
1. Introduction 

The high temperature proton exchange membrane fuel cell (HT-

PEMFC) is regarded as an alternative device to make up for the 

shortcomings of PEMFC with the advantages of simpler water 

and thermal management, faster electrochemical reaction rates 

and higher utilization of waste heat [1]. However, it is accompa-

nied by significant irreversible thermal losses which lead to limit 

the broader application of HT-PEMFC [2–4]. 

Irreversible thermodynamic loss refers to the energy loss that 

occurs in the process of energy conversion or transfer that is not 

completely recoverable [5]. In thermodynamic systems, irre-

versible processes lead to an increase in the entropy of the sys-

tem, which results in thermodynamically irreversible losses. Re-

garding fuel cells, irreversible thermodynamic losses are inevi-

tably caused by heat transfer and chemical reactions in the sys-

tem, such as polarization losses caused by the electrochemical 

reaction process of the fuel cell, heat losses that cannot be con-

verted into electrical energy during the working process, and re-

sistance losses caused by the current passing through the resis-

tive elements in the cell. These irreversible thermodynamic 

losses have a significant impact on the performance and effi-

ciency of fuel cells, which can be minimized by optimizing the 
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Nomenclature 

𝐴 – activation area, cm2 

𝐶𝑝 – constant specific heat of the gas, J/(kg K) 

𝐷𝐿 – phosphate doping level 

𝐸 – potential, V 

𝐸𝑥 – exergy, W/m2 

𝑒𝑛
𝑐ℎ – chemical exergy, J/mol 

𝐹 – Faraday’s constant, C/mol  

𝑓𝑒𝑥𝑑
𝑓𝑐

– exergy dissipation rate 

𝛥𝐺 – Gibbs free energy change, J/mol 

𝛥�̇� – enthalpy transition, W/m2 

𝑗 – current density, A/m2  

𝐾 – specific heat rate, J/(kg K) 

𝑛 – number of electrons transferred 

𝑃 – power density, W/m2 

𝑝 – pressure, atm 

𝑅 – gas constant, J/(mol K) 

𝑅𝐻 – relative humidity, % 

𝑟 – waste exergy ratio 

∆𝑆 – variation of standard molar entropy, J/mol 

𝑇 – operating temperature, K 

𝑇0 – ambient temperature, K 

𝑡 – thickness, cm 

𝑈 – voltage, V 

𝑥𝑛 – mole fraction 

 

Greek symbols 

𝛼 – transfer coefficient 

�̇� – entropy production 

𝜂𝑒𝑥
𝑓𝑐

 – exergy efficiency 

𝜎 – proton conductivity, S/m 

 

Subscripts and superscripts 

𝑎𝑐𝑡 – activation 

𝑐ℎ – chemical 

𝑐𝑜𝑛 – concentration 

𝑑 – dissipation 

𝑓𝑐 – fuel cell 

𝑚𝑒𝑚 – membrane 

𝑜ℎ𝑚 – ohmic 

𝑝ℎ – physical 

𝑟𝑒𝑣 – reversible 

𝑟𝑤 – recyclable exergy waste 

𝑢𝑤 – unrecyclable exergy waste 

𝑤 – waste exergy 

 

Abbreviations and Acronyms 

HT-PEMFC– high temperature proton exchange membrane fuel cell 

ECOP – ecological coefficient of performance  

EDI – exergy destruction index 

ESI – exergy sustainability index 

MOPSO– multi-objective particle swarm optimization  

NSGA – nondominated sorting genetic algorithm 

ORC – organic Rankine cycle 

PBI – polybenzimidazole 

SA – simulated annealing 

 

 

design and improving the materials to achieve higher efficiency 

and performance of fuel cells [6]. A large number of researchers 

have made efforts to find more efficient materials and design 

methods in order to minimize these losses and improve the sus-

tainability of fuel cells [7–9]. 

Numerous studies have been conducted to analyze and opti-

mize the irreversible performance of fuel cells according to the 

first and second laws of thermodynamics. Atak et al. [10] inves-

tigated the thermodynamic performance of PEMFC using en-

ergy analysis and exergy analysis under a certain range of tem-

perature and pressure, and the results showed that increasing the 

temperature improves the power density and exergy efficiency, 

and increasing the current density leads to an improvement in 

the entropy production, however, the effect of the pressure 

change on the irreversibility of PEMFC is not as visible as that 

of the temperature. Chen et al. [11] established a degradation 

model for predicting the lifetime of PEMFC and analyzed the 

thermodynamic performance during the whole lifetime based on 

the model, as well as discussing the influence of various currents 

on power, degradation rate and thermal efficiency. Lu et al. [12] 

proposed a PEMFC and organic Rankine cycle (ORC) cogener-

ation system to generate electricity by recovering the waste heat 

from the fuel cell stack through the ORC subsystem, and ana-

lyzed the thermodynamic performance under steady state and 

dynamic conditions based on this system. The results show that 

the exergy efficiency of this PEMFC system can reach 51% and 

the energy efficiency can reach 75%, and the rate of electric ef-

ficiency decrease with increasing current is reduced. Tayfun 

Özgür end Yakaryilmaz [13] investigated the energy and exergy 

performance of a PEMFC with output power of 1 kW, and the 

experimental results showed that the energy efficiency of the 

PEMFC was 45.58%, and that increasing the temperature and 

pressure allowed an increase in the physical exergy of all the 

reactants and products. 

The performance can be significantly improved by numeri-

cally analyzing and optimizing the operating and design param-

eters of the PEMFC, which is a well-designed approach to save 

experimental expenses and time, and is more conducive to over-

all energy efficiency than time-consuming and laborious exper-

imental studies. A large number of researchers have studied fuel 

cells using advanced optimization algorithms and parametric 

analysis methods [14,15]. Chen et al. [16] analyzed the electro-

chemical and thermodynamic properties of PEMFC using para-

metric studies, and achieved efficiency and power improvement 

by optimizing the operating parameters of PEMFC using a novel 

evolutionary algorithm, and the final optimization results 

showed that the energy efficiency of PEMFC could reach 79% 

and the power could reach 8.04 kW. Xu et al. [17] investigated 

the effects of operating parameters on the irreversibility and ex-

ergy performance of HT-PEMFC under different operating con-

ditions and optimized the performance of HT-PEMFC using 

Manta Ray Foraging Optimization Algorithm. Lin et al. [18] an-

alyzed the exergy efficiency of HT-PEMFC using the meta-heu-

ristics method as well as evaluated and optimized the thermody-

namic irreversibility of HT-PEMFC using an improved collec-

tive animal behavior algorithm. The results show that the algo-

rithm has stronger convergence speed and optimization effi-

ciency compared to the genetic algorithm. It is evident from pre- 
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vious studies that optimization of parameters to match the best 

operating conditions of the HT-PEMFC can reduce irreversible 

losses and improve efficiency. 

The multi-objective particle swarm optimization (MOPSO) 

is to use the external population archive to store all the current 

non-dominated solutions, and regard the individuals in the ex-

ternal archive as the elite individuals, control the direction of 

population evolution through the elite individuals, and guide the 

population to approximate the real Pareto frontier, and take the 

particles in the external archive as the obtained approximation 

of the Pareto optimal solution at the end of the algorithm opera-

tion. The MOPSO algorithm has been widely used in the energy 

field to solve multi-objective optimization problems. Ehyaei et 

al. [19] used MOPSO algorithm to optimize the thermodynamic 

performance of parabolic through collector based on energy, ex-

ergy and economic analysis, and the optimal results were calcu-

lated with maximum exergy efficiency and minimum heat gen-

eration. Yuan et al. [20] designed an optimization algorithm 

based on the MOPSO algorithm and grey correlation analysis, 

as well as employed this algorithm to optimize a multi-objective 

energy scheduling problem for a hybrid solid oxide fuel cell and 

solar hybrid cogeneration system. 

Few literatures about ecological performance analysis in 

HT-PEMFC have been published by far and even fewer papers 

focus on the ecological coefficient of performance (ECOP) as 

an optimization function for the thermodynamic performance of 

HT-PEMFC. The ECOP is an important evaluation index for ir-

reversible thermodynamic and ecological performance, and op-

timizing ECOP can reduce power loss to benefit the environ-

ment. Therefore, in this paper, the ECOP, P and efficiency as 

the multi-objective optimization function for analyzing and op-

timizing the thermodynamic performance while maintaining the 

power of HT-PEMFC is still required. The population distribu-

tion of the optimization variables was analyzed using a 3D Pa-

reto frontier analysis, and the popular nondominated sorting ge-

netic algorithm II (NSGA-II) and simulated annealing algorithm 

(SA) have been chosen versus MOPSO algorithm for making 

the optimization comparative analysis. 

2. Model development 

The principles of redox reactions can be simplified and stated as 

follows [16]: 

 H2 → 2H+ + 2𝑒−, (1) 

 2H+ +
1

2
O2 + 2𝑒− → H2O + heat, (2) 

 H2 +
1

2
O2 → H2O + heat + electricity. (3) 

In addition, some assumptions about modeling are provided 

below:  

 The HT-PEMFC is operated in steady state [4]. 

 The fuel is a mixture of hydrogen and water [21]. 

 The movement of reactants exhibits laminar flow [10]. 

 The consideration of kinetic and potential energy of hydro-

gen is omitted [16]. 

 The corrosion reactions at the electrodes are neglected [22]. 

The values of basic designing and operating parameters used 

in this paper are obtained from Ref. [22], which can be shown 

in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

2.1. Electrochemical description 

The reversible voltage 𝐸𝑟𝑒𝑣  can be calculated by [1]: 

 𝐸𝑟𝑒𝑣 = 𝐸𝑟
0 +

Δ𝑆

𝑛𝐹
(𝑇 − 298.15) +

𝑅𝑇

𝑛𝑒𝐹
ln (

𝑝H2𝑝O2
0.5

𝑝H2O
), (4) 

where 𝐸𝑟
0 is the ideal standard potential, 𝑅 is the gas constant, 

∆𝑆 is the variation of standard molar entropy, 𝑇 is the tempera-

ture. The correlation between ∆𝑆 and 𝑇 reads: 

 
𝛥𝑆

𝑛𝑒
= −18.449 − 0.01283𝑇. (5) 

(1) Activation overpotential 

The 𝐸𝑎𝑐𝑡  taking the effect of leakage current into account 

can be calculated by: 

 𝐸𝑎𝑐𝑡 =
𝑅𝑇

𝛼𝑛𝐹
ln (

𝑗+𝑗𝑙𝑒𝑎𝑘

𝑗0
), (6) 

where 𝛼 is the transfer coefficient, 𝑗 is the current density, 

𝑗𝑙𝑒𝑎𝑘 is the leakage current density, 𝑗0 is the exchange cur-

rent density. The correlation between 𝑗𝑙𝑒𝑎𝑘  and 𝑇 is calcu-

lated by [2]: 

 ln 𝑗𝑙𝑒𝑎𝑘 = −2342.9 (
1

𝑇
) + 9.0877. (7) 

(2) Ohmic overpotential 

The 𝐸𝑜ℎ𝑚 is given by: 

 𝐸𝑜ℎ𝑚 = 𝑗(𝑅𝑖𝑜𝑛 + 𝑅𝑒𝑙𝑒) = 𝑗𝑅𝑖𝑜𝑛 = 𝑗
𝑡𝑚𝑒𝑚

𝜎𝑚𝑒𝑚
, (8) 

where 𝑡𝑚𝑒𝑚 is the thickness of the membrane, 𝜎𝑚𝑒𝑚 is the 

proton conductivity. 

(3) Concentration overpotential 

The 𝐸𝑐𝑜𝑛 is expressed as [3]: 

 𝐸𝑐𝑜𝑛 = (1 +
1

𝛼
)

𝑅𝑇

𝑛𝐹
ln (

𝑗𝐿

𝑗𝐿−𝑗
), (9) 

where 𝑗𝐿 is the limiting current density. 

The total internal resistance due to these three overpotentials 

can be calculated by: 

 𝑅𝑖𝑛𝑡 =
𝐸𝑎𝑐𝑡+𝐸𝑜ℎ𝑚+𝐸𝑐𝑜𝑛

𝐴𝑚𝑒𝑚𝑗
, (10) 

where 𝐴𝑚𝑒𝑚 is the activated area. 

Table 1. Operating and design parameters [22].  

Parameter Value Unit Parameter Value Unit 

T 413~473 K R 8.314 J/(mol∙K) 

p 1~3 atm j 0~20000 A/m2 

RH 0~7.6 % T0 298.15 K 

DL 2~10 - 𝜶  0.25 - 

tmem 0.005 cm n 2 - 

F 96485 C/mol Amem 600 cm2 
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Combining Eqs. (6)–(10), the voltage 𝑈 can be calculated as: 

 𝑈 = 𝐸𝑟𝑒𝑣 − (1 +
1

𝛼
)

𝑅𝑇

𝑛𝐹
ln (

𝑗𝐿

𝑗𝐿−𝑗
) −

𝑅𝑇

𝛼𝑛𝐹
ln (

𝑗+𝑗𝑙𝑒𝑎𝑘

𝑗0
) − 𝑗

𝑡𝑚𝑒𝑚

𝜎𝑚𝑒𝑚
.  

(11) 

The power density can be calculated as: 

 𝑃 = 𝑗𝑈 = 𝑗(𝐸𝑟𝑒𝑣 − 𝐸𝑐𝑜𝑛 − 𝐸𝑎𝑐𝑡 − 𝐸𝑜ℎ𝑚). (12) 

2.2. Thermodynamic description 

When fuel cell operates, oxygen and hydrogen interact in a re-

dox reaction [11], and the total energy released by the electro-

chemical reaction is equivalent to enthalpy variation, i.e. −∆�̇�, 

which can be calculated by: 

 −∆�̇� = −
𝑗𝐴∆ℎ

𝑛𝐹
. (13) 

The −∆�̇� can be described by: 

 −∆�̇� = −∆𝐺 − 𝑇∆𝑆. (14) 

Total energy can be categorized into electrical energy and 

thermal energy, which is due to the enthalpy variation being 

lower than the Gibbs free energy, and a portion that cannot be 

converted to electricity is released to thermal energy [4]. This 

fraction is denoted by −∆𝐺 + ∆�̇�, which is equal to 𝑇∆𝑆, and 

∆𝑆 is called the entropy [2].  

Based on the laws of thermodynamics, thermal efficiency 

can be calculated by [2]: 

 𝜂 =
𝑃

−∆�̇�
. (15) 

Based on the representation of ECOP in Ref. [5], it can be 

calculated by: 

 𝐸𝐶𝑂𝑃 =
𝑃𝑇

𝑇0(−∆�̇�−𝑃)
. (16) 

ECOP is a crucial irreversible thermodynamic indicator due 

to the advantage of compromising the weights of power and ef-

ficiency. 

Moreover, the exergy analysis of irreversible thermodynam-

ics is used to study and optimize the recoverable energy and un-

recoverable losses during fuel cell operation [6]. The exergy bal-

ance can be represented as: 

 𝐸𝑥𝑖𝑛
𝑓𝑐

= 𝑃 + 𝐸𝑥𝑤,𝑜𝑢𝑡
𝑓𝑐

+ 𝐸𝑥𝑑
𝑓𝑐

, (17) 

where 𝐸𝑥𝑖𝑛
𝑓𝑐

 is the total input exergy, 𝐸𝑥𝑤,𝑜𝑢𝑡
𝑓𝑐

 is the waste ex-

ergy, and 𝐸𝑥𝑑
𝑓𝑐

 is the exergy dissipation. 

Therefore, the exergy dissipation can be obtained as: 

 𝐸𝑥𝑑
𝑓𝑐

= 𝐸𝑥𝑖𝑛
𝑓𝑐

− 𝑃 − 𝐸𝑥𝑤,𝑜𝑢𝑡
𝑓𝑐

. (18) 

Recoverable exergy wastes are losses that can be recycled, 

e.g. remaining hydrogen can be recycled and used to generate 

energy [6], the unrecoverable exergy waste is a loss that cannot 

be reused, such as waste heat: 

 𝐸𝑥𝑤,𝑜𝑢𝑡
𝑓𝑐

= 𝐸𝑥𝑟𝑤
𝑓𝑐

+ 𝐸𝑥𝑢𝑤
𝑓𝑐

, (19) 

where 𝐸𝑥𝑟𝑤
𝑓𝑐

 is the recoverable exergy, and 𝐸𝑥𝑢𝑤
𝑓𝑐

 is the unrecov-

erable exergy. 

The recoverable exergy is mainly the chemical exergy of the 

remaining hydrogen and oxygen and can be expressed as: 

𝐸𝑥𝑟𝑤
𝑓𝑐

= 𝑛H2,𝑜𝑢𝑡 ∙ 𝑒𝑥H2,𝑜𝑢𝑡
𝑐ℎ + 𝑛O2,𝑜𝑢𝑡 ∙ 𝑒𝑥O2,𝑜𝑢𝑡

𝑐ℎ , (20) 

where 𝑛H2,𝑜𝑢𝑡 is the mole fraction of hydrogen, 𝑒𝑥H2,𝑜𝑢𝑡
𝑐ℎ  is the 

standard chemical exergy of hydrogen, 𝑛O2,𝑜𝑢𝑡 is the mole frac-

tion of oxygen, and 𝑒𝑥O2,𝑜𝑢𝑡
𝑐ℎ  is the standard chemical exergy of 

oxygen. 

The unrecoverable exergy is mainly the physical exergy of 

the discharged hydrogen, oxygen and water as well as the waste 

heat, and can be expressed as [1]: 

 𝐸𝑥𝑢𝑤
𝑓𝑐

= (𝑛H2,𝑜𝑢𝑡 ∙ 𝑒𝑥H2,𝑜𝑢𝑡
𝑝ℎ

+ 𝑛O2,𝑜𝑢𝑡 ∙ 𝑒𝑥O2,𝑜𝑢𝑡
𝑝ℎ

+  

 +𝑛H2O,𝑜𝑢𝑡 ∙ 𝑒𝑥H2O,𝑜𝑢𝑡
𝑝ℎ

) + 𝑄𝑤,𝑜𝑢𝑡
𝑓𝑐

(1 −
𝑇0

𝑇
), (21) 

where 𝑛H2O,𝑜𝑢𝑡  is the mole fraction of water, 𝑒𝑥H2O,𝑜𝑢𝑡
𝑝ℎ

 is the 

standard chemical exergy of water, and 𝑄𝑤,𝑜𝑢𝑡
𝑓𝑐

 is the waste heat 

of the fuel cell. 

The exergy destruction index EDI is used to numerically de-

scribe the environmental impact of unrecoverable exergy losses 

in this paper, and larger values of EDI indicating that the irre-

versible thermodynamic process is more damaging to environ-

ment; it can be calculated by [7]: 

 𝐸𝐷𝐼 =
𝐸𝑥𝑢𝑤

𝑓𝑐
 + 𝐸𝑥𝑑

𝑓𝑐

𝑃
. (22) 

The exergy sustainability index ESI can be calculated by [2]:  

 𝐸𝑆𝐼 =
𝑃

𝐸𝐷𝐼∙(𝑃+𝐸𝑥𝑤,𝑜𝑢𝑡
𝐻2 +𝐸𝑥𝑤,𝑜𝑢𝑡

𝑂2 +𝐸𝑥𝑑
𝑓𝑐

)
. (23) 

2.3. MOPSO optimization 

2.3.1. Description of MOPSO algorithm 

The MOPSO is a bionic algorithm derived from imitating the 

hunting behaviour of birds, which is based on the principle of 

randomly distributing a certain number of particles in the feasi-

ble domain, and each particle flies at a certain speed and direc-

tion and adjusts the direction and speed of the next moment by 

combining with its own current optimal position and the optimal 

position of the group, and ultimately achieves the purpose of 

searching for the optimal solution domain [8]. 

Suppose the search space is 𝐷  dimensional and the entire 

particle population is 𝑁𝑆, the velocity and position of the parti-

cle  𝑖  at the 𝑡  iteration are 𝑣𝑖
𝑡 = (𝑣𝑖,1

𝑡 , 𝑣𝑖,2
𝑡 , . . . , 𝑣𝑖,𝐷

𝑡 ) , and 𝑥𝑖
𝑡 =

(𝑥𝑖,1
𝑡 , 𝑥𝑖,2

𝑡 , . . . , 𝑥𝑖,𝐷
𝑡 ), respectively; the optimal position searched 

so far by the particle  𝑖  at the 𝑡 iteration is 𝑝𝑖
𝑡 =

(𝑝𝑖,1
𝑡 , 𝑝𝑖,2

𝑡 , . . . , 𝑝𝑖,𝐷
𝑡 ), i.e. the personal best position; the optimal 

position searched so far by the population at the 𝑡 iteration is 

𝑔𝑡 = 𝑔1
𝑡 , 𝑔2

𝑡 , . . . , 𝑔𝐷
𝑡 , , i.e. the global best position. At the 𝑡 + 1 

iteration, the particles adjust their forthcoming velocity and lo-

cation in the search space, incorporating insights gained from 

their personal history as well as the sharing experiences of the 
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entire population [8,9]. The velocity and position updates of the 

particle swarm optimization algorithm with inertia weights can 

be represented by Eq. (24) and (25), respectively: 

 𝑣𝑖,𝑗
𝑡+1 = 𝜔∗𝑣𝑖,𝑗

𝑡 + 𝑐1𝑟1(𝑝𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝑐2𝑟2(𝑔 𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ), (24) 

 𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1, (25) 

where  𝑡 is the number of iterations, 𝑐1, 𝑐2  are constants, 𝑟1, 𝑟2 

are random numbers, 𝜔∗ is the inertia weight, 𝑝𝑖,𝑗
𝑡  is the individ-

ual position, 𝑔𝑗
𝑡  is the global optimum position, and 𝑗 =

1,2, . . . , 𝐷 is the dimension. 

The position of the particle is updated schematically as 

shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2. Determination of optimization variables and 

objective function 

Considering that the thermodynamic performance of HT-

PEMFC is affected by multiple parameters and there are various 

indexes to evaluate the irreversible loss in the working process 

from different perspectives, and that each performance evalua-

tion index has its advantages and imperfections. Based on the 

established model and previous studies, it is seen that the oper- 

ating and design parameters such as the temperature 𝑇, pressure 

𝑝, relative humidity 𝑅𝐻, and phosphate doping level 𝐷𝐿 have 

a large impact on the performance of the HT-PEMFC, and dif-

ferent configurations of the operating parameters determine the 

output performance of the HT-PEMFC. Therefore, in this paper, 

not only the effects of the above parameters on the thermody-

namic performance of HT-PEMFC are analyzed, but also these 

parameters are used as optimization variables to improve the 

thermodynamic performance of HT-PEMFC. Moreover, the 

power 𝑃 and efficiency 𝜂 are the most widely used basic metrics 

for evaluating fuel cells, while 𝐸𝐶𝑂𝑃 is an important indicator 

in thermodynamics to quantify the irreversible thermodynamic 

loss of fuel cells; therefore, the 𝑃, efficiency 𝜂, and 𝐸𝐶𝑂𝑃 are 

selected as the objective functions in order to improve the output 

performance of the HT-PEMFC in a more comprehensive way 

and to reduce the irreversible thermodynamic loss in this paper. 

The range of the determined optimization variables and the ob-

jective function are shown in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

The flowchart of the MOPSO algorithm is shown in Fig. 2. 

The optimization procedure is as follows: 

1) Initialize the random parameters, and create the external 

archive. 

2) Calculate the objective function of the particle swarm. 

Evaluate the particles and conduct Pareto sorting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram for updating the position of a particle. 

Table 2. The optimization variables and the objective function. 

Optimization variables and ranges Objective function 

𝑻  413~473 K 𝑃 

𝒑  1~3 atm 𝜂 

𝑹𝑯  0~7.6 % 𝐸𝐶𝑂𝑃 

𝑫𝑳  2~10 - 

𝒋  0~20000 A/m2 - 

 

 

Fig. 2. The flowchart of the MOPSO algorithm. 
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3) Store the non-dominated solutions into the external archive 

and update it. 

4) Select the individual optimal solution and the global opti-

mal solution. 

5) Update the velocity and position of the particles. 

6) Return to 2) if the maximum iteration is not reached, and 

exit the loop if the maximum iteration is reached. 

3. Results and discussion 

3.1. Validation of the HT-PEMFC model 

The output voltage of HT-PEMFC versus 𝑗 found based on the 

above equations for the 𝐸𝑟𝑒𝑣 , 𝐸𝑐𝑜𝑛 , 𝐸𝑜ℎ𝑚 , 𝐸𝑎𝑐𝑡  is illustrated in 

Fig. 3a To verify the U-I curve, Fig. 3b shows the comparison 

between model predictions and experimental data of Scott et al. 

[10]. It can be seen that the theoretical predictions are basically 

consistent with the experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Effect of operating and design parameters 

It can be seen from Fig. 4a and Fig. 4b that increasing the tem-

perature of HT-PEMFC has an obvious effect on P, ECOP and 

EDI, mainly due to the fact that the increase in temperature en-

hances the catalytic activity of the electrodes, which accelerates 

the redox reaction rate of hydroxide. The maximum power den-

sity can reach 5300 W/m2  when the temperature is 473 K, 

which is an increase of 58.3% compared to when the tempera-

ture is 413 K. As the electrochemical reaction proceeds, P, ESI 

and ECOP are significantly enhanced by increasing temperature, 

but EDI is decreased, this is due to the fact that the elevation of 

T greatly enhances the electrochemical reaction rate, which re-

duces the fuel emissions and facilitates the reduction of the loss 

of exergy and the impact on the environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figs. 4c and 4d, the maximum power density can reach 

4648 W/m2 when the pressure is 3 atm, which is an increase of 

8.9% compared to when the operating pressure is 1 atm. It is 

a)   

b)   

Fig. 3. The model validation: a) curves of potential, activation overpo-

tential, concentration overpotential, ohmic overpotential and voltage 

versus current density, b) comparison of curves between model results  

and experimental data. 

a)  

     b)  

c)  

     d)  

Fig. 4. Curves of P and ECOP versus current density under:  

a) different operating temperature, c) different operating pressure. 

Curves of ESI and EDI versus current density under:  

b) different temperature, d) different pressure. 
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clear that P, ECOP, ESI and EDI are less affected by pressure in 

the range of low current densities, which is due to the low rate 

of electrochemical reaction. The rate of electrochemical reaction 

is rising very quickly in the range of high current densities, the 

irreversible losses are reduced by increasing pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proton conductivity is increased by improving relative 

humidity, as shown in Fig. 5a and Fig. 5b, where P and ECOP 

are enhanced by increasing relative humidity.  

When the relative humidity is 7.6%, the maximum power 

density of HT-PEMFC can reach 4565 W/m2, which is an in-

crease of 17.7% compared to when the relative humidity is zero. 

As illustrated in Fig. 5c and Fig. 5d, P, ECOP and ESI first grow 

and then fall with the rise of DL, reaching a maximum at DL of 

8. A proper increase in DL can help to improve proton conduc-

tivity while reducing irreversible losses. However, excessive DL 

can damage the structure of PBI, such as affecting the attach-

ment rate of phosphoric acid on the catalytic layer, and resulting 

in a decrease in proton conductivity [7]. 

3.3. Optimization results 

The optimized Pareto frontier curve of the MOPSO algorithm is 

shown in Fig. 6. The green fork represents the dominated solu-

tions of the MOPSO algorithm, the blue dots are the individual 

optimal solutions, and the red hexagrams are the non-dominated 

group optimal solutions, i.e. the Pareto frontier. Because the 

MOPSO algorithm procedure used in this paper is a minimum 

value seeking method, the function set in this procedure is the 

opposite of the objective function, i.e. 𝑃𝑀𝑂𝑃𝑆𝑂(𝑥𝑘) = −𝑃(𝑥𝑘),

𝐸𝐶𝑂𝑃𝑀𝑂𝑃𝑆𝑂(𝑥𝑘) = −𝐸𝐶𝑂𝑃(𝑥𝑘),   𝜂𝑀𝑂𝑃𝑆𝑂(𝑥𝑘) = −𝜂(𝑥𝑘), thus 

seeking the maximum value of the original function, therefore 

the axis in Fig. 6 is minus. Since the three optimization objective 

functions of P, efficiency and ECOP are taken into account, the 

final optimization result should not only be picked in the Pareto 

frontier, but also satisfy that each objective function should not 

be worse. Therefore, after carrying out several optimizations, we 

chose the Pareto point with the coordinates of –3584, 1.685, 

−0.518, and its corresponding values of the optimal parameter 

variables are shown in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The population distribution of the optimization variables 

corresponding to the Pareto optimal solutions is shown in Fig. 7. 

The distribution of current densities is shown in Fig. 7a, and it 

can be seen that the current densities corresponding to the opti-

mal solutions obtained from the MOPSO optimization are uni-

formly distributed between 0 and 14000 A/m2, which is due to 

 

Fig. 6. The optimized Pareto frontier curve of the MOPSO algorithm. 

a)  

b)  

c)  

d)  

Fig. 5. Curves of P and ECOP versus current density under: a) dif-

ferent relative humidity, c) different DL. Curves of ESI and EDI 

versus current density under: b) different relative humidity,  

d) different DL. 
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the optimal solutions of the multi-objective optimization select-

ing different values of weights for each objective. The distribu-

tion of operating temperatures is shown in Fig. 7b, and it can be 

seen that most of the temperatures corresponding to the optimal 

solutions are between 472.8 K and 472.9 K, which indicates that 

higher temperatures are useful for the power, efficiency and 

ECOP. The distribution of pressures is shown in Fig. 7c, and it 

can be seen that most of the pressures corresponding to the op-

timal solutions are in the range of 2.82 atm to 2.88 atm, which 

indicates that higher pressures are beneficial for improving per-

formance. The distribution of DL is shown in Fig. 7d, and most 

of the pressures corresponding to the optimal solutions are be-

tween 7 and 8, which shows that the DL should not be either 

excessive or insufficiently low for improving irreversible ther-

modynamic performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimized Pareto frontier curve of NSGA-II algorithm 

is shown in Fig. 8a, the red pentagrams are the Pareto frontier of 

multi-objective optimization, after performing several optimiza-

tions, we chose the Pareto point with the coordinates 3088, 1.87, 

0.5413, and the values of the optimal parameter variables corre-

sponding to it are shown in Table 3. 

The optimization results of the SA algorithm are shown in 

Figs. 8b, 8c and 8d. In this study, the SA algorithm is a single 

objective optimization algorithm. Therefore, the optimization 

objective functions are power density, ECOP and efficiency, 

and the optimized solutions tend to be stable after several opti-

mizations. The three optimal solutions with power density, 

ECOP and efficiency as the optimization objective functions are 

6281.67 W/m2, 1.617 and 51.1%, respectively, and the corre-

sponding values of the optimal parameter variables are shown in 

Table 3. 

In order to compare the convergence speed and optimization 

accuracy of two multi-objective algorithms more precisely, the 

Ackley test function is introduced in this paper for comparative 

analysis, which can detect the global convergence speed of an 

algorithm. The directional gradients of the Ackley function are 

various when the dimension increases. As shown in Fig. 9 for 

Table 3. Optimal parameter selection for HT-PEMFC.  

 Preoptimized MOPSO NSGA-II SA1 SA2 SA3 

Objectives - P, ECOP, η P, ECOP, η P ECOP η 

j (A/m2) 0~20000 7825 6629 13974 5994 6069 

T (K) 443 472.88 471.98 469.08 462.00 464.20 

p (atm) 2 2.98 2.92 3.00 2.66 3.00 

RH (%) 3.8 7.15 7.20 7.48 7.52 7.11 

DL 6 8.23 7.90 8.37 9.00 7.60 

 

           a)         b)  

           c)             d)  

Fig. 7. Population distributions of current density (a), operating temperature (b), pressure (c) and doping level (d). 
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the graph of Ackley, it can be seen that its minimal value is 0. 

The optimization algorithm can easily fall into the trap of local 

minimal value. In order to fairly evaluate the advantages and 

disadvantages of the algorithms, the number of iterations set are 

all 500, and the population size are all 100. In the NSGA-II al-

gorithm involving crossover probability and mutation probabil-

ity, are set to 0.7 and 0.01, respectively. whereas in the MOPSO 

algorithm involving the initial inertia factor weights are set to 

0.9, and the inertia factor at the time of iterating to the maximum 

number of evolutionary generations is 0.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variation of the global optimal solution with the number 

of iterations for the MOPSO algorithm and the NSGA-II algo-

rithm for optimization of the Ackley test function is shown in 

Fig. 10. It can be seen that the MOPSO algorithm finds the 

global minima within less than 100 iterations, while the NSGA-  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II algorithm finds the minima only after a number of iterations 

greater than 400.  

Figure 11 shows the variation of the individual (historical) 

optimal solutions of the MOPSO algorithm and the NSGA-II al-

gorithm with the number of iterations in finding the optimal so-

a)     b)  

c)     d)  

Fig. 8. The optimized Pareto frontier curve of NSGA-II algorithm (a) and the optimization results of the SA algorithm (b-d). 

 

Fig. 9. A graph of the Ackley test function. 
 

 

Fig. 10. Comparison of global optimal solutions. 
 



Wang Y., Ma Z., Gu Y., Guo Q. 
 

206 
 

lution to the Ackley test function when the spatial dimensions of 

the Ackley test function are taken from the first to the tenth di-

mension. It can be seen that the MOPSO algorithm is the first to 

find the extrema in most cases. However, the NSGA-II algo- 

rithm always has problems finding local minima, such as in the 

1st, 3rd and 10th dimension cases. Moreover, the NSGA-II al-

gorithm shows oscillatory changes in the historical optimal so-

lution when the number of iterations is small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

From the above results, it can be seen that the MOPSO algo-

rithm is faster in finding the optimum compared to the NSGA-

II algorithm and is more accurate and less likely to fall into local 

extremes. 

By using the optimal parameters of the MOPSO algorithm 

as inputs to the HT-PEMFC model, the obtained maximum 

power density, maximum efficiency, maximum ECOP and max-

imum ESI are compared with the preoptimized results and the 

results optimized by other algorithms as shown in Figs. 12 and 

13. The MOPSO algorithm yields the best performance, with the 

maximum power density, maximum efficiency, and maximum 

ECOP being 6340 W/m2, 64.5% and 1.723, respectively, which  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are 43.28%, 3.7% and 17.8% higher than the preoptimized HT-

PEMFC, but the maximum ESI is slightly reduced. 

 

4. Conclusions 

An irreversible thermodynamic model of HT-PEMFC is estab-

lished to study the effects of different operating parameters and 

design parameters on the thermodynamic performance, four pa-

rameters including T, DL, p, and RH are considered in this work, 

while P, ECOP and efficiency are used as the optimization ob-

jective functions. The primary findings are summarized as fol-

lows: 

 

Fig. 11. The variation of the individual (historical) optimal solutions of the MOPSO algorithm and the NSGA-II algorithm. 
 

 

Fig. 12. The optimal result comparison for maximum power  

density and maximum efficiency. 

 

Fig. 13. The optimal result comparison for maximum ECOP  

and maximum ESI. 
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1) The validation of the irreversible thermodynamic model 

for HT-PEMFC was conducted through comparison with 

experimental data. 

2) Temperature and pressure have a significant effect on the 

increase of P, ECOP, ESI and decrease of EDI, while DL 

and RH have a lesser effect. 

3) The population distribution of the optimization variables 

of the optimal solutions is analyzed based on the 3D Pareto 

frontier of the MOPSO algorithm, which results in a uni-

form distribution of the current density in the operating 

range due to the different weight accounting for each opti-

mization objectives. Temperature and pressure are main-

tained in the high value region of the operating range, 

while DL is stably distributed between 7 and 8. 

4) Parameter optimization of HT-PEMFC using MOPSO al-

gorithm and comparison with the optimization results of 

NSGA-II algorithm and SA algorithm show that MOPSO 

algorithm performs well for multi-objective optimization 

as a function of P, ECOP and efficiency, with the maxi-

mum power density, maximum efficiency, and maximum 

ECOP being 6340 W/m2, 64.5% and 1.723, respectively, 

which are 43.28%, 3.7% and 17.8% higher than those of 

the preoptimized HT-PEMFC. 

The conclusions obtained in this paper regarding the future 

development of HT-PEMFC design and integration into existing 

systems are: firstly, by considering the effects of temperature 

and pressure on performance, new membrane electrode materi-

als can be investigated and developed to adapt to operating en-

vironments at higher temperatures and pressures, which can help 

to improve the stability and durability of HT-PEMFC. Secondly, 

when integrating into an existing system, the effects of operating 

and design parameters need to be considered, and the system ar-

chitecture and operating conditions need to be adjusted accord-

ingly, and the MOPSO algorithm can provide guidance for the 

design of HT-PEMFC systems to achieve optimal performance. 

In addition, in terms of optimization algorithm selection, future 

HT-PEMFC developments could consider using the MOPSO al-

gorithm as the preferred parameter optimization algorithm to 

achieve multi-objective optimization of power, ecological per-

formance and efficiency. By comparing the optimization results 

of different parameter combinations, the optimal system config-

uration can be determined to guide future HT-PEMFC develop-

ment. 
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