
 

 

 

1. Introduction 

Semiconductor materials are being considered important in cur-

rent years due to their wide utilization in various fields of sci-

ence and engineering. The plasma waves get generated due to 

the excitation of electrons under exposure to a beam of laser or 

sunlight. As a result, the interaction between the thermal wave, 

elastic wave and plasma wave occurs. Gordon et al. [1] and 

Kreuzer [2] made remarkable contributions in developing the 

photothermal theory. Mandelis et al. [3] studied the coupling of 

thermoelastic and electronic waves under photothermal theory. 

Todorovic [4] investigated plasmaelastic and thermoelastic 

waves in the semiconducting medium. Song et al. [5] worked on 

a reflection problem in a semiconducting medium for finding 

reflection coefficient ratios. Othman et al. [6] explained the 

wave propagation problem in a semiconducting medium in the 

context of Lord-Shulman (LS) theory. Ailawalia et al. [7] ana-

lysed the influence of mechanical force at the interface of semi-

conducting half-space and thermoelastic micropolar cubic crys-

tal. Alzahrani and Abbas [8] studied a two-dimensional semi-

conducting medium under thermoelastic theory with one relax-

ation time. Hobiny [9] explored wave propagation in a semi-

conducting medium under a hyperbolic two-temperature model 

without energy dissipation. Saeed et al. [10] introduced a novel 

model for studying photothermal interaction in a rotating mi-

crostretch semiconductor medium subjected to initial stress.  
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Abstract 

The aim of the present work is to discuss the effect of varying thermal conductivity in a semiconducting medium under 
photothermal theory. An infinite elastic half-space is overlying the infinite semiconducting medium, and a constant me-
chanical force is applied along the interface. The normal mode analysis method is applied to find the analytic components 
of displacement, stress, carrier density and temperature distribution. It was found that all physical quantities are affected 
by variable thermal conductivity. The novelty of the paper lies in the fact that no such a problem of variable thermal 
conductivity has been discussed by any researcher so far.  
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Nomenclature 

a – wave number in the 𝑥-direction 

Cd – coefficient related to diffusion of carriers 

Cs – specific heat, J/(kg K) 

Es – gap in energy of valence and conduction band   

    of the semiconductor, J 

eij – strain tensor 

F – mechanical force 

K0
s  – arbitrary constant 

K1 – physical parameter 

Ks – thermal conductivity, W/(m K) 

N – carrier density, kg/m3 

N0 – carrier concentration at temperature T in equilibrium 

r⃗ – position vector 

T – temperature, K 

T0 – reference temperature, K 

t – time, s 

u⃗⃗ – displacement vector 

u, w– x, z components of velocity, m/s 

ui – components of velocity ( i = 1, 2, 3), m/s 

x, y, z – Cartesian coordinates, m 

xi, – Cartesian coordinates ( i = 1, 2, 3), m 

 

Greek symbols 

α – thermal expansion coefficient, 1/K 

β – coefficient of electronic deformation 

𝛾 –  = (3λ𝑠 + 2𝜇𝑠)𝛼 

𝛿 –  = (3λ𝑠 + 2𝜇𝑠)𝛽 
δij – Kronecker delta 

κ – coupling parameter for the thermal activation, = (
∂N0

∂t
) (

1

τ
) 

λ, μ – Lame's constants 

ρ – density, kg/m3 

τ – photogenerated carrier lifetime 

ω – complex time constant 

 

Subscripts and Superscripts 

e – elastic medium  

s – semiconducting medium 

ui,j – differentiation of ui with respect to xi 

(∙)∗– amplitude of the variables 

Hilal [11] demonstrated photothermal interaction in a micro-

elongated semiconducting medium under the influence of grav-

ity. Kaur et al. [12] explained photo-thermo-elastic interactions 

in an infinite semiconducting rotating solid cylinder subjected to 

the magnetic field and hall current. Lotfy et al. [13] put forward 

a novel model for investigating non-local semiconductor me-

dium. Azhar et al. [14] studied the reflection problem in a non-

local semiconducting medium under the effect of hall current 

and magnetic field.  
Under exposure to high temperature, the thermal conductiv-

ity of an elastic material is found experimentally to be varied 

with temperature. Therefore, the thermal conductivity cannot be 

treated as constant. El-Bary [15] introduced a mathematical 

model for studying layered thin plate subjected to variable ther-

mal conductivity. Ezzat and Youssef [16] studied thermoelastic 

medium subjected to variable electrical and thermal conductiv-

ity under the theory of one relaxation time. Sherief and Abd El-

Latief [17] explored the impact of variable thermal conductivity 

in an elastic half-space with respect to the theory of fractional 

thermoelasticity. Zenkour and Abbas [18] applied finite element 

method for obtaining thermal stress for a hollow cylinder in a 

temperature dependent thermoelastic medium. Yasein et al. [19] 

demonstrated the effect of varying thermal conductivity in a 

semiconducting medium subjected to thermal ramp type in the 

context of dual-phase-lag (DPL) and L-S model of thermoelas-

ticity. Abbas et al. [20] analysed the behaviour of semiconduct-

ing medium with cylindrical cavities subjected to variable ther-

mal conductivity. Alzahrani et al. [21] discussed eigen value 

problem for variable thermal conductivity in a porous medium. 

Marin et al. [22] explored porothermoelastic materials subjected 

to fractional time derivatives by applying the finite element 

method. Lotfy and El-Bary [23] proposed an elastic-thermod-

iffusion model for studying photothermal interactions in a sem-

iconductor subjected to mechanical ramp type and variable ther-

mal conductivity. Hobiny and Abbas [24] utilised the finite ele-

ment method for describing thermoelastic interaction in an or-

thotropic material with spherical cavities under variable thermal 

conductivity. Kumar et al. [25] explained thermodynamical in-

teractions for a thermodiffusive medium subjected to rotation 

and gravitational effect. El-Sapa et al. [26] demonstrated the in-

fluence of variable thermal conductivity on wave propagation in 

a non-local semiconducting medium. 

The present research work deals with investigating the effect 

of varying thermal conductivity in a semiconducting medium. 

The problem has been modelled as an elastic half-space overly-

ing the semiconducting half-space. The analytic components of 

displacement, stress, carrier density and temperature distribution 

are obtained by applying the normal mode technique. It was ob-

served that all considered physical quantities depend on variable 

thermal conductivity. 

2. Governing equations of the problem  

Let us take a semiconducting half-space with an overlying elas-

tic half-space. A mechanical load of magnitude 𝐹 is acting on 

the boundary separating the two half-spaces. Further, we con-

sider coordinate system (𝑥, 𝑦, 𝑧) in which 𝑧-axis is taken in ver-

tically downward direction. The region 𝑧 ≥ 0 is occupied by the 

semiconducting half-space (medium I) and the region 𝑧 < 0 by 

elastic-half space (medium II) as represented in Fig. 1. 

The fundamental equations for a semiconducting medium af-

ter neglecting body forces are given by Lotfy [27]: 

 𝜇𝑠∇2�⃗⃗�(𝑟, 𝑡) + ( 𝜆𝑠 + 𝜇𝑠)∇(∇ ∙ �⃗⃗�(𝑟, 𝑡)) + 

     −𝛾∇𝑇 − 𝛿∇𝑁 = 𝜌
𝜕2 �⃗⃗⃗�(𝑟,𝑡)

𝜕𝑡2 . (1) 

The coupled equations for the semiconducting medium are 

given by Song et al. [28]: 

 𝐾𝑠∇2𝑇 −
𝐸𝑠

𝜏
𝑁 + γ𝑇0∇ ∙

∂�⃗⃗⃗�

∂𝑡
− 𝜌𝐶𝑠

∂𝑇

∂𝑡
= 0. (2) 
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 𝐶𝑑∇2𝑁 −
1

𝜏
𝑁 + 𝜅𝑇 −

𝜕𝑁

𝜕𝑡
= 0. (3) 

Further the stress-strain relations for the considered medium 

are given by Lotfy [27]: 

 σ𝑖𝑗 = 2𝜇𝑠𝑒𝑖𝑗 + (𝜆𝑠𝑢𝑘,𝑘 − 𝛿𝑁 − 𝛾𝑇)𝛿𝑖𝑗, (4) 

where 

 𝑒𝑖𝑗 =
1

2
(𝑢𝑗,𝑖 + 𝑢𝑖,𝑗).  

The fundamental relations for elastic half-space are given by 

Ewing et al. [29]: 

 𝜇𝑒∇2�⃗⃗�𝑒(𝑟, 𝑡) + (𝜆𝑒 + 𝜇𝑒)∇(∇ ∙ �⃗⃗�𝑒(𝑟, 𝑡)) = 𝜌𝑒 𝜕2�⃗⃗⃗�𝑒(𝑟,𝑡)

𝜕𝑡2 , (5) 

 𝜎𝑙𝑘
𝑒 = 𝜆𝑒𝑢𝑟,𝑟

𝑒 δ𝑙𝑘 + 𝜇𝑒(𝑢𝑙,𝑘 + 𝑢𝑘,𝑙) ,    𝑟, 𝑙, 𝑘 = 1, 2, 3. (6) 

3. Formulation of the problem  

We assume that the waves are propagating in x-z plane. Hence 

the displacement vector in the semiconducting medium is con-

sidered as �⃗⃗� = (𝑢, 0, 𝑤), where 𝑢 = 𝑢(𝑥, 𝑧, 𝑡), 𝑤 = 𝑤(𝑥, 𝑧, 𝑡). 

Equations (1)‒(4) in two dimensions can be expressed as:  

 (𝜆𝑠 + 2𝜇𝑠)
𝜕2𝑢

𝜕𝑥2 + (𝜆𝑠 + 𝜇𝑠)
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 

                           + 𝜇𝑠 𝜕2𝑢

𝜕𝑧2 − 𝛾
𝜕𝑇

𝜕𝑥
− 𝛿

𝜕𝑁

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2 , (7) 

𝜇𝑠
𝜕2𝑤

𝜕𝑥2
+ (𝜆𝑠 + 𝜇𝑠)

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ (𝜆𝑠 + 2𝜇𝑠)

𝜕2𝑤

𝜕𝑧2
+ 

                                 −𝛾
𝜕𝑇

𝜕𝑧
− 𝛿

𝜕𝑁

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2 , (8) 

  𝐾𝑠Δ𝑇 −
𝐸𝑠

𝜏
𝑁 + 𝛾𝑇0

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
) − 𝜌𝐶𝑠

𝜕𝑇

𝜕𝑡
= 0, (9) 

 𝐶𝑑Δ𝑁 −
1

𝜏
𝑁 + 𝜅𝑇 −

𝜕𝑁

𝜕𝑡
= 0, (10) 

 𝜎𝑥𝑥 = (𝜆𝑠 + 2𝜇𝑠)
𝜕𝑢

𝜕𝑥
+ 𝜆𝑠 𝜕𝑤

𝜕𝑧
− (𝛾𝑇 + 𝛿𝑁), (11) 

 𝜎𝑧𝑧 = (𝜆𝑠 + 2𝜇𝑠)
𝜕𝑤

𝜕𝑧
+ 𝜆𝑠 𝜕𝑢

𝜕𝑥
− (𝛾𝑇 + 𝛿𝑁), (12) 

 𝜎𝑧𝑥 = 𝜇𝑠 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
), (13) 

where:  𝛥 =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2. 

Further for the elastic half space, Eqs. (5) and (6) in two-

dimensions can be reduced as: 

 (𝜆𝑒 + 2𝜇𝑒)
𝜕2𝑢𝑒

𝜕𝑥2 + (𝜆𝑒 + 𝜇𝑒)
𝜕2𝑤𝑒

𝜕𝑥𝜕𝑧
+ 𝜇𝑒 𝜕2𝑢𝑒

𝜕𝑧2 = 𝜌𝑒 𝜕2𝑢𝑒

𝜕𝑡2 ,  (14) 

 𝜇𝑒 𝜕2𝑤𝑒

𝜕𝑥2 + (𝜆𝑒 + 2𝜇𝑒)
𝜕2𝑤𝑒

𝜕𝑧2 + (𝜆𝑒 + 𝜇𝑒)
𝜕2𝑢𝑒

𝜕𝑥𝜕𝑧
= 𝜌𝑒 𝜕2𝑤𝑒

𝜕𝑡2 ,  (15) 

 𝜎𝑥𝑥
𝑒 = (𝜆𝑒 + 2𝜇𝑒)

𝜕𝑢𝑒

𝜕𝑥
+ 𝜆𝑒 𝜕𝑤𝑒

𝜕𝑧
, (16) 

 𝜎𝑧𝑧
𝑒 = (𝜆𝑒 + 2𝜇𝑒)

𝜕𝑤𝑒

𝜕𝑧
+ 𝜆𝑒 ∂ue

∂x
, (17) 

 𝜎𝑧𝑥
𝑒 = 𝜇𝑒 (

𝜕𝑢𝑒

𝜕𝑧
+

𝜕𝑤𝑒

𝜕𝑥
). (18) 

Under exposure to high temperature, heat conductivity 𝐾𝑠 

depends on the temperature of the medium, therefore it must be 

taken as variable as given by Lotfy [30]: 

 𝐾𝑠(𝑇) = 𝐾0
𝑠(1 + 𝐾1𝑇). (19) 

We can use the Kirchhoff transformation for conversion of 

thermal conduction equation into linear form by the following 

relation given by Lotfy [30]: 

 �̂� =
1

𝐾0
𝑠 ∫ 𝐾𝑠(ξ)𝑑ξ

𝑇

0
. (20) 

Differentiating (20) with respect to 𝑥𝑖 we get 

 𝐾0
𝑠𝑇,�̂� = 𝐾𝑠(𝑇)𝑇,𝑖. (21) 

Differentiating the above equation again with respect to 𝑥𝑖 we 

get 

 𝐾0
𝑠𝑇,𝑖�̂� = (𝐾𝑠(𝑇)𝑇,𝑖),𝑖

. (22) 

Above equation has the following linear form after removing 

non-linear terms: 

 𝐾0
𝑠𝑇,𝑖�̂� = 𝐾𝑠(𝑇)𝑇,𝑖𝑖. (23) 

In 𝑇,𝑖�̂� the subscript should be treated as ii in Eqs. (22) and (23), 

though it appears as ll under �̂� due to some software issue. 
Differentiating (20) with respect to 𝑡 we get 

 𝐾0
𝑠𝑇,�̂� = 𝐾𝑠(𝑇)𝑇,𝑡. (24) 

Equations (7) to (13) can be rewritten using (19)‒(24) as: 

 (𝜆𝑠 + 2𝜇𝑠)
𝜕2𝑢

𝜕𝑥2 + (𝜆𝑠 + 𝜇𝑠)
𝜕2𝑤

𝜕𝑥𝜕𝑧
 + 

   +𝜇𝑠 𝜕2𝑢

𝜕𝑧2 − 𝛾
𝜕�̂�

𝜕𝑥
− 𝛿

𝜕𝑁

𝜕𝑥
=  𝜌

𝜕2𝑢

𝜕𝑡2 , (25) 

 𝜇𝑠 𝜕2𝑤

𝜕𝑥2 + (𝜆𝑠 + 𝜇𝑠)
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ (𝜆𝑠 + 2𝜇𝑠)

𝜕2𝑤

𝜕𝑧2 + 

              −𝛾
𝜕�̂�

𝜕𝑧
− 𝛿

𝜕𝑁

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2 , (26) 

 

Fig. 1. Geometry of the problem. 
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               𝐾0
𝑠Δ�̂� −

𝐸𝑠

𝜏
𝑁 + 𝛾𝑇0

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
) − 𝜌𝐶𝑠

𝜕�̂�

𝜕𝑡
= 0, (27) 

 𝐶𝑑Δ𝑁 −
1

𝜏
𝑁 + 𝜅�̂� −

𝜕𝑁

𝜕𝑡
= 0, (28) 

 𝜎𝑥𝑥 = (𝜆𝑠 + 2𝜇𝑠)
𝜕𝑢

𝜕𝑥
+ 𝜆𝑠 𝜕𝑤

𝜕𝑧
− (𝛾�̂� + 𝛿𝑁), (29) 

 𝜎𝑧𝑧 = (𝜆𝑠 + 2𝜇𝑠)
𝜕𝑤

𝜕𝑧
+ 𝜆𝑠 𝜕𝑢

𝜕𝑥
− (𝛾�̂� + 𝛿𝑁), (30) 

 𝜎𝑧𝑥 = 𝜇𝑠 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
). (31) 

Further, for simplicity we use dimensionless quantities writ-

ten below: 

𝑥′ =
1

𝑐𝑙𝑡∗
𝑥,   𝑧′ =

1

𝑐𝑙𝑡∗
𝑧,   𝑢′ =

1

𝑐𝑙𝑡
∗

𝑢,  𝑤′ =
1

𝑐𝑙𝑡
∗

𝑤,  

𝑡′ =
𝑡

𝑡∗
,  𝜎𝑖𝑗

′ =
𝜎𝑖𝑗

𝜇𝑠
, �̂�′ =

𝛾�̂�

(𝜆𝑠 + 2𝜇𝑠)
 ,  𝑁′ =

δ𝑁

(𝜆𝑠 + 2𝜇𝑠)
,   

𝑢𝑒′
=

1

𝑐𝑙𝑡∗ 𝑢𝑒 ,   𝑤𝑒′
=

1

𝑐𝑙𝑡∗ 𝑤𝑒 ,   σ𝑖𝑗
𝑒′

=
𝜎𝑖𝑗

𝑒

𝜇𝑒 . (32) 

where: 

 𝑐𝑙
2 =

(𝜆𝑠+2𝜇𝑠)

𝜌
,  𝑡∗ =

𝐾0
𝑠

 𝐶𝑠𝑐𝑙
2.  

Using dimensionless variables (32) in Eqs. (25) to (31) we 

get equations as: 

 
𝜕2𝑢

𝜕𝑥2 + 𝑏11
𝜕2𝑢

𝜕𝑧2 + 𝑏11
𝜕2𝑤

𝜕𝑥𝜕𝑧
−

𝜕�̂�

𝜕𝑥
−

𝜕𝑁

𝜕𝑥
=

𝜕2𝑢

𝜕𝑡2 , (33) 

 𝑏12
𝜕2𝑢

𝜕𝑥𝜕𝑧
+

𝜕2𝑤

𝜕𝑧2 + 𝑏11
𝜕2𝑤

𝜕𝑥2 −
𝜕�̂�

𝜕𝑧
−

𝜕𝑁

𝜕𝑧
=

𝜕2𝑤

𝜕𝑡2 , (34) 

 𝑎15Δ�̂� + 𝑎16
𝜕�̂�

𝜕𝑡
+ 𝑎17𝑁 + 𝑎18 (

𝜕2𝑢

𝜕𝑥𝜕𝑡
+

𝜕2𝑤

𝜕𝑧𝜕𝑡
) = 0, (35) 

 𝑎11Δ𝑁 + 𝑎12𝑁 + 𝑎13
𝜕𝑁

𝜕𝑡
+ 𝑎14�̂� = 0, (36) 

 𝜎𝑥𝑥 = 𝑏13
𝜕𝑢

𝜕𝑥
+ 𝑏14

𝜕𝑤

𝜕𝑧
− 𝑏13�̂� − 𝑏13𝑁, (37) 

 𝜎𝑧𝑧 = 𝑏14
𝜕𝑢

𝜕𝑥
+ 𝑏13

𝜕𝑤

𝜕𝑧
− 𝑏13�̂� − 𝑏13𝑁, (38) 

 𝜎𝑧𝑥 = (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
). (39) 

Further for the elastic half space, Eqs. (14)‒(18) in dimen-

sionless form can be reduced as: 

 𝑐11
𝜕2𝑢𝑒

𝜕𝑥2 + 𝑐12
𝜕2𝑤𝑒

𝜕𝑥𝜕𝑧
+ 𝑐13

𝜕2𝑢𝑒

𝜕𝑧2 =
𝜕2𝑢𝑒

𝜕𝑡2 , (40) 

 𝑐13
𝜕2𝑤𝑒

𝜕𝑥2 + 𝑐11
𝜕2𝑤𝑒

𝜕𝑧2 + 𝑐12
𝜕2𝑢𝑒

𝜕𝑥𝜕𝑧
=

𝜕2𝑤𝑒

𝜕𝑡2 , (41) 

 𝜎𝑥𝑥
𝑒 = 𝑐14

𝜕𝑢𝑒

𝜕𝑥
+ 𝑐15

𝜕𝑤𝑒

𝜕𝑧
, (42) 

 𝜎𝑧𝑧
𝑒 = 𝑐14

𝜕𝑤𝑒

𝜕𝑧
+ 𝑐15

𝜕𝑢𝑒

𝜕𝑥
, (43) 

 𝜎𝑧𝑥
𝑒 = (

𝜕𝑢𝑒

𝜕𝑧
+

𝜕𝑤𝑒

𝜕𝑥
). (44) 

 

Here: 

 𝑎11 =
𝐶𝑑

𝛿𝑐𝑙
2𝑡∗2 , 𝑎12 = −

1

𝜏𝛿
,   𝑎13 = −

1

𝑡∗𝛿
,   𝑎14 =

𝜅

𝛾
,  

 𝑎15 =
𝐾0

𝑠

𝛾𝑡∗𝐶𝑠
, 𝑎16 = −

(𝜆𝑠+2𝜇𝑠)

𝛾
,  𝑎17 =

𝐸𝑠(𝜆𝑠+2𝜇𝑠)𝑡∗

𝜏𝛿𝜌𝐶𝑠
,  𝑎18 =

𝛾𝑇0

𝜌𝐶𝑠
,  

 𝑏11 =
𝜇𝑠

(𝜆𝑠+2𝜇𝑠)
,  𝑏12 =

𝜆𝑠+𝜇𝑠

𝜆𝑠+2𝜇𝑠 ,   𝑏13 =
𝜆𝑠+2𝜇𝑠

𝜇𝑠 ,  𝑏14 =
𝜆𝑠

𝜇𝑠,     

  𝑏14 =
𝜆𝑠

𝜇𝑠 ,   𝑐11 =
𝜆𝑒+2𝜇𝑒

𝜌𝑒𝐶𝑙
2 , 𝑐12 =

𝜆𝑒+𝜇𝑒

𝜌𝑒𝐶𝑙
2 , 𝑐13 =

𝜇𝑒

𝜌𝑒𝐶𝑙
2,  

 𝑐14 =
𝜆𝑒+2𝜇𝑒

𝜇𝑒 ,   𝑐15 =
𝜆𝑒

𝜇𝑒.  

4. Normal mode analysis 

We use the following normal mode analysis for obtaining the 

solution for above considered physical variables: 

 [𝑢, 𝑤, �̂�, 𝑁, u𝑒 , w𝑒] = [𝑢∗, 𝑤∗, 𝑇 ∗̂, 𝑁∗, u𝑒∗, w𝑒∗](𝑧)𝑒𝜔𝑡+𝑖𝑎𝑥 . (45) 

Using the solutions given by (45) in (33)‒(36), we obtain the 

following equations in coupled form as: 

 (𝑏11𝐷2 + 𝑒15)𝑢∗ + 𝑖𝑎𝑏12𝐷𝑤∗ − 𝑖𝑎𝑇 ∗̂ − 𝑖𝑎𝑁∗ = 0, (46) 

 𝑖𝑎𝑏12𝐷𝑢∗ + (𝐷2 + 𝑒16)𝑤∗ − 𝐷𝑇 ∗̂ − 𝐷𝑁∗ = 0, (47) 

 𝑒13𝑢∗ + 𝑒14𝐷𝑤∗ + (𝑎15𝐷2 + 𝑒12)𝑇 ∗̂ + 𝑎17𝑁∗ = 0, (48) 

 𝑎14�̂�∗ + (𝑎11𝐷2 + 𝑒11)𝑁∗ = 0. (49) 

On solving these coupled equations (46) to (49), we get the 

following eighth-order differential equation: 

 [𝑔8𝐷8 + 𝑔9𝐷6 + 𝑔10𝐷4 + 𝑔11𝐷2 + 𝑔12](𝑢∗, 𝑤∗, 𝑇 ∗̂, 𝑁∗) = 0.  

(50) 

Similarly, using the solutions given by (45) in (40)‒(41), we 

obtain the following equations in coupled form: 

 (𝑐13𝐷2 + 𝑒17)𝑢𝑒∗ + 𝑖𝑎𝑐12𝐷𝑤𝑒∗ = 0, (51) 

 (𝑐11𝐷2 + 𝑒18)𝑤𝑒∗ + 𝑖𝑎𝑐12𝐷𝑢𝑒∗ = 0. (52) 

On solving these coupled Eqs. (51) and (52), we get the follow-

ing fourth-order differential equation: 

 [𝑔13𝐷4 + 𝑔14𝐷2 + 𝑔15](𝑢𝑒∗, 𝑤𝑒∗) = 0. (53) 

Here: 

𝑒11 = −𝑎11𝑎2 + 𝑎12 + 𝑎13𝜔, 𝑒12 = −𝑎15𝑎2 + 𝑎16𝜔,  

 𝑒13 = 𝑖𝑎𝜔𝑎18,  𝑒14 = 𝜔𝑎18, 𝑒15 = −(𝑎2 + 𝜔2),  

   𝑒16 = −(𝑏11𝑎2 + 𝜔2), 𝑒17 = −(𝑐11𝑎2 + 𝜔2),  

 𝑒18 = −(𝑐13𝑎2 + 𝜔2),  

 𝑓1 = 𝑖𝑎𝑎15𝑏12,  𝑓2 = 𝑖𝑎(𝑒12𝑏12 + 𝑒14),  𝑓3 = −𝑒14𝑏11,  

 𝑓4 = 𝑖𝑎𝑒13𝑏12 − 𝑒14𝑒15,  𝑓5 = 𝑖𝑎(𝑎17𝑏12 + 𝑒14),  

 𝑓6 = 𝑏11, 𝑓7 = 𝑒15 + 𝑒16𝑏11+𝑎2𝑏12
2,  𝑓8 = 𝑒15𝑒16,   
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          𝑓9 = 𝑖𝑎(𝑏12 − 1), 𝑓10 = −𝑖𝑎𝑒16,   

 𝑔1 = 𝑓1𝑓6,  𝑔2 = 𝑓2𝑓6 + 𝑓1𝑓7 − 𝑓3𝑓9,  

 𝑔3 = 𝑓2𝑓7 + 𝑓1𝑓8 − 𝑓3𝑓10 − 𝑓4𝑓9, 𝑔4 = 𝑓2𝑓8 − 𝑓4𝑓10,  

 𝑔5 = 𝑓5𝑓6 − 𝑓3𝑓9,  𝑔6 = 𝑓5𝑓7 − 𝑓4𝑓9 − 𝑓3𝑓10,   

  𝑔7 = 𝑓5𝑓8 − 𝑓4𝑓10, 𝑔8 = 𝑎11𝑔1, 𝑔9 = 𝑒11𝑔1 + 𝑎11𝑔2,   

 𝑔10 = 𝑒11𝑔2 + 𝑎11𝑔3 − 𝑎14𝑔5 ,   

 𝑔11 = 𝑒11𝑔3 + 𝑎11𝑔4 − 𝑎14𝑔6 ,  

 𝑔12 = 𝑒11𝑔4 − 𝑎14𝑔7, 𝑔13 = 𝑐11𝑐13,  

 𝑔14 = 𝑐11𝑒17   +  𝑐13𝑒18   + 𝑎2𝑐12
2, 𝑔15 = −𝑒18𝑒17.  

Using radiation conditions 𝑢∗,  𝑤∗, 𝑇 ∗̂,  𝑁∗ → 0 as 𝑧 → ∞ , 

the solution of Eq.(50) can be written as: 

 𝑇 ∗̂ = ∑ 𝐶𝑗
4
𝑗=1 𝑒−𝑘𝑗𝑧, (54) 

 𝑢∗ = ∑ 𝐴𝑗
4
𝑗=1 𝑒−𝑘𝑗𝑧, (55) 

 𝑤∗ = ∑ 𝐵𝑗
4
𝑗=1 𝑒−𝑘𝑗𝑧, (56) 

 𝑁∗ = ∑ E𝑗
4
𝑗=1 𝑒−𝑘𝑗𝑧, (57) 

where 𝑘𝑗
2 (𝑗 = 1, 2, 3, 4) are roots of Eq. (50). Also using 

Eqs. (46)‒(49), the coupling constants 𝐴𝑗,  𝐵𝑗 ,  𝐸𝑗  are given by 

𝐴𝑗 = 𝐿𝑗𝐶𝑗, 𝐵𝑗 = 𝑀𝑗𝐶𝑗, and  𝐸𝑗 = 𝑁𝑗𝐶𝑗, where: 

 𝐿𝑗 =
ℎ1𝑘𝑗

4+ℎ2𝑘𝑗
2+ℎ3

ℎ4𝑘𝑗
4+ℎ5𝑘𝑗

2+ℎ6
,  

 𝑀𝑗 =
ℎ7𝑘𝑗

6+ℎ8𝑘𝑗
4+ℎ9𝑘𝑗

2+ℎ10

ℎ11𝑘𝑗
5+ℎ12𝑘𝑗

3+ℎ13𝑘𝑗
,  

 𝑁𝑗 = −
𝑎14

𝑎11𝑘𝑗
2+𝑒11

  

and 

 ℎ1 = −𝑓1𝑎11,   ℎ2 = −𝑓2𝑎11 − 𝑓1𝑒11, ℎ3 = 𝑓5𝑎14 − 𝑓2𝑒11,  

 ℎ4 = 𝑓3𝑎11, ℎ5 = 𝑓4𝑎11 + 𝑓3𝑒11,   ℎ6 = 𝑓4𝑒11,  

 ℎ7 = −𝑎15𝑓3𝑎11,  

  ℎ8 = 𝑒13𝑓1𝑎11 − 𝑎15𝑓3𝑒11 − 𝑎11𝑓3𝑒12 − 𝑎15𝑓4𝑎11,   

   ℎ9 = 𝑎17𝑓3𝑎14 + 𝑒13𝑓2𝑎11 + 𝑒13𝑓1𝑒11 − 𝑒12𝑓3𝑒11 + 

−𝑒12𝑓4𝑎11 − 𝑎15𝑓4𝑒11, 

 ℎ10 = 𝑎17𝑓4𝑎14 − 𝑒13𝑓5𝑎14 + 𝑒13𝑓2𝑒11 − 𝑒12𝑓4𝑒11,  

 ℎ11 = 𝑎11𝑓3𝑒14,  

 ℎ12 = 𝑎11𝑓4𝑒14 + 𝑒14𝑓3𝑒11, ℎ13 = 𝑒11𝑓4𝑒14.  

Using Eqs. (54)‒(57), we obtain the expressions for all phys-

ical quantities as: 

 �̂� = ∑ 𝐶𝑗
4
𝑗=1 𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (58) 

 𝑢 = ∑ 𝐶𝑗
4
𝑗=1 𝐿𝑗𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (59) 

 𝑤 = ∑ 𝐶𝑗
4
𝑗=1 𝑀𝑗𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (60) 

 𝑁 = ∑ 𝐶𝑗
4
𝑗=1 𝑁𝑗𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (61) 

 𝜎𝑥𝑥 = ∑ [𝑖𝑎𝑏13𝐿𝑗 − 𝑏14𝑘𝑗𝑀𝑗 − 𝑏13𝑁𝑗 − 𝑏13] ×4
𝑗=1  

× 𝐶𝑗𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (62) 

 σ𝑧𝑧 = ∑ [−𝑏13𝑘𝑗𝑀𝑗 + 𝑖𝑎𝑏14𝐿𝑗 − 𝑏13𝑁𝑗 − 𝑏13] ×4
𝑗=1  

× 𝐶𝑗𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (63) 

 σ𝑧𝑥 = ∑ [−𝑘𝑗𝐿𝑗 + 𝑖𝑎𝑀𝑗]𝐶𝑗
4
𝑗=1 𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 . (64) 

Using radiation conditions 𝑢𝑒∗,  𝑤𝑒∗ → 0 as 𝑧 → ∞, the so-

lution of Eq. (53) can be written as: 

 𝑢𝑒∗ = ∑ 𝐹𝑝
6
𝑝=5 𝑒𝑘𝑝𝑧, (65) 

 𝑤𝑒∗ = ∑ 𝐺𝑝
6
𝑝=5 𝑒𝑘𝑝𝑧, (66) 

where 𝑘𝑝
2 (𝑗 = 5, 6) are roots of Eq. (53). Also using Eqs. (51)‒

(52), the coupling constant  𝐺𝑝 is given by 𝐺𝑝 = 𝑂𝑝𝐹𝑝, where: 

 𝑂𝑝 = −
𝑐13𝑘𝑝

2+𝑒17

𝑖𝑎𝑐12𝑘𝑝
.  

Using Eqs. (65)‒(66), we obtain the expressions for all phys-

ical quantities in elastic half-space as: 

 𝑢𝑒 = ∑ 𝐹𝑝
6
𝑝=5 𝑒𝑘𝑝𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (67) 

 𝑤𝑒 = ∑ 𝑂𝑝𝐹𝑝
6
𝑝=5 𝑒𝑘𝑝𝑧𝑒𝜔𝑡+𝑖𝑎𝑥, (68) 

 𝜎𝑥𝑥
𝑒 = ∑ [𝑖𝑎𝑐14 + 𝑐15𝑘𝑝𝑂𝑝]𝐹𝑝

6
𝑝=5 𝑒𝑘𝑝𝑧𝑒𝜔𝑡+𝑖𝑎𝑥, (69) 

 𝜎𝑧𝑧
𝑒 = ∑ [𝑖𝑎𝑐15 + 𝑐14𝑘𝑝𝑂𝑝]𝐹𝑝

6
𝑝=5 𝑒𝑘𝑝𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 , (70) 

 𝜎𝑧𝑥
𝑒 = ∑ [𝑖𝑎𝑂𝑝 + 𝑘𝑝]𝐹𝑝

6
𝑝=5 𝑒𝑘𝑝𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 . (71) 

5. Boundary conditions 

For evaluating the constants 𝐶𝑗  (𝑗 = 1, 2, 3, 4)  and 𝐹𝑝  (𝑝 =

5, 6), the following boundary conditions are applied:  

1) A mechanical force 𝐹𝑒𝜔𝑡+𝑖𝑎𝑥 is applied at 𝑧 = 0 along the 

normal direction: 

 𝜎𝑧𝑧 = 𝜎𝑧𝑧
𝑒 − 𝐹𝑒𝜔𝑡+𝑖𝑎𝑥. (72) 

2) The tangential stress vanishes at 𝑧 = 0: 

 𝜎𝑧𝑥 = 𝜎𝑧𝑥
𝑒 . (73) 

3) The surface 𝑧 = 0 is thermally insulated: 

 
∂𝑇

∂𝑧
= 0. (74) 

4) The carrier density at 𝑧 = 0 is 

 𝐶𝑑
∂𝑁

∂𝑧
= 𝜅𝑁. (75) 
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5) The tangential displacement is continuous at 𝑧 = 0: 

 𝑢 = 𝑢𝑒. (76) 

6) The normal displacement is continuous at 𝑧 = 0: 

 𝑤 = 𝑤𝑒 . (77) 

Using Eqs. (58)‒(64) and (67)‒(71) in Eqs. (72)‒(77), we get 

the following non-homogenous system of four equations: 

  𝑎1
∗∗𝐶1 + 𝑎2

∗∗𝐶2 + 𝑎3
∗∗𝐶3 + 𝑎4

∗∗𝐶4 + 𝑎5
∗∗𝐹5 + 𝑎6

∗∗𝐹6 = −𝐹, (78) 

 𝑏1
∗∗𝐶1 + 𝑏2

∗∗𝐶2 + 𝑏3
∗∗𝐶3 + 𝑏4

∗∗𝐶4 + 𝑏5
∗∗𝐹5 + 𝑏6

∗∗𝐹6 = 0, (79) 

 𝑘1𝐶1 + 𝑘2𝐶2 + 𝑘3𝐶3 + 𝑘4𝐶4 = 0, (80) 

 𝑒1
∗∗𝐶1 + 𝑒2

∗∗𝐶2 + 𝑒3
∗∗𝐶3 + 𝑒4

∗∗𝐶4 = 0, (81) 

 𝐿1𝐶1 + 𝐿2𝐶2 + 𝐿3𝐶3 + 𝐿4𝐶4 − 𝐹5 − 𝐹6 = 0, (82) 

 𝑀1𝐶1 + 𝑀2𝐶2 + 𝑀3𝐶3 + 𝑀4𝐶4 − 𝑂5𝐹5 − 𝑂6𝐹6 = 0. (83) 

where: 

 𝑎𝑗
∗∗ = −𝑏13𝑘𝑗𝑀𝑗 + 𝑖𝑎𝑏14𝐿𝑗 − 𝑏13𝑁𝑗 − 𝑏13,  

 𝑎𝑝
∗∗ = −[𝑐14𝑘𝑝𝑂𝑝 + 𝑖𝑎𝑐15],  

 𝑏𝑗
∗∗ = 𝑖𝑎𝑀𝑗 − 𝑘𝑗𝐿𝑗 , 𝑏𝑝

∗∗ = −[𝑘𝑝 − 𝑖𝑎𝑂𝑝],  

 𝑒𝑗
∗∗ = (

κ

𝐶𝑑
+ 𝑘𝑗) 𝑁𝑗,   𝑗 = 1,2,3,4,   𝑝 = 5,6.  

For evaluating the values of constants 𝐶𝑗 (𝑗 = 1, 2, 3, 4) and 

𝐹𝑝  (𝑝 = 5, 6), the system of Eqs. (78)‒(83) are solved using 

MATLAB. After evaluating the values of these constants, the 

expressions for temperature distribution, components of dis-

placement, carrier density and components of stress can be ob-

tained by the expressions (58)‒(64). 

Using Eqs. (19) and (20), the relation between the tempera-

ture 𝑇 and the operator �̂� can be written as 

𝑇 =
1

𝐾1
[√1 + 2𝐾1�̂� − 1] =

1

𝐾1
[√1 + 2𝐾1𝑇∗̂𝑒𝜔𝑡+𝑖𝑎𝑥 − 1].  (84) 

The temperature, components of displacement, stresses and 

carrier density may also be expressed in terms of 𝐾1 as: 

 𝑇 =
1

𝐾1
[√1 + 2𝐾1 ∑ 𝐶𝑗

4
𝑗=1 𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥 − 1], (85) 

 𝑢 =
𝐿∗∗

2
[𝐾1 (𝑇 +

1

𝐾1
)

2

−
1

𝐾1
] 𝑒𝜔𝑡+𝑖𝑎𝑥 , (86) 

 𝑤 =
𝑀∗∗

2
[𝐾1 (𝑇 +

1

𝐾1
)

2

−
1

𝐾1
] 𝑒𝜔𝑡+𝑖𝑎𝑥, (87) 

 𝜎𝑥𝑥 =
1

2
[𝐾1 (𝑇 +

1

𝐾1
)

2

−
1

𝐾1
] [𝑖𝑎𝑏13𝐿∗∗ − 𝑏13−𝑏13𝑁∗∗]𝑒𝜔𝑡+𝑖𝑎𝑥+ 

− 𝑏14𝑀∗∗ ∑ 𝑘𝑗
4
𝑗=1 𝐶𝑗𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥,              (88) 

 

 𝜎𝑧𝑧 =
1

2
[𝐾1 (𝑇 +

1

𝐾1
)

2

−
1

𝐾1
] [𝑖𝑎𝑏14𝐿∗∗ − 𝑏13−𝑏13𝑁∗∗]𝑒𝜔𝑡+𝑖𝑎𝑥+ 

 − 𝑏13𝑀∗∗ ∑ 𝑘𝑗
4
𝑗=1 𝐶𝑗𝑒−𝑘𝑗𝑧𝑒𝜔𝑡+𝑖𝑎𝑥,              (89) 

 𝜎𝑧𝑥 = {
−𝐿∗∗ ∑ 𝑘𝑗

4
𝑗=1 𝐶𝑗𝑒−𝑘𝑗𝑧 +

+
𝑖𝑎𝑀∗∗

2
[𝐾1 (𝑇 +

1

𝐾1
)

2

−  
1

𝐾1
]
} 𝑒𝜔𝑡+𝑖𝑎𝑥 , (90) 

 𝑁 =
𝑁∗∗

2
[𝐾1 (𝑇 +

1

𝐾1
)

2

−
1

𝐾1
] 𝑒𝜔𝑡+𝑖𝑎𝑥, (91) 

where: 

 𝐿∗∗ =
ℎ1𝑟4+ℎ2𝑟2+ℎ3

ℎ4𝑟4+ℎ5𝑟2+ℎ6
,  

  𝑀∗∗ =
ℎ7𝑟6+ℎ8𝑟4+ℎ9𝑟2+ℎ10

ℎ11𝑟5+ℎ12𝑟3+ℎ13𝑟
,  

 𝑁∗∗ = −
𝑎14

𝑎11𝑟2+𝑒11
.  

6. Numerical results 

For the numerical justification of the analytical results obtained, 

we take example of silicon (Si) as semiconducting medium for 

which related values of constants are given by Song et al. [28] 

as: 

λ
s = 3.64×1010 N/m2,  μs = 5.46×1010 N/m2,  ρ = 2330 kg/m3, 

T0 = 800 K, τ = 5×10-5 s, Cd = 2.5×10-3 m2/s, Cs = 695 J/(kg K),  

 Es = 1.11eV, α = 4.14×10-6/K, K0
s  = 150W/(m K), 

β = − 9×10-31m3, F = 1.0, κ = 2.0. 

Further the physical constants for elastic medium  granite  are 

given by Bullen [31]:  

ρe = 2.65×103kg/m3, λe = 2.238×103N/m2, μe = 2.238×103 N/m2. 

All calculations have been done at the surface 𝑥 = 1, 𝑡 = 1. 

Further 𝜔 = 𝜔0 + 𝑖𝜉 , where 𝜔0 = −0.03, 𝜉 = 0.01.  The 

graphs are obtained for constant and variable thermal conduc-

tivity by taking three values of 𝐾1, namely 0, ‒2 and ‒5, respec-

tively. 

6.1. Results and discussion  

Figure 2 shows the variation of normal displacement against 

horizontal distance. Parameter 𝐾1 represents thermal conductiv-

ity of the medium. 𝐾1 = 0, when the variables are independent 

of thermal conductivity, and when 𝐾1  is not equal to zero  

(𝐾1 = −2, −5), then the variables are dependent on thermal con-

ductivity. The value of normal displacement decreases with an 

increase in horizontal distance for both the cases. In the case of 

variable thermal conductivity, the magnitude of normal dis-

placement decreases with increase in value of 𝐾1.  
Figure 3 shows variation of normal stress with horizontal 

distance. The value of normal stress increases as the horizontal 

distance increases in the case of constant thermal conductivity. 

The similar behaviour is observed for 𝐾1 = −5.  But for  
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𝐾1 = −2, the magnitude of normal stress first increases to attain 

the maximum value, then follows a sharp decrease.  

Figure 4 shows variation of carrier density against horizontal 

distance. The value of carrier density increases sharply for con-

stant thermal conductivity following a sharp decrease. But for 

variable thermal conductivity, the magnitude of carrier density 

varies inversely with value of  𝐾1.  

Figure 5 shows variation of temperature against horizontal 

distance. The magnitude of temperature increases exponentially, 

then becomes constant for all values of 𝐾1. Further for variable 

thermal conductivity, the temperature varies inversely with pa-

rameter 𝐾1. 

7. Conclusions 

The following conclusions can be drawn from the performed 

study on the effect of variable thermal conductivity in semicon-

ducting medium underlying an elastic half-space: 

1) The variable thermal conductivity has a considerable effect 

on all the physical quantities. 

2) The maximum variation is obtained for carrier density in con-

text of constant and variable thermal conductivity. 

3) All the physical quantities are inversely proportional to the 

value of parameter 𝐾1 , except normal stress.  

4) This research work finds its application in different fields of 

engineering to calculate displacement, stress and carrier den-

sity in semiconductors subjected to variable thermal conduc-

tivity. 

5) This problem has its importance due to the fact that physical 

properties of a material change drastically when there is 

a  change in temperature. 
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