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THERMAL SENSOR OF FLOW REVERSAL

CIEPLNY INDYKATOR ODWRÓCENIA PRZEPŁYWU

The paper presents a modified theoretical description of the sensor detecting flow
velocity reversal. The sensor is made of two hot, parallel wires little apart, so they can
interest with one another. They lie one behind the other in the plane parallel to flow
velocity. The wires are normal to the velocity vector (Fig. 1). The two wires, connected in
series, are supplied from one CTA system, which means that the present sum of wire
resistances remains constant. Voltage difference across the wires is the measured parameter.

Theoretical considerations lead us to the conclusion than the probe is maximally
sensitive to velocities nearing zero while probe sensitivity is proportional to the distance
between the wires.

Key words: thermal anemometers, hot wire anemometers, flow reversal, flow reversal
detector.

W artykule przedstawiono poprawiony opis teoretyczny czujnika przeznaczonego do
wykrywania zwrotu prędkości przepływu. Czujnik składa się z dwu grzanych równoległych
włókien, niezbyt odległych, tak że oddziaływają cieplnie na siebie, leżących jedno za drugim
w płaszczyźnie równoległej do prędkości przepływu. Włókna są do wektora prędkości
prostopadle (patrz rys. I). Cechą charakterystyczną tego czujnika jest to, że oba włókna,
połączone szeregowo, zasilane są z jednego układu stałotemperaturowego (CTA), co
oznacza, że suma rezystancji obu włókien jest utrzymywana na stałym poziomie. Mierzy się
różnicę napięć występujących na włóknach.

W teoretycznych rozważaniach przyjęto, że grzane włókno nie deformuje pola
prędkości wokół niego, a powstający rozkład temperatury nie zmienia fizycznych stałych
przepływającego medium. Można było wówczas przyjąć, że rozkład temperatury wokół
dwu grzanych włókien jest superpozycją rozkładów powstających wokół pojedynczych
włókien.

Otrzymano analityczne wyrażenie (57) na różnicę temperatur Lf T między włóknami.
Jest ono kombinacją funkcji Bessela zerowego rzędu i funkcji hiperbolicznych od bez-
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wymiarowych argumentów typu VQ/2 1(, gdzie (} może być średnicą włókna lub odległością
między włóknami. Rozwiązanie jest antysymetryczne względem prędkości przepływu, tzn.
zmienia znak ze znakiem prędkości.

Rozwiązanie prowadzi do wniosku, że maksymalna czułość sondy ze względu na
prędkość występuje dla zerowej prędkości i jest ona proporcjonalna do odległości między
włóknami. Czułość sondy rośnie ze wzrostem nagrzania włókien.

Słowa kluczowe: anemometr cieplny, termoanemometr, indykator zwrotu przepływu,
odwrócenie przepływu.

NOMENCLATURE

c - specific heat of the flowing medium at constant pressure,
- distance between the hot wires,

r - distance between the source and the point where the measurements are taken,
r0 - hot wire radius,
u - velocity of the flowing gas,
x - co-ordinate in the direction of the flow,
y - co-ordinate normal to the flow direction,
T" - temperature of the flowing medium,
T wt - temperature of the first hot wire,
T.,2 - temperature of the second wire,
T.,0 - wire temperature for the present overheating ratio n, 
K - coefficient of thermal diffusion of the flowing medium,
A - coefficient of thermal conductivity of the flowing gas,
(} - density of the flowing medium.

1. Introduction

Both in theoretical considerations and in practical applications it may be
necessary to measure very slow flows or detect flow reversals. We can mention here
the following applications:

1. control of mine ventilation quality,
2. control of patient's breathing under narcosis,
3. providing controlled conditions (biopacks),
4. airing the hospital rooms, performance halls, storehouses, dryers, and the like,
5. control of fire sensors,
6. control of house ventilation.
A traditional hot wire anemometer, commonly applied in flow measurements,

proves inadequate for these applications. First of all, its sensor will not detect flow
reversals. That is obvious since the thermal losses from the hot wire, being the
measure of flow velocity, are not sensitive to wire rotations round its axis. Another
drawback is that its sensitivity is decreased when flow velocities are approaching
zero.
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Several solutions, i.e. designs of anemometers allowing for flow reversal
detection can be found in literature on the subject. They mostly consist of three
parallel wires [Downing 1972] where one wire is heated while the other two act as
resistance thermometers. There are also two-wire options, where both wires are
heated [Kiełbasa et al. 1968], [Mahler, 1972]. Several new sensors [Kiełbasa,
Smolarski 1978; Kiełbasa et al. 1977, 1978; Stasicki 1983] which can be used for flow
reversal detection have been engineered in the Strata Mechanics Research Institute.
However, the new hot wire sensor presented in this paper seems to have most
favourable parameters. The sensor consists of two thin parallel wires stretched on
supports. The distance between the wires is so small that the second wire will always
be in the thermal wake of the first one, therefore the temperature losses from that
wire are smaller. The final effect is the asymmetry of electric resistance of these two
wires. The wires considered in this paper re connected in series and incorporated in
the CTA circuit, which maintains their tora! resistance on constant level. Voltage
difference across the wires is the measured parameter.

Fig. I. Schematic diagram of a double wire sensor

2. Theoretical description 

2.1. Temper at ur e dist rib ut i o n ar o und the hot w 1 re

The physical model of such a sensor is the system of two thin, infinitely long
cylinders whose axes are normal to the velocity vector and which lie in the plane
parallel to this vector. The wires are connected in series and incorporated in the CTA
circuit. Wire resistances are Rw1 and Rw2, respectively. The electronic circuit
maintains the sum of those resistances on a preset, constant level. Accordingly, we
can write:
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r 

P(x,y) 

y 

Fig. 2. Model for calculating the temperature distribution around one wire 

(1) 

where: n - wire overheating ratio preset in the electronic circuit, Rwoi - ,,cold" 
resistance of the first wire, Rwoz - ,,cold" resistance of the second wire. ,,Cold" 
resistance is usually measured at the temperature of the flowing gas Tg. 

The distance between the axes of the cylindrical elements is l, their diameter 
- 2 r O*. The Cartesian co-ordinate system is chosen such that the x - axis 
coincides with flow direction, y - axis coincides with the cylinder axis and 
is normal to the plane x - z. Temperature of incoming gas at some distance 
from the hot wires equals T9. 

It is assumed that the presence of hot wires will not interfere with the flow**, 
while power imparted to the medium is so small that its physical properties will not 
change. In the steady state the temperature excess T(x,y) at the point (x,y) above the 
temperature Tg around one of the cylinders (Fig. 2) determines the thermal 
conductivity equation (2): 

gcv aT = J (a
2
T + a

2
T) 

ox ox2 oy2 

with its boundary conditions: 

(2) 

lim T(r) = O where ,. = Jx2+y2 
(3) 

(4) 

where: Q - density of the flowing medium, c - specific heat of the flowing medium 
at constant pressure, J - coefficient of thermal conductivity of the flowing gas, 
v - velocity of the fluid, r0 - hot wire radius. 

* Thermal anemometry makes use of very thin wires, 3-20 µm in diameter. 
** Presence of wires in the flow will always disturb the velocity distribution ahead of the wire; however 

these disturbances will vanish shortly. Experimental tests [though run on models with much larger 
diameters] show that the wake of the cylinder disappears at the distance equal to less than 100 diameters. 
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Following the transformation: 

T(x,y) = 0(x,y)eax 
we get: 

(5) 

(6) 

a
2
T = (a

2
0 + ae) eax + ix (a0 + a.e) eax = (a

2
0 + 2 o: ae + a.ze) e'", ax2 ax2 ax ax ax2 ax 

a2T = (a20) ax ay2 ay2 e . 

Introducing (5-8) into Eq. (2), we get: 

ee (a20 a20) a)ecv-2 a.A)= A axz + ay2 +A(r:x.-ecv) 0 

When: 

(7) 

(8) 

(9) 

(10) 

then the expression containing the first derivative equals zero, accordingly Eq. (8) can 
be rewritten as: 

(a20 + a20) = h20 ax2 ay2 

Boundary conditions given in (3) and (4) are as follows: 
vrocos<J> 

0 (r ) = T e - ~ = T e - hrocosq, o w w ' 

lim0(r)l,➔oo = O. 

Rewriting Eq. (11) in the polar coordinate system, we get: 

a20 + ! ae + _!_ a20 - h20 = o 
ar2 r ar r2 acp2 ' 

where: 

The solution to Eq. (14) is in the form of a series: 
00 

0(r,cp) = L ancos(nc/J)Kn(lhrl)- 
n=o 

( 11) 

(12) 

(13) 

(14) 

(15) 
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We have to bear in mind that JhrJ = jh2?-, even if it is not indicated. In the further 
sections we will make use of the identity: 

co 

ercosi/J = J0(r)+2 I (-1)"'1,,,(r)cos(mif;), 
m= I 

Accordingly, the boundary condition (12) can be rewritten as: 

As the solution (15) must be valid for r = r0, we can write: 

co 

0(r0) = a0K0(hr0) + I a11 cos(ncf>)K,,(hr0). 
n= 1 

( 16) 

(17) 

(18) 

Comparing the relevant coefficients we get: 

(19) 

(20) 

Applying (19) and (20), the solution to Eq. (2) can be rewritten as: 
co 

( )- rcos<P(lo(hro) ( ) ~( )" l,,(hro) ( ) ( )) T r,cp - Twe Ko(hro)K0 hr +2 ~ -1 K11(hro)K
11 hr cos nep . 

11=1 

This solution yields the temperature at the point defined by the radius r and the 
angle cf> produced by the hot wire located at the point (O, O) which is taken to have 
a surface area for the temperature Tw. Functions !2(2) and K,,(z) are modified 
Bessel's functions of the n-th order. Let us introduce the notation: 

(21) 

wo(r) = 10(hr0)K(hr), 
K0(hr0) 

w (r a)= 2(-1)" !11(hro)K,,(hr) cos na 
n ' K

11
(hr0) ' 

Accordingly, the quantity in brackets in (21) can be rewritten as: 

00 

w(r,r:t.)=w0(r)+ I w11(r,r:1.). 
n=l 

(22) 

(23) 

(24) 

Numerical analysis shows that throught the whole considered range of variability of 
hr O and hr, the subsequent terms w11(r, a) are rapidly approaching zero. The first term 
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of the series is smaller than w0(r) by about two orders of magnitude. Thus in further
calculations we may consider only the function w0(r), without the risk of committing
major errors:

2.2. Te m p e r a t u r e d i s t r i b u t i o n a r o u n d t w o w 1 res

As the equation description the temperature distribution is linear (following an
assumption that a hot wire will not significantly change the properties of the
medium), the temperature distribution at the point P(x,y) = P(r1,a1;r2,a2) produ
ced by two sources located at points (0,0) and (1, O) ought to have the form of linear
combination (see Fig. 3).

Fig. 3. Temperature at the point (x, y) is the sum of interactions from two sources.

P(x,y) 

I 

Fig. 3. Temperature at the point (x, y) being the sum of interactions from two sources

(26)

Further considerations depend on the conditions imposed upon the hot elements.
In the work of Kiełbasa and Smolarski [I 978] the hot wires were connected in two
independent CTA systems. In this case the situation is quite different.

2.3. Te m per a tu re wires co n nec te d i n to o n e CT sys te m

Making use of the notation of condition (I) and rewriting is so as to reduce it to
a linear relation between the resistance and temperature, we get:

(27) 

and

Rw2 = Rw02 [t +y(Tw2-Tg)], 

Making use of the assumption:

Rwot = RwOI = Rwo 

(28) 

(29) 
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we get:

n-1 
t ., + Tw2 = 2--.

y 
(30)

And analogously:

R -R LJT=T -T = wł w2 
wł w2 R 

wo 
(31) 

Making use of those formulas and assuming a1 = O; a2 = n, we get:

. . 2(n- l)Twi(0, O, l, n)+ Tw2(l,0, O,n) = -----'---------"
y 

(32) 

The second condition is the consequence of the requirement that the following
relation should be satisfied for any u:

L1 T(0, O; l, r) = - L1 T(l, O; O, n)

Which is equivalent to the condition:

LlT(v) = -LlT(-v). 

Making use of the solution (25), we can write:
for positive values of u 

and

for negative values of u 

Tw1(0, O; l, n) = 91 e -1
"0w0(r 0) + 92eh1w0(l) 

T,v2(l,0;0,n) = 91e-h1w0(l)+92ehrow0(r0) 

(33)

(34) 

(35)

(36) 

(37)

(38)

The constants 91 and 92 are obtained from the conditions being imposed on
anemometer operation. Since

LlT(v) = T,vl -T,v2 
hence for positive values of u we get:

L1 T(v) = 91 ( ehr0w0(r 0)- eh1w0(l)) + 9i{ e -h1w0(1)- e - hrowo(r 0)) (40) 

(39)

Analogously, for negative values of u we get:

LlT(-v) = 91(e-hr0w0(r0)-e-h1w0(l))+9i(eh1w0(l)-ehrow0(r0)) (41) 
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Applying (40), (41) and (34), after simple transformations we get: 

(91-92) = [w0(hr0)(ehro+e-1"0)+w0(hl)(eh1-e-hl)] = O, 

This relationship should be valid for any value of v, hence 

Substituting (43), (35), (36) into Eq (32), we get: 

n-1 
91 = 92 = a(w0(r0)cosh(hr0)+w0(l)cosh(hl) 

Introducing (44) into (40) we get: 

L1T= 2(n-1) w0(r0)sinh(hr0)+w0(l)sin(hi) 
y w0(r0)cosh(hr0)+w0(l)cosh(hl) 

Making use of Eq (25), we obtain: 

_ 2(n-1) K0(hr0)sinh(hr0)+ K0(hl)sin(hl) _ 2(n- 1) ( l h) 
L1T- 'Y K0(hr0)cosh(hr0)+K0(hl)cosh(hl) - y Fro,' ' 

where: 

(42) 

(43) 

(44) 

(45) 

(46) 

( )
- K0(hr0)sinh(hr0)+K0(hl)sinh(hl) 

F r 0, l, h - ( ) ( ) ( ) ( ) . KO hr O cosh hr O + KO hl cosh hl 

Eq (47) is rather complex and difficult to analyse. It reveals that temperature 
difference ,1 Tbetween the two hot wires is proportional to the overheating ratio and 
inversely proportional to the temperature coefficient of wire resistance y. 

The behaviour of ,1 Tat h tending to zero or infinity is very interesting. The 
relevant asymptotic expansions of the present functions and asymptotic forms of (26) 
are given in Table. It follows from Table that the function ,1 T(h) is linear for small 
values of h. Temperature difference is the consequence of sensor geometry, the 

distance 1 between the wires as well as the velocity (v) and the type of gas (K = ), ) . 
(]C 

However, we must be wary while drawing conclusions concerning those asymptotic 
expansions, because the function ,1 T given by (46) need not be monotonic. 

Let us evaluate the variability range of the arguments hr0 and hl. It is expected 
that the velocity v may range from - 2 m/s to 2 m/s, the radius r0 ranges from 1.5 to 
5 micrometer while the distance l between the wires may range from 0.25 to I mm. 
Hence for x, = Vma,r min/2K = 200 cm/s x 0.0005 cm/(0.4 cm2 /s) = 0.25, for 
X1 = Vmax lmax/2K = 200 X 0.1/0.4 = 50. As we can see, those arguments are far apart. 

Functions K0(x)sinh(x) and K0(x)cosh(x) are presented in Fig. 4. It can be seen 
that the first function reaches its maximum for x = 0.75. When we sum the two 

(47) 

7 ~ Arch. Górnictwa 
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functions for the arguments hr., and hl, we get the first maximum for x0 = hl = 0.75; 
the second - for x = hr., = 0.75. Bearing in mind that h = v/2K, we can state that 
the maximum to the second function in the numerator in (47) will occur for the flow 
velocity larger that for the first function peak by l/r 0. 

TABLE 

Asymptonic functions present in (26) 

Asymptotic ex- Asymptotic ex- 
No Function pansion pansion 

for X-->O for X-> CX) 

I K0(x) -ln(x) R X 
e 

2 sinh(x) X ex 
- 
2 

3 cosh (x) I ex 
- 
2 

4 LJT 2h(n - I) 2(n - I) 
(I+ ro) --- 

y y 

Ko(x)sinh(x) i Ko(x)cosh(x) 

3.5 

3 

2.5 

2 

1.5 

\ 1 
~ 0.5 / 

o 
o 1 2 3 4 5 6 7 8 9 10 11 

X [1] 
I - Ko(x)sinh(x) - Ko(x)cosh(x) I 

Fig. 4. Functions: K0(x)sinh(x) and K0(x)cosh(x) 

The whole term (47) is slightly different since its denominator includes the sum 
of products of the functions K0(x) and cosh(x). Fig 5 presents the term (47), as 
shown against two functions K0(x)sinh(x), divided by 5. We can easily see that the 
maximum points of the function K0(x)sinh(x) are located at the inflection points of 
the function ( 4 7). 



99 

Funkcje F(ro,I, v) i Ko(l,v)sinh(I, v) 

0.14 ~--------~ 

o-,__ ---,, 

O 10 20 30 40 50 60 70 80 90 100 

v [emfs] 

I- f200 - f300 - /=200r - /=300r I 
K0(hr0)sin h(hr0) + K0(hl)sin h(hl) l 

Fig. 5. Functions: F(r0,!,h) =-----------and -K0(h!)sinh(h!) 
K0(hr 0)cos h(hr 0) + K 0(h!)cos h(hl) 5 

The function F(r, l, h) has its sign changed because the function sinh(x) 1s 
asymmetric. In order to obtain the complete plot, the plot 5 should be supplemented 
with the function pattern in the 3rd portion of the coordinate system. This situation 
for the sensor consisting of a wire 5 micrometers in diameter and the distance 
between the wires - 100, 200, 300 and 400 times the wire radius and for velocity 
ranging from - 100 to 100 cm/s is represented in Fig. 6. 

Temperature difference L1 T between the hot wires is proportional to the value of 
the function F(r, h, 0; accordingly its sign changes with the sign of h. That means that 
the sign of the velocity v determines the sign of the difference in wire resistances, and 
hence the sign of the voltage difference across the wires. Accordingly, the sign of the 
voltage difference across the wires will indicate the flow reversal within the chosen 
co-ordinate system. 

To some extent the function L1 T depends also on the hot wire diameter. It may 
cause the shift of the maximum of the product of the function K0(hr0)sin h(hr0) in 
relation to K0(kl)sinh(hl). The final effect is that the characteristics of the function 
F(r 0, l, h) will be raised following the first local maximum. 

3. Conclusions 

These considerations lead us to presume that the sensor presented in Fig. I. 
supplied from a CT circuit may be used as flow reversal indicator. It displays peak 
sensitivity throughout the range of small velocities, nearing zero. For flow velocities 
which satisfy the condition 

7* 
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the sensor characteristics is monotonic and nearly linear, throughout this range. For
larger velocities the sensor characteristics need not be locally monotonic, which
however does not affect its function as the flow reversal indicator.

Experimental investigation of this sensor will be presented in a separate work.

F(ro,l,v) 

0.15

0.1 ---------===/

0.05 w 

o 
-100 -80 -60 -40 -20 D 20 40 60 80 11

-0.05 /4
-0.1

~
-0.15

v [emfs] 

1- ,;100 - ,;200 - ,;300 - /;4001 

K0(hr0)sin h(hr0) + K0(hl)sinh(hl) Fig. 6. Complete plots of the function F(r0,l,h) = -----------K0(hr0)cosh(hr0) + K0(hi)cosh(hl) 

This study is a part of the research project no 8T0C006 I 3: "Optimization of the thermal anemometer
used as flow reversal indicator" supported by the State Committee for Scientific Research.
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