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ANDRZ8 ZORYCHTA*

ROCK BURSTS IN THE LIGHT OF THE CATASTROPHE THEORY

ZJAWISKO TĄPNIĘCIA W ŚWIETLE TEORII KATASTROF

Rock burst phenomenon because of its jump like character may be considered as a process
of the loss of stability and using the catastrophe theory it is possible to define conditions of such
instability. Analysis of some geomechanical models shows two mechanisms of rock burst: rock
burst as the catastrophic jump or rock burst as a loss of bearing capacity of a seam. Conditions
of rock burst existence were obtained for three and uni-axial stress states and additionally for
a case when roof and noor rocks were considered as the rheological medium.
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W polskim górnictwie węgla kamiennego oraz rud miedzi tąpania są głównym
zagrożeniem naturalnym, a wiedzę o warunkach ich powstania trudno uznawać za komplet
ną; odnosi się to zarówno do problemu genezy tego zjawiska, jak też zagadnień pro
gnozowania i zwalczania. Z geomechanicznego punktu widzenia zasadniczą cechą tąpnięcia
jest nagle= skokowe przejście z jednego stanu równowagi do drugiego, co oznacza, że
tąpnięcie można utożsamiać z procesem utraty stateczności skal otaczających wyrobisko,
a jako kryterium przyjmować warunki niestateczności rozwiązań opisujących zachowanie się
odpowiednich modeli geomechanicznych. Metodą pozwalającą na analizowanie warunków
powstawania skokowych zmian stanu równowagi jest teoria katastrof. Ponieważ metoda
energetyczna może być wykorzystywana do opisu zmian zachodzących w ośrodku odkształ
calnym, toteż akumulowaną w odpowiednich układach geomechanicznych energię przyjęto
do analizy istnienia przemian katastroficznych.

Analizę fizycznej strony procesu oparto o możliwie proste geomechaniczne modele
układu zbudowanego z połączonych szeregowo elementów liniowo odkszta!calnych (w tym
także cechujących się właściwościami reologicznymi), które charakteryzowały warstwy
stropowe i spągowe oraz z nieliniowo odkształcalnej calizny. Na podstawie analizy przemian
energetycznych zdefinowane zostały warunki wystąpienia niestateczności (czyli
tąpnięcia), a mianowicie: tąpnięcie wskutek przeskoku lub tąpnięcie wskutek utraty nośności.
Na podstawie otrzymanych warunków wykazano, że:
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I. Zjawisko utraty stateczności utożsamiane z procesem tąpnięcia (dla obu jego
mechanizmów) nie jest wyłącznie cechą jednoosiowego stanu naprężenia, lecz również może
zachodzić dla stanów trójosiowych.

2. Z punktu widzenia możliwości wystąpienia tąpnięcia najbardziej niekorzystnym jest
jednoosiowy stan naprężenia, co wynika z dwóch przyczyn:

- niezależnie od mechanizmu stan jednoosiowy jest najmniej chłonny energe
tycznie,

- dla jednoosiowego stanu naprężenia maksymalne wartości modułów poznisz
czeniowych decydujących o wystąpieniu niestateczności są większe niż dla stanów trój
osiowych, a zatem istnieje większe prawdopodobieństwo wystąpienia przeskoku.

3. Występowanie skokowych zmian stanu równowagi jest cechą układu, a konkretnie
istnieniem określonych relacji między własnościami odkszta!ceniowymi warstw stropowych
i spągowych oraz pozniszczeniowymi własnościami pokładu (ściśle rzecz biorąc elementu
ulegającego zniszczeniu). Z tej przyczyny tąpiącym nie może być węgiel, czy (w przypadku
górnictwa rud miedzi) określona skała; zatem pojęcie naturalnej skłonności skały (węgla) do
tąpań, które wynika ze stanu wiedzy sprzed ponad ćwierć wieku, nie mając żadnego
fizykalnego uzasadnienia jest aktualnie anachronizmem.

Z punktu widzenia minimalizacji wielkości zagrożenia tąpaniami ze wszech miar
korzystne są działania wykonywane w utworach stropowych lub spągowych prowadzące do
uaktywniania się w nich procesów dyssypacyjnych. Dzięki temu zmniejsza się zdolność tych
utworów do oddawania energii i w efekcie może dojść do transformacji układu z tąpiącego
w nietąpiący.

Słowa kluczowe: geomechanika, reologia, tąpania.

1. Introduction

The first works which attempted to define the conditions for potential rock burst
occurrence were phenomenological rock burst theories (Parysiewicz, 1967) providing the
fundamental relations based mainly on the observations made in mines. These
phenomenological theories were marked with certain verbalism - i.e. the absence of
quantitative criteria, hence they were of little practical use in mining where quantitative
prognoses are required. On the other hand they may be used as the basis for evaluating
the theories which give the quantitative criteria for rock burst occurrence. Following the
assumption that one consequence of rock bursts (unlike the explosions within the strata)
is destruction of mining workings, the phenomenological theories (Filcek et al., 1984,
Parysiewicz, J 967) allow to distinguish:

a) Rock bursts due to stress concentration, being the consequence of:
- appearance of the fracture zone in the part of seam adjacent to the workings,
- ability of floor, roof and virgin rock to accumulate the sufficient amount of

elastic energy,
- specific relations between the stress - strain characteristics and the geometry

of rock surrounding the excavations.
b) Rock bursts due to dynamic loading, which may occur in certain conditions:
- appearance of the fracture zone in the part of seam adjacent to the workings,
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- ability of floor, roof and virgin rock to accumulate the sufficient amount of
elastic energy,

- there are specific relations between the stress-strain characteristics and
geometrical parameters of rock round the excavations,

- occurrence of mining tremor of high seismic energy,
- the source of mining tremor should be near the excavations since the kinetic

energy reaching the excavation depends on its distance from the source .
In the light of geomechanics, the distinctive feature of rock burst is a sudden, violent

transition from one state of equilibrium to another. According to the definition (Filcek at
al., 1984) - which is our starting point - a rock burst is "a physical explosion within
the strata round the excavation leading to its failure", and "the physical explosion is the
process of rapid change of the state of equilibrium requiring mechanical work and
accompanied by acoustic effects" (Leksykon, 1984). Accordingly, rock bursts are
associated with the loss of stability of rocks surrounding the excavation (Salamon, 1970,
Zorychta, Kłeczek, 1998, Zorychta, 1984, Zorychta, 1988), and the conditions for
instability of solutions describing the geomechanical models can be used as the rock
bursts criteria.

The method allowing to analyse the conditions for violent changes of system
equilibrium (it follows from the definition that a rock burst is such an violent change) is
the catastrophe theory (Awrejcewicz, 1996, Geresz, 1980, Poston, Steward, 1978 ,
Thompson, 1982), which claims that for the function <P (x 1, x2, ... , x11) describing the
physical system there exists a critical point uk (x 1k, ... , x,J if

and if additionally

[ iP<P I ] det -- =0,
QX;()Xj tik 

then it is named the degenerated critical point or the catastrophe point. For the function
of one variable <JJ (x) the condition for the existence of a catastrophe point (meaning the
possibility of violent transitions from one state of equilibrium to another) is given by the
system of equations:

d<P (x) = O and
dx 

d2<P (x)dT = O.

The mechanics of deformable bodies offers a number of methods to describe the
changes due to outside interactions. One of these is the energy- based method, where
the state of the system is defined by the amount of accumulated energy, which
means that energy may be the function analysed to find whether a catastrophe point is
possible.
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2. Geomechanical model of rock burst systems 

The analysis of the physical aspects of the process is confined to the simplest model 
of the system (Fig. I) made of linearly deformable roof and floor strata (S) and 
non-linearly deformable unmined coal seam (N), 
where the vertical stress - strain relations is given by the function CJ11 = f(c11, 1J11) 
(Fig. 2). 

G~tr 

?sstr=~ 

Fig. I. The scheme of the geomechanical model for three-axial state of stress 

?n 

Fig. 2. Vertical stress-strain relations for the non-linearly deformable element in the three-axial state of 
stress 
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The results of laboratory tests (Zorychra, 1988) indicate that for the functionf(en,IJ,J we 
can assume 

- for O"( en< co : of~11,1Jn) > O, 
o Y/11 

(1) 

(2) 

(3) 

where: 
ekr (1Jn) - strain value at which failing begins - corresponding to the state of 

stress described with the parameter 1J11• 
When these two elements are connected in series, the following relations will be valid: 

(4) 

(5) 

Energy accumulated in the system considered here is equal to: 

(6) 

tno 

where: 

E E £ = Sscr Ss 

s (1- 2vSsp Y/,SJ E,s,r + (1-2 VSsp IJ,SJ E,s/ 
E,s,r' ESsp - modulus of elasticity for the roof and floor, respectively, 

VSstr' VSsp - Poisson's ratio for the roof and floor, respectively. 
The co-ordinate { enk' IJnJ of the catastrophe point is derived from the conditions: 

oA (enk' Y/11J = o 
oen ' 

oA (enk' 1J11J = o 
OIJn , (7) 
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where: 

( . ) = 82 A (1:11, 11,,). 82 A (1:11, 11,,) _ [a2 A (1:,,, 11,,)] 2 
L1 e,,, 1111 " 2 " 2 a a ' oi;,, 017,, c,, 1111 

aA (1:11, 11,,) = [f( )- ] . [__!_ 8f(1:", 1111) + 1] a, c,,,11,, p, E a ' 
~ s ~ 

,., 
8A(1:11,1711) = [f( )- ]·__!_ 8f(1:,,,17,,) + f 8f((,11,,)d;; 

a 811' 11" p, E a a s, I],, - s 11,, I],, 

82A(c11,1J,,) = 8f(1:11,11J.[__!_ 8f(1:,,,1111) + l] + [f(· )- J,__!_.82f(1:,,,11,,) 
" 2 a E a c,,, 11,, Pz E a 2 ' 01:11 1:11 • 1:11 1 c,, 

e., 

82 A (1:11, 1711) = __!_. [8f(1:,,, 1711)]2 + [f( )- ] . __!_. 82f(1:,,, 1111) + f 82 f( (, 11,,) dt 
a 2 E a 8,,, 11,, p, E a 2 ,., 2 s, 11n s IJ,, s IJ,, OIJ,, 

Eno 

82 A (1:11, 1711) = 8 J(c,,, 11,). [__!_. 8 f(1:11, 17,,) + l] + [f(. )- ] . __!_. 82 J(c,,, 11,,) 
a a a E a c,,, IJ,, p, E a a . e,, 11,, 11,, s e,, s e,, 11,, 

Taking into account 
E.,1 En 

f a2J((~11,,) d( = ~ f af((,11,,) d( a11,, a11,, a,,,,, 
EnO Eno 

and the conditions for the critical point occurrence 

[f( )- ] . [__!_ 8f(1:,,, 11,) + 1] = 0 8,,, 11,, Pz E a · , 
• c,, 

En 

[i.( )- ]·__!_8f(1:,,,11")+Jaf((,11,,)d!'=O 
c,,, IJ,, Pz E a a s ' 

s 11n IJn 

(8) 

(9) 

we get: 

Eno 

As the result: 

L1 = -{[a J(c,,, 1711)] 2. [__!_. 8 f(c,,, 1111) + l] 2 + [f(c,,, IJ,,)- PzJ2. ~. [82 f(1:,,, 17,,)] 2}. (IO) 
81711 £

1 
81:11 E1 81:,,81711 
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Considering the form of the conditions (8) and (10) we have to analyse three 
situations: 
1. When we assume that for eno (ry,J < e,, < CD the following inequality is satisfied: 

[f(e11,r,,,)-Pz] > O, ( 11) 

the co-ordinate {enk,ry11J of the catastrophe point can be obtained from the system of 
equations: 

f)2_f(e11", r,,,J = O. 
oe,,or,,, 

The very existence of the catastrophe point { e,,", r,,,J indicates that there might be 
sudden, violent changes of the state of equilibrium of the system, furthermore, those 
changes will appear in the post-failure regime of the stress-strain characteristics 
e11" > ek,(r,,,J Such instability is called a catastrophic jump, and the violent changes of the 
state of equilibrium will proceed for O ~ r,,, < r,,,k; it may also occur for three-axial stress 
states. We have to bear in mind that the occurrence of a catastrophic jump depends on 
the properties of the system {f(e11, ry,,), EJ Accordingly, a whole system may be prone to 
bursts, while separate elements of the system never have that property. 
2. If we assume that for e,,

0
(r,11) ~ e11 < co 

(12) 

(13) 

hence for the critical point: 

(14) 

which means that: 

(15) 

In this case the critical point {i;,,", r,,,J is not the catastrophe point, therefore the state of 
equilibrium of the system may not undergo and rapid, violent changes. However, as: 

oA (e,,", r/nJ = O 
oe,, ' 

L1 (i;,,", r,,,J < 0, 
(16) 

the energy, which the system can accumulate, reaches its peak value at the critical point 
e,," > ek,(rynJ As a result, for the strains e,, > e11" there is loss of stability due to the fact 
that the external energy supplied to the system is greater than the system can absorb. 
This type of instability will be called the loss of a bearing capacity of the system. 
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3. If we assume that for 8"0 (1J11) < 811 < oo the following inequalities are satisfied: 

f(8n,11)-p, > O, 

_!_ ó f( 811' IJ 11) + 1 > o 
Es 0811 ' 

(17) 

(18) 

then 

óA (~'"' IJn.) > O. 
0811 

(19) 

That means that a critical point (and the catastrophe point) will not exist in this case. In 
other words, regardless of the value of the supplied energy no loss of stability will occur 
because the energy absorbed by the system is the increasing function of strain. In this 
case no rock burst will occur. 

As in the catastrophe theory the conditions for instabilities - the necessary 
condition for rock bursts are defined, we can clearly see two mechanisms of this process: 
- rock bursts due to catastrophic jumps, 
- rock bursts due to the loss of bearing capacity of the seam. 

The uni-axial case (Fig. 3) where IJn = O (the element non-linearly deformable, 
characterising the properties of the seam will be referred to as the pseudo-elastic element) 
will be thoroughly analysed, especially 111 view of the physical aspects. 

Seam 
£, 

Roor 

Fig. 3. The scheme of the system for uni-axial state of stress 

For the system whose each element is in uniaxial stress state: 

(20) 

(21) 

where: 
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. df(£n) 
- for f,kr < e; < 00. -- < O. 

d£" 
As the conditions defining the ocurrence of the catastrophe point have the form: 

and (22) 

Accordingly, at that point: 

[/(£n)- Pz] ·[ft,)+ 1] = O, 

f'(£n) ·ft,)+ 1] + [/(£n)-pz/l:") = O. 
Three cases will be considered here, as in previous sections. 
1. If we assume that for £,,

0 
~ £n < o: the inequality is satisfied (Fig. 4 a): 

(23) 

Gn lnplf Cn If Enk 

E5 + f'{ E.n l ~ O E5 + t' ( En l > O 

RC - - -- - Re -- - -- 

Re - - - - - 

E, • f'I £0 I ,o 

f ( Cn) - Dz > O 

cl 

Pz 

En 

Fig. 4. Vertical stress-strain relation for uni-axial state of stress 
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f(iJ-pz > O, (24) 

then the system of equations allowing to determine the co-ordinates of the catastrophe 
point {i,,k, E,J have the form: 

f'(i,,J + 1 = O 
E ' si; 

(25) 

It follows from the first equation that the inequality f'(i,,J < O must be satisfied for the 
catastrophe point, hence the catastrophic jump may occur only in post-failure regime. It 
can be demonstrated that for a catastrophe system the possibility for catastrophic jump 
occurrence is not related to the catastrophe point only, but also to a certain range of 
strain values: ck, < £11p ~ £,,k, on the condition that: 

f'(i,,J + 1 = O 
E, ' 

p 

(26) 

The changes of strain £
11 

in the non-linear term present in the function of total strain are 
presented in Fig. 5 while the stress variations u11 are given in Fig. 6. 
The processes taking place within the rock medium result from rock displacement due to 
mining activities, accordingly we get the problem of kinematic disturbances [14], where 
the total strain is a function of time ez = <Pk(t). Since these relations are valid: 

ROCK BURST 

PRONE SYSTEM 

ROCK BURST 

NOT PRONE SYSTEM 

10 10 

r( 
ó.lo catastrophic jump I of strain 

E,; • t'IE01, O 

1-==-------E., 1-==------- £, 

Fig. 5. Vertical strain in the non-linear element as the function of the external strain 
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ROCK BURST 

Gn PRONE SYSTEM 

ROCK BURST 

bn NOT PRONE SYSTEM 

o I bl 

catastrophic jump 
of stress 

Fig. 6. Vertical stress in the non-linear clement as the function of the external strain 

de; de; de, 
dt de, dt ' 

de, d<pk(t) 
dt dt 

and additionally for the moment the catastrophic jump occurs the equation (26) 1s 
satisfied, therefore we get: 

lim de11(t) = co. 
r-r dt V 

(27) 

Accordingly, at the moment of the catastrophic jump the strain rate in the pseudo-elastic 
element tends to infinity, the rate of total strain changes being still finite. We have to 
emphasise that this condition (27) for a rock burst occurrence due to the catastrophic 
jump may be used for analysing more complex geomechanical systems, such as 
three-axial stress systems and systems involving rheological elements. 
2. When we assume that for e

110 
,( e11 < co the following inequality (Fig. 4 b) is satisfied: 

f'(e11)+ I > O, 
E, 

(28) 

then at the point [',kr < e; < ell,,: 

f(e11J-pz = O (29) 

and additionally: 

(30) 
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As the result: 

and d2A(r.,,J O 
d 2 < . 
f.,, 

(31) 

Hence the point r.,, = r.,," is not a catastrophe point, in this case no catastrophic jump 
may occur. However, at the point r.,, = r.11" the energy absorbed by the system reaches its 
maximum value, so for the strains r.11 > r.,," there will be a loss of stability as the 
absorbing ability of the system is thus exceeded. We have to emphasise that in this case 
also the loss of stability occurs in the post-failure regime because r.,," > r.k,· 
3. When we assume that for r.,,

0 
< r.,, < c: the following inequality (Fig. 4 c) is satisfied: 

f(r.,,)- Pz > O, 

_!-_ d f( r.,,) + 1 > O 
£5 de; ' 

(32) 

hence: 

(33) 

then there will be no critical point (nor the catastrophe point). That means that 
regardless of the actual amount of energy supplied to the system there will be no loss of 
stability as the energy, wich the system can absorb, is the incresing function of strain. 

Thus derived formulas define the necessary conditions for a rock burst explained by 
the given mechanism. In the light of the sufficient condition for a burst, the external 
energy supplied to the system must exceed the maximal energy the system can absorb for 
the given mechanism, that is: 

(34) 

while the expressions defining the maximal energy have the form: 
- for the catastrophic jump 

- for the loss of a bearing capacity 

(35) 

(36) 

As the rocks possess certain properties of rheological media, let us consider the 
system made of a pseudo-elastic element modelling the seam (N) and a rheological 
elements (R) simulating the work of roof and floor strata - assuming that each elements 
is in uni-axial state of stress. 
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111
' 

G,• f I E,I 

Fig. 7. The scheme of a system including a rheological element

The equation of state for the rheological element can be written as (Derski, Ziemba,
1968, Kłeczek, 1994, Rabotnow, 1977):

I

<J5(t) = f Ps(()~?d(
o 

(37)

That means:

d<J5 = P, (t) des 
dt dt 

where:
Ps(t) - the function of stress relaxation

Ps(t) > o 
After the transformations arising from the conditions (4), (5), we obtain:

(38)

(39)

As the system of equations determining the existence of the catastrophe point has the
form:

[f(en)- Pz] · [ ':(;j + 1] = O
f'(e ) · [t(en) + 1] + [f(e )- p,J .1:_'(e") = O

n IJl
5
(t) n - Ps(t) 

(40) 

then, like before, we will consider two cases determining the possibility of a catastrophic
jump or the loss of bearing capacity.
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1. When we assume that for cna ~ 811 < w the following inequality 1s satisfied: 

(41) 

then the system of equations allowing to obtain the co-ordinate of the catastrophe point 
{cnk' PsJt)} has the form: 

.C ( 811J + 1 = O 
'I'sk (t) 
f"(c11J = O 

(42) 

This case defines the possibility of a catastrophic jump occurrence. In the case of 
a system including a rheological element we can demonstrate that a catastrophe jump 
will occur when: 

2. When we assume that for cna ~ 811 < w the following inequality 1s satisfied: 

.c (en)+ 1 > O 
Ps(t) 

(43) 

therefore the existence of a catastrophe point ck, < 811 = 811,, 1s determined by the 
equation: 

f(c11J-P2 = O (44) 

By virtue of: 

f'(c ) · [1:_(c"J + 1] < O 
11
" Ps (t) 

we obtain 

and (45) 

which means that the energy absorbed by the system at the point 811 = 811,, reaches 
its peak value, so the loss of stability due to the loss of bearing capacity is quite 
possible. 

Four models (Zarychta, 1988) are considered now to illustrate the possibility of 
a catastrophic jump occurrence in systems including rheological elements. 
- model consisting of the pseudo-elastic element and the elastic element connected 

in series (Fig. 8 a) 

the seam: an= J(cn) 

the roof: as = Eses 
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ELASTIC 

a I 

cl 

MAXWELL 

b I 

NEWTON 

dl 

Fig. 8. Rheological models of the system 

[
f'(e ) ] de dip . the system: __ n + I -11 = _k 
Es dt dt 

- model consisting of the pseudo-elastic element and the Maxwell's element 
connected in series (Fig. 8 b) 

the seam: CJ n= J(e,J 

the roof: CJ + r dCJs = 9 des 
s s dt s dt 

the [ 
(rs)2J'(en)]d2e11 (rs)2J"(e11)(de11)

2 [rJ'(e,i) ]de11 _ d<pk d
2
<pk 

system: 's + 9 d 2 + 9 d + 9 + l d - d + rs d 2 st s t s t t t 

- model consisting of the pseudo-elastic element and the Kelvin's element connect 
ed in series (Fig. 8 c) 

2 - Arch. Górnictwa 
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des 
the roof: a,= Eses+9s dt 

the system: 9s d2. en+ [f'(e11) + 1] den = dcpk + 9s d2cpk 
E2 dt2 E dt dt E dt2 s s 

- model consisting of the pseudo-elastic element and the Newton's element
connected in series (Fig. 8 d)

de; J(e11) dcpk 
the system: - + -- = -

dt 9s dt 
where:

Es - modulus of elasticity,
9s - viscosity,
rs - relaxation time.

In numerical calculations the function is used which in qualitative terms
represents the results of laboratory tests (Zorychta, Kłeczek, 1998):

J(e11) = Rc~·exp(l- ~)
ekr ekr 

where:
Re compressive strength,
en ~ ekr - pre-failure regime,
en > ekr - post-failure regime.

Several additional assumptions were made:
- system loading depends on time-variant total strain ez (t), while:

de, dcpk - = - = const.
dt dt 
- the initial loading: p , = O,
- modulus of elasticity Es was chosen such that a catastrophic jump should

occur, in accordance with (26),
- to compare the results of these calculations it was assumed (Derski, Ziemba,

1968) that r, =
9
s for the Maxwell's model.

E, 
We have to bear in mind, however, that the results of numerical simulation

shown in Fig. 9 and Fig. I O should be considered only in qualitative terms, since the
calculations were done for the given form of the function J(c,J and for subjectively
chosen rheological parameters (Kłeczek, 1994). For practical reasons it is impossible
to present the exact quantitative relations as the geological structure of the rock is
very variable and the main aim was to present the phenomenon in qualitative terms.
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ROOF 

ELASTIC MAXWELL 

KELVIN En NEWTON 

7-;; 

Fig. 9. Vertical strain in the non-linear element as the function of time for various rheological models 

ROOF 

ELASTIC MAXWELL 

o.s 

t' 5 . p 

KELVIN 

10 t 10 

us 0,5 

10 t 10 

Fig. 10. Vertical stress in the non-linear element as the function of time for various rheological models 

2' 
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Analysing the results of numerical simulation we notice that: 
- a catastrophic jump manifested by a violent change in strain (involving 

a violent reduction of stress in the pseudo-elastic element) may occur not only when 
the roof and floor are modelled as elastic elements, but also when those strata are 
modelled as the Maxwell's element, 
- the occurrence of a catastrophic jump depends on whether the roof and floor 

strata can immediately impart the energy they accumulated - such effects are not 
present in Kelvin's and Newton's models as they do not have such property. 

3. The influence of geomechanical factors on possibility of rock burst occurrence 

Analysing the conditions for loss of stability determining two mechanisms of rock 
bursts: rock bursts due to catastrophic jump and to the loss of bearing capacity we 
have to consider certain problems: 
1. The loss of stability identified as a rock burst (for both mechanisms) is not 
a feature of the uni-axial stress state only; it may also occur for three-axial states 
while the endangered stress states regime is given by the inequality: 

o,( 1111 < 1111, {i= p,n} 
2. In the light of the possibility of rock burst occurrence the uni-axial stress state 
seems most hazardous, for two reasons: 
- regardless of the mechanism for the uni-axial state (for the same external 

strain i;z) energy absorption ability is smallest: 

Amax I Amax I 
n· 11 -O< 11· " O I n- I 'In> 

{i= p,n} 
- for the uni-axial stress state the maximal values of post-failure moduli are 

greater than those for three-axial states; hence the probability of a catastrophic jump 
occurrence is greater, too: 

I 
of(i;n, 11n = 0)1 > 1 af(i;11, __ 11n > 0)1 

8e,, max Of," max 

3. Violent changes of the state of equilibrium (i.e. a rock burst due to a catastrophic 
jump) is a property of the system - a definite relation between the deformability of 
roof and floor strata and post-failure characteristics of the seam (the fracturing 
element, to be more specific). Catastrophic jumps occur when floor and roof strata 
impart the previously accumulated energy. Furthermore, we have to discuss the 
term: "natural propensity of rocks (e.g. coal) to bursts" and resulting indices, such as 
W er lt must be pointed out that: 
- the assumption that rock has a natural tendency to burst means there will 

always exist a catastrophe point (or rather a catastrophe regime) on the stress-strain 
characteristics, while the results of experiments performed on sedimentary rocks 
using rigid testers reveal that such a point does not exist. 
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burst propensity indices for rock (or coal) are determined for the raising part 
of the stress-strain characteristics, hence they are not related to post-failure 
properties which determine rock burst occurrence. 
4. A rock burst due to the loss of bearing capacity is not a natural property of rock 
because the loss of stability is unavoidable for each rock subjected to loading such 
that p2 > R~ (1111), provided the energy supplied to the system is more than can be 
absorbed. 
5. The condition for the existence of a catastrophe point allows to propose the index 
of rock burst hazard due to catastrophic jump QP: 

lf'(c )Imax Q == I n C.,i>Ekr 

p Es 

On that basis two cases can be distinguished: 
QP ,s; I - systems not prone to catastrophic jump= burst-free systems, 
QP > 1 - systems prone to catastrophic jumps= burst-prone systems. 

The index value can be determined by way of laboratory tests, where we have to 
obtain: 
- post-failure properties of coal or the virgin ore rocks in copper mining; such 

tests should be run using rigid testing machines, 
- elasticity modulus of the roof and floor rock during the unloading phase. 

6. With an eye to minimise the burst hazard, all activities performed in roof and floor 
strata aimed to activate the dissipation processes are strongly recommended. As the 
result, roof and floor strata capacity to impart energy is reduced, so a burst-prone 
system may become burst-free. For example, when the elasticity modulus for the 
unloading phase is increased (for instance when the structure of roof and floor rock is 
destroyed), E, - co ): 

That means that a rock burst due to a catastrophic jump will not occur; yet the rock 
burst due to the loss of bearing capacity is still possible. Theoretically speaking, 
similar effects are produced when rheological processes within the floor and roof 
rocks are intensified (for instance when viscosity is increased). 

4. Conclusions 

Rock bursts are considered to be the major natural hazard in coal and copper 
mining in Poland, while the knowledge of rock burst conditions is far from complete: 
that refers both to the causes of burst processes as well as forecasting methods and 
the ways to mitigation their impacts. These considerations (the paper was confined to 
relatively simple geomechanical models) reveal that even for more complex geo- 
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mechanical systems, which better simulate the actual mmmg conditions, it is still
possible to determine the criteria for the occurrence of rock bursts treated as the loss
of stability. That may lead to new methods to minimise the hazard.

One more thing calls for an explanation. As it was shown, a rock burst is the
result of energy transitions within the system made of the seam and the surrounding
rock; so the burst (because of the possibility of catastrophic jump) must involve the
whole system. Accordingly, there will be no burst of coal or a given rock in copper
mining - hence it will be necessary to update the regulations where we can find the
term "tendency of coal (rock) to bursts". Let us conclude, then: the concept of
'natural tendency of a given rock (coal) to bursts' was introduced more than twenty
five years ago. It is not justified on the grounds of physics, so at present it becomes
an outdated term.
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