 1 1 

P9 0.875 1 0.543478 0.574713 0.714286 

P10 1 0.732353 0.782609 0.574713 0.514286 

P11 0.791667 0.529412 0.891304 0.842912 0.314286 

P12 0.75 0.705882 0.586957 0.578544 0.514286 

 

Table 9. Total scores of 15 PCMs of sub-case 1 of case study 2. 

PCM No. PCM Total Score 

P1 RT82 0.510773 

P2 RT90HC 0.538682 

P3 Urea-NH4Cl 0.827748 

P4 Urea-NaCl 0.857118 

P5 Urea-K2CO3 0.837582 

P6 MgCl2·6H2O 0.85129 

P7 Mg(NO3)2·6H2 0.821402 

P8 PlusICE-S117 0.888427 

P9 PlusICE-H105 0.819852 

P10 PlusICE-X120 0.707434 

P11 PlusICE-A95 0.591309 

P12 PlusICE-X90 0.640242 

 

Table 10. Rank relationships of the 5 attributes of sub-case 2 of case study 

2 and the corresponding weights (considering heat storage rate when the 
melting process continues up to 150 minutes).  
 

Attrib-
utes 

Tm ρ L Cp K 
Means  
of rows 

Weights  
of attributes 

Tm 1 1/3 2/3 5/3 4/3 5/5=1 1/6.85=0.145985 

ρ 3 1 2 5 4 15/5=3 3/6.85=0.437956 

L 3/2 1/2 1 5/2 2 7.5/5=1.5 1.5/6.85=0.218978 

Cp 3/5 1/5 2/5 1 4/5 3/5=0.6 0.6/6.85=0.087591 

K 3/4 1/4 2/4 5/4 1 3.75/5=0.75 0.75/6.85=0.109489 

Total= 6.85 1.000000 
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Table 12 shows the total scores of 12 PCMs corresponding 

to melting process timings. The alternative PCMs can be ar-

ranged in the descending order of the total scores for all the three 

sub-cases of case study 2 

 proposed method (for tmelting=250 minutes):  

P4-P8-P6-P5-P3-P7-P9-P10-P12-P11-P2-P1. 

 proposed method (for tmelting=150 minutes):  

P4-P8-P6-P5-P3-P7-P9-P10-P12-P11-P2-P1. 

 proposed method (for tmelting=20 minutes):  

P8-P4-P6-P5-P3-P7-P9-P10-P12-P11-P2-P1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The alternative PCM P4 is considered as the best PCM if the 

melting time of 150 minutes as well for up to 250 minutes. How-

ever, the alternative PCM P8 is found as the best alternative 

PCM for melting time of 20 minutes.  

It may be mentioned here that Yang et al. [15] used different 

weights of the attributes for the three sub-cases of case study 2 

and used these weights in TOPSIS method to evaluate the alter-

native PCMs. 

The weights used by Yang et al. [15] for sub-case 1 were: 

0.092, 0.404, 0.214, 0.036 and 0.254 for Tm, ρ, LH, Cp and K, 

respectively.  

The weights used by Yang et al. [15] for sub-case 2 were: 

0.112, 0.405, 0.320, 0.056 and 0.107 for Tm, ρ, LH, Cp, and K, 

respectively. The weights used by Yang et al. [15] for  

sub-case 3 were: 0.094, 0.408, 0.340, 0.053 and 0.105 for Tm, ρ, 

L, Cp and K, respectively. The ranking of PCMs for different 

melting times were as given below: 

 TOPSIS [15] (for tmelting=250 minutes): P4-P5-P3-P7-

P6-P8-P9-P10-P11-P12-P2-P1. 

 TOPSIS [15] (for tmelting=150 minutes): P4-P5-P3-P7-

P6-P8-P9-P10-P12-P11-P2-P1. 

 TOPSIS [15] (for tmelting=20 minutes): P8-P4-P5-P6-

P3-P9-P7-P10-P12-P11-P2-P1. 

 

For fair comparison, the same three sub-cases with the same 

weights of attributes, as considered by Yang et al. [15], are at-

tempted using the proposed decision-making method and the 

following rankings are obtained 

 proposed method (for tmelting=250 minutes) for the same 

weights used in TOPSIS [15]: 

P4-P5-P3-P8-P6-P7-P9-P10-P11-P12-P2-P1. 

 proposed method (for tmelting=150 minutes) for the same 

weights used in TOPSIS [15]: 

P4-P5-P3-P8-P6-P7-P9-P10-P11-P12-P2-P1. 

 proposed method (for tmelting=20 minutes) for the same 

weights used in TOPSIS [15]: 

P4-P8-P5-P3-P6-P9-P7-P10-P12-P11-P2-P1. 

It is clear that using the same weights as those used in TOP-

SIS [15], the proposed decision-making method also suggested 

P4 as the first choice and P5 as the second choice for the sub-

cases of tmelting=250 minutes and tmelting=150 minutes. It may be 

noted that the TOPSIS method used by Yang et al. [15] involves 

too lengthy calculations for normalization, calculating the ob-

jective weights using range analysis method, and then using 

those objective weights in the remaining computationally inten-

sive steps. However, the procedure suggested by the proposed 

method is straightforward and simple to comprehend, in contrast 

to the TOPSIS method. As seen in this case study, the proposed 

method allows the use of weights of attributes calculated by 

other methods or as decided by the decision-maker based on in-

tuition or experience.  

3.3. Case study 3: PCM selection for an optimal Trombe 

wall performance 

Thermal energy storage in buildings considerably lowers the en-

ergy demand of the building by releasing its stored energy when 

the need arises. Buildings use Trombe walls to store and distrib-

ute thermal energy, which controls the ambient temperature in 

each space. PCMs have been investigated extensively for latent 

heat thermal energy storage within the walls of Trombe to en-

hance performance. Oulah [5] investigated 11 alternative PCMs 

for selection of a suitable PCM for optimal Trombe wall perfor-

mance using TOPSIS method. The heat of fusion, thermal con-

ductivity, density, and cost were the four attributes taken into 

account. Except the cost attribute, the remaining attributes are 

of beneficial type.  

Figure 4 shows the schematic of the PCM selection problem 

and Table 13 shows the data of the 4 attributes and 11 alternative 

PCMs. The best values of the attributes are shown in bold in 

Table 13. 

Following the steps of the proposed decision-making 

method, the data given in Table 13 is normalized and is shown 

in Table 14. Table 15 displays the rankings assigned to  

the 4 attributes along with the weights derived. 

Table 12. Total scores of 12 PCMs corresponding to melting process  
continued up to 20 minutes (sub-case 1), 150 minutes (sub-case 2)  

and 250 minutes (sub-case 3).  

PCM 
No. 

PCM Total score 
(tmelting=20 

min) 

Total score  
(tmelting=150 

min) 

Total score  
(tmelting=250 

min) 

P1 RT82 0.510773 0.558381 0.543869 

P2 RT90HC 0.538682 0.588723 0.571778 

P3 Urea-NH4Cl 0.827748 0.835966 0.835183 

P4 Urea-NaCl 0.857118 0.870326 0.867546 

P5 Urea-K2CO3 0.837582 0.84326 0.842478 

P6 MgCl2·6H2O 0.85129 0.850414 0.844853 

P7 Mg(NO3)2·6H2 0.821402 0.823862 0.822037 

P8 PlusICE-S117 0.888427 0.8653 0.866212 

P9 PlusICE-H105 0.819852 0.81325 0.807384 

P10 PlusICE-X120 0.707434 0.744747 0.72702 

P11 PlusICE-A95 0.591309 0.65085 0.633427 

P12 PlusICE-X90 0.640242 0.654149 0.645547 

 

Table 11. Rank relationships of the 5 attributes of sub-case 3 of case 

study 2 and the corresponding weights (considering heat storage rate 

when the melting process continues up to 250 minutes). 

Attrib-
utes 

Tm ρ L Cp K 
Means  
of rows 

Weights  
of attributes 

Tm 1 1/4 2/4 5/4 3/4 3.75/5=0.75 0.75/6.85=0.109489 

ρ 4 1 2 5 3 15/5=3 3/6.85=0.437956 

L 2 1/2 1 5/2 3/2 7.5/5=1.5 1.5/6.85=0.218978 

Cp 4/5 1/5 2/5 1 3/5 3/5=0.6 0.6/6.85=0.087591 

K 4/3 1/3 2/3 5/3 1 5/5=1 1/6.85=0.145985 

Total= 6.85 1.000000 

 



Rao R.V. 
 

76 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It may be noted that the CR value for the rank relations ma-

trix containing 4 PCM selection attributes is 0. Thus, there exists 

absolute consistency in the judgments of rank relations. The last 

column of Table 15 gives the weights of the 4 PCM selection 

attributes. 

Now using the normalized data of the attributes given in Ta-

ble 14 and the weights of the attributes given in the last column 

of Table 15, the total scores of the 11 alternative PCMs are cal-

culated and are given in Table 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PCMs are now arranged in the descending order of the 

total scores: 

 P5-P11-P10-P9-P8-P6-P7-P1-P2-P4-P3.  

From the total scores of 11 PCMs, it can be understood that 

PCM designated as P5 (i.e., Capric acid and palmitic acid) is the 

first choice and PCM designated as P11 (i.e. MnCl2•4H2O) is 

the second choice for the Trombe wall.  

It may be noted that Oulah et al. [5] used the objective 

weights of the attributes obtained by the entropy method (the 

weights were: 0.020109, 0.7127, 0.1124 and 0.1549 for the heat 

of fusion, thermal conductivity, density, and cost respectively). 

In fact, the objective weights are not much meaningful as they 

do not take into account the decision-maker’s preferences. Us-

ing the objective weights, Oulah et al. [5] obtained the following 

rankings using the TOPSIS method: 

 TOPSIS [5]: P5-P11-P8-P9-P10-P6-P7-P1-P2-P3-P4. 

It can be seen that the entropy method suggests a bigger 

weightage of 0.7127 for thermal conductivity. Obviously, the al-

ternative PCM which is the best with reference to the thermal 

conductivity emerges as the first choice (in this case, the PCM 

designated as P5) and the ranking of other PCMs will also be 

affected by such a higher weightage assigned to thermal conduc-

tivity. That was why Rao [21] opined that attributes weights 

should be decided by the decision-maker only as he/she is going 

to face the advantage or disadvantage of his/her decision. How- 

 
 

Fig. 4. Goal, selection attributes, and the alternative PCMs 

of case study 3. 

Table 13. Data of the attributes for case study 3.  

PCM 
Heat  

of fusion 
kJ/kg 

Thermal  
conductivity 

W/(m K) 

Density 
kg/m3 

Cost 
$/kg 

Paraffin C13-24 (P1) 189 0.21 760 2 

RT-27 (P2) 179 0.2 800 3.6 

RT-18 (P3) 134 0.2 756 3.6 

n-Octadecane (P4) 179 0.2 750 5 

Capric acid and palmi-
tic acid (P5) 

177 2.2 784 1.78 

Capric acid (P6) 142.7 0.2 815 1.5 

Capric acid + 1 deca-
nol (P7) 

126.9 0.2 817 1.6 

Mn(NO3)2•6H2O (P8) 125.9 0.6 1700 2 

SP25A8 Hydrated salt 
(P9) 

180 0.6 1380 1.8 

CaCl2•6H2O (P10) 187 0.53 1710 1.8 

MnCl2•4H2O (P11) 175 1 1490 2 

 

Table 14. Normalized data of the attributes for case study 3.  

PCM 
Heat  

of fusion 
kJ/kg 

Thermal 
conductivity 

W/(m K) 

Density 
kg/m3 

Cost 
$/kg 

Paraffin C13-24 (P1) 1 0.095455 0.444444 0.75 

RT-27 (P2) 0.94709 0.090909 0.467836 0.416667 

RT-18 (P3) 0.708995 0.090909 0.442105 0.416667 

n-Octadecane (P4) 0.94709 0.090909 0.438596 0.3 

Capric acid and pal-
mitic acid (P5) 

0.936508 1 0.45848 0.842697 

Capric acid (P6) 0.755026 0.090909 0.476608 1 

Capric acid + 1 
decanol (P7) 

0.671429 0.090909 0.477778 0.9375 

Mn(NO3)2•6H2O (P8) 0.666138 0.272727 0.994152 0.75 

SP25A8 Hydrated salt 
(P9) 

0.952381 0.272727 0.807018 0.833333 

CaCl2•6H2O (P10) 0.989418 0.240909 1 0.833333 

MnCl2•4H2O (P11) 0.925926 0.454545 0.871345 0.75 

 

Table 15. Rank relationships of the 4 attributes of case study 3 and the 

corresponding weights. 

Attributes 

Heat 
of fu-
sion 
kJ/kg 

Thermal 
conduc-

tivity 
W/(mK) 

Den-
sity 

kg/m3 

Cost 
$/kg 

Means  
of rows 

Weights 
of attributes 

Heat of fu-
sion 

1 1/4 3/4 2/4 2.5/4=0.625 
0.625/5.20833 

= 0.12 

Thermal 
conductiv-
ity 

4 1 3 2 10/4=2.5 
2.5/5.20833 

= 0.48 

Density 4/3 1/3 1 2/3 
(10/3)/4 

= 0.83333 
0.83333/5.20833 

= 0.16 

Cost 2 1/2 3/2 1 5/4=1.25 
1.25/5.20833 

= 0.24 

Total= 5.20833 1.00000 

 

Table 16. Total scores of 11 PCMs of case study 3.  

PCM Total Scores of PCMs 

Paraffin C13-24 (P1) 0.416929 

RT-27 (P2) 0.332141 

RT-18 (P3) 0.299453 

n-Octadecane  (P4) 0.299463 

Capric acid and palmitic acid (P5) 0.867985 

Capric acid (P6) 0.450497 

Capric acid + 1 decanol (P7) 0.425652 

Mn(NO3)2•6H2O (P8) 0.54991 

SP25A8 Hydrated salt (P9) 0.574318 

CaCl2•6H2O (P10) 0.594367 

MnCl2•4H2O (P11) 0.648708 
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ever, for fair comparison, if the same objective weights are used 

in the proposed method, the alternative PCMs can be arranged 

as shown below 

 proposed method (using the objective weights of  

Oulah et al. [5]): P5-P11-P8-P9-P10-P6-P7-P1-P2-P3-P4.  

The ranking is exactly same as that given by Oulah et al. [5] 

due to the reasons explained above.  

4. Discussion  

The research questions (RQs) related to selection of a right al-

ternative PCM are reproduced below and discussion is made: 

1. RQ1: Is there a simple and effective MADM method to 

weigh the PCM selection attributes logically and evaluate 

the performance of alternative PCMs used in different en-

ergy storage units?  

Yes, it is possible to develop such a simple and effective 

MADM method for PCM selection as proved in three dif-

ferent case studies of energy storage units. 

2. RQ2: Can such chosen MADM method handle both quali-

tative and quantitative PCM selection attributes?  

Yes, the proposed decision-making method can handle 

both qualitative and quantitative attributes. This has been 

clearly demonstrated in the first case study. The suggested 

method can transform the qualitative (i.e. linguistically ex-

pressed) attributes into quantitative ones with the aid of 

simple linear scales. 

3. RQ3: If such simple and effective MADM method exists, 

will it be easy to comprehend and practical to use for se-

lection of best PCM for different energy storage applica-

tions?  

Yes, it is already shown in case studies 1, 2, and 3 that the 

proposed method can easily deal with information at hand. 

Even to deal with the qualitative information of the attrib-

utes, simple ordinary linear scales can be used instead of 

fuzzy logic-based scales. The proposed method is easy to 

comprehend and practical to use for selection of right alter-

native PCM for different energy storage applications. 

4. RQ4: Will the objective weights obtained from the perfor-

mance data of the PCM selection attributes really mean-

ingful? 

No, not meaningful. The objective weights may be (most 

probably) entirely different from the decision-maker's 

opined subjective weights. The opinions of the decision-

makers who actually deal with the practical values of the 

attributes in a given decision-making situation are therefore 

not taken into consideration, which makes the evaluation 

and ranking of the alternatives using such objective attrib-

ute weights potentially meaningless. Recently, a few stud-

ies have begun using composite weights in PCM selection, 

which combine the objective and subjective weights 

[3,7,16]. These compromise weights might not be utilized 

at all in actual decision-making scenarios and simply re-

main as an academic exercise. 

5. RQ5: Is it feasible to have an appropriate MADM method 

that is both reliable and resistant to changes in the PCM 

selection attributes’ weights? Can such kind of MADM 

method regarded as best? 

There is no doubt that an MADM method must be reliable. 

However, an MADM method need not be resistant to 

changes in the attributes’ weights. How is it justified that 

the MADM method suggests the same ranking of alterna-

tives even if the attributes’ weights changed? It is unjusti-

fied and meaningless. It can be seen from the three sub-

cases of case study. When the ranks and the weights im-

portance of the PCM selection attributes are changed, the 

rankings are changed. Weights of importance are changed 

means the priorities of the decision-maker are changed. 

Then how an MADM method should remain insensitive? 

Rao [21] opined that the researchers may suggest that a par-

ticular MADM method indicates a particular alternative as 

the first choice within certain percentage of variation in 

each attribute’s weight. One need not look upon at an 

MADM method which is resistant to any changes in the at-

tributes’ weights of importance. 

The five research questions (RQs) answered above will 

make the readers more informed about the assignment of 

weights to the attributes and the application of the proposed 

MADM method for right PCM selection for a given application. 

The three case studies have amply demonstrated the poten-

tial of the proposed method as a multi-attribute decision-making 

method. It is important to observe that the ranking remains the 

same even if the fuzzy scales given in Table 1—rather than the 

simple linear scales—are used to translate the linguistic expres-

sions used by the decision-maker. This is quite helpful when 

making decisions in real-world situations.  

5. Conclusions  

Thermal energy storage is an emerging field of study that links 

the production and consumption of energy. Particularly im-

portant in latent heat storage units are phase change materials 

with high energy storage density and isothermal working char-

acteristics. Selecting the right PCM is crucial to the effective and 

efficient heat storage of the thermal energy storage system. Se-

lecting the right PCM to satisfy certain requirements typically 

necessitates finding a compromise between opposing attributes. 

A large number of researchers select PCMs according to cost, 

availability, and experience. However, PCMs in the present 

work are chosen using a variety of attributes. The research work 

reported in this paper tackled the PCM selection problem by us-

ing a simple and effective decision-making method, named as 

BHARAT-II.  

Three case studies of PCM selection are presented to illus-

trate the potential of the proposed methodology. The first case 

study addressed the issue of choosing the best PCM selection for 

a domestic water heating latent heat storage system by consid-

ering 15 different PCMs and 8 selection attributes; the second 

case study addressed the problem of selecting the best PCM for 

a triple tube heat exchanger unit by considering 12 different 

PCMs and 5 selection attributes with three sub-cases; the third 

case study addressed the problem of best PCM selection for la-

tent heat thermal energy storage within the walls of Trombe to 
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enhance performance considering 11 PCMs and 4 selection at-

tributes. 

It may be noted that in the case of widely used AHP method 

for determining the weights of importance of the selection at-

tributes, the decision-maker must indicate the relative relevance 

of each attribute compared to all other attributes. However, 

a novel feature of the proposed method is that, it simply ranks 

all of the attributes (1 to n) according to their priority as per the 

understanding of the decision-maker. A relative importance ma-

trix is then created using these ranks to further establish the 

weights. Even though the idea seems to be simple, it has the ad-

vantage of ensuring consistency while prioritizing one attribute 

over another. The consistency index is always 0 (i.e. fully con-

sistent). In AHP or BWM, this is not feasible, particularly for 

the decision-making problems containing a large number of at-

tributes. Furthermore, the proposed method clearly explained 

that the objective weights obtained from the performance data 

of the PCM selection attributes are not really meaningful, and 

the composite weights which combine the objective and subjec-

tive weights remain as an academic exercise and actually not 

used in the real decision-making scenarios. 
The second novel feature of the proposed method is that it 

can include any number of alternative PCMs and any number of 

quantitative and qualitative PCM selection attributes simultane-

ously and aids in calculating the total score values that assess the 

alternative PCMs for the selection problem under consideration. 

The third novel feature of the proposed method is that it does not 

require the use of fuzzy scales to transform qualitative attributes 

into quantitative attributes. Using the simple linear scales that 

the method suggests, decision-makers may find it simpler to as-

sign numerical values to the qualitative attributes. This fact is 

explained in the first case study presented. The proposed method 

tackles the PCM selection problem holistically, and is easy for 

decision-makers to put into practice.  

The proposed methodology offers a general procedure that 

may be used to address a range of selection problems that 

emerge in the disciplines of energy and thermal engineering that 

involve ambiguity, multiple attributes, and alternatives. 
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