HENRYK BYSTROŃ*

THE MAIN AND BOOSTER NATURAL VENTILATING ENERGIES IN THE MINE VENTILATION NETWORK

GŁÓWNY I WTÓRNY CIĄGI NATURALNE W KOPALNIANEJ SIECI WENTYLACYJNEJ

The verification of the formulae (1.4) and (1.6) describing the main and booster natural ventilating energies has been the aim of the work. A thermodynamic method for calculation of dry air parameters in measuring cross-sections, branches and external meshes of a network is presented. Those parameters have been calculated (table 1—5) for simple and complex networks with ascensional and decensional ventilation, respectively (figures 1, 3, 5, 7, 9).

The static criterion of stability of operation of a fan-network system (Bystroń, 1998) has been used to verify the formula (1.4). The conditions (5.5) and (9.5) (Budryk, 1956) of air flow direction preservation in the lateral and main stream of the internal part of a two-mesh network with ascensional and decensional ventilation, respectively, have been used to verify the formula (1.6). The determined main and booster energies are presented on diagrams and graphs (figures 1, 3, 5, 7, 9) and interpreted by power thermodynamic cycles on the diagrams (figures 2, 4, 6, 8, 10). The verification of the formula (1.4) and (1.6) has been positive.

Weighted-average natural energies (1.5) calculated for the above mentioned networks are significantly different from determined main natural energies (table 6). So, when calculating aerodynamic resistance of a complex network and its resultant characteristic one ought to use the main natural energy.

Key words: main natural ventilating energy, booster natural ventilating energy, thermodynamic method for calculation of air parameters.

Celem pracy było zweryfikowanie wzorów (1.4) i (1.6), za pomocą których określone są odpowiednio główny i wtórny ciągi naturalne. Przedstawiono metodę termodynamiczną wyznaczania parametrów powietrza suchego w przekrojach pomiarowych, bocznicach i oczkach zewnętrznych sieci. Parametry te wyznaczono (tabl. 1–5) dla prostych i złożonych sieci odpowiednio o przewietrzaniu wznoszącym się i przewietrzaniu schodzącym (rys. 1, 3, 5, 7, 9).

^{*} GŁÓWNY INSTYTUT GÓRNICTWA, 40-166 KATOWICE, PL. GWARKÓW 1

Przy weryfikacji wzoru (1.4) posłużono się kryterium statycznym stabilnej pracy układu wentylator — sieć (B y s t r o ń, 1998), a przy weryfikacji wzoru (1.6) — warunkami (5.5) i (9.5) B u d r y k a (1956) zachowania prostego kierunku prądów bocznego i głównego w części wewnętrznej dwuoczkowej sieci odpowiednio o przewietrzaniu wznoszącym się i przewietrzaniu schodzącym. Wyznaczone ciągi naturalne podano odpowiednio na schematach i wykresach charakterystyk sieci (rys. 1, 3, 5, 7, 9) oraz zinterpretowano za pomocą cykli termodynamicznych w układzie pracy (rys. 2, 4, 6, 8, 10). Wynik weryfikacji wzorów (1.4) i (1.6) jest pozytywny.

Średnioważone ciągi naturalne (1.5) obliczone dla rozważanych sieci na ogół znacznie różnią się od wyznaczonych głównych ciągów naturalnych (tabl. 6). Zatem przy wyznaczaniu oporu aerodynamicznego złożonej sieci i jej charakterystyki wypadkowej należy korzystać z głównego ciągu naturalnego (1.4).

Słowa kluczowe: główny ciąg naturalny, wtórny ciąg naturalny, metoda termodynamiczna obliczania parametrów powietrza.

1. Wstęp

Jeśli powietrze traktuje się jako nieściśliwe, to w sieci wentylacyjnej nie występuje ciąg naturalny. Równanie $q_f = R\dot{m}^2 (q_f - dyssypacja energii, J/kg, \dot{m} - strumień$ masy, kg/s, <math>R - opór aerodynamiczny, m^2/kg^2) opisuje w układzie współrzędnych (\dot{m}, q_f) charakterystykę sieci, jak i charakterystyki poszczególnych jej oczek zewnętrznych. W przypadku gdy przestrzega się ściśliwości powietrza, wówczas charakterystyka wypadkowa prostej sieci, jak i złożonej sieci, ma równanie

$$q_f = R\dot{m}^2 - e_n, \tag{1.1}$$

gdzie: e_n — ciąg naturalny pracujący (zgodnie lub niezgodnie) w połączeniu szeregowym z wentylatorem głównym. Jeśli sieć jest złożona, to charakterystyki wypadkowe jej oczek zewnętrznych opisane są równaniami

$$q_f = R_i \dot{m}^2 - e_{ni}, \quad j = 1, 2, ..., M,$$
 (1.2)

gdzie: j — numer oczka zewnętrznego, M — liczba wszystkich oczek zewnętrznych, R_i — opór oczka j, e_{ni} — ciąg naturalny w oczu j określony wzorem

$$e_{nj} = \sum_{i=1}^{N_j} e_{ni}, \ i = 1, 2, ..., N_j,$$
(1.3)

gdzie: *i* — numer bocznicy, N_j — liczba wszystkich bocznic w oczku *j*, e_{ni} — lokalny ciąg naturalny w bocznicy *i* (B u d r y k, 1951, 1953, 1956). Wśród równań (1.2) znajduje się równanie (1.1).

Na podstawie porównania pól prawobieżnych cykli sporządzonych — dla czterech oczek zewnętrznych w podsieci KWK "Grodziec" — w układzie pracy ciśnienie — objętość właściwa — wyprowadzono następujący wzór, za pomocą którego określony jest ciąg naturalny e_n w złożonej sieci figurujący w równaniu (1.1) — zwany głównym ciągiem naturalnym (B y s t r o ń, 1983)

$$e_n = \min_{(i)} e_{nj}, \quad j = 1, 2, ..., M.$$
 (1.4)

Również znany jest następujący przybliżony wzór (Budryk, 1929, 1933; Burczakow & Mustiel&Uszakow, 1971; Aliechiczew & Kałabin, 1974) określający średnioważony (wypadkowy) ciąg naturalny e_{nm} w złożonej sieci

$$e_{nm} = \frac{\sum_{j=1}^{M} e_{nj} \dot{m}_{j}}{\sum_{j=1}^{M} \dot{m}_{j}}.$$
 (1.5)

Kontynuując rozważanie nad wpływem ciągu naturalnego na kierunki prądów oparte na cyklach termodynamicznych w układzie pracy (B u d r y k, 1929, 1951), wyprowadzono następujący wzór określający ciąg naturalny — zwany wtórnym ciągiem naturalnym (B y s t r o ń, 1983)

$$e_{nwj} = e_{nj} - e_n, \quad j = 1, 2, ..., M.$$
 (1.6)

Lokalizacja głównego ciągu naturalnego e_n i wtórnego ciągu naturalnego e_{nwj} analogiczna jest z umieszczeniem wentylatora głównego w prądzie głównym i wentylatora wtórnego (pomocniczego) w prądzie bocznym.

Celem niniejszej pracy była weryfikacja wzorów (1.4) i (1.6). Zaniedbuje się energię kinetyczną powietrza jako małą w porównaniu z potencjalnymi energiami ciśnienia i położenia. Zakłada się, że czynnikiem termodynamicznym jest powietrze suche, które w bocznicach sieci ulega przemianie politropowej nieodwracalnej (O c h ę d u s z k o, 1974). Przedstawia się metodę termodynamiczną obliczania parametrów powietrza w przekrojach pomiarowych, bocznicach i oczkach sieci — opartą na polu potencjału aerodynamicznego (B y s t r o ń, 1999). Przy weryfikowaniu wzorów (1.4) i (1.6) korzysta się odpowiednio z kryterium statycznego stabilnej pracy układu wentylator — sieć (B y s t r o ń, 1998) i warunków zachowania prostego kierunku odpowiednio prądu bocznego i prądu głównego w części wewnętrznej dwuoczkowych sieci (B u d r y k, 1956). Do rozważań przyjmuje się proste i złożone sieci o przewietrzaniu wznoszącym się, jak i sieci o przewietrzaniu schodzącym.

2. Metoda termodynamiczna obliczania parametrów powietrza

Zakładamy, że w sieci określonej schematem przestrzennym dane są pola: wysokości geodezyjnej z, m, temperatury powietrza T, K, oraz potencjału aerodynamicznego odniesionego do jednostki objętości Φ_v , J/m³. Wychodząc z tych pól i przestrzegając przyjętych założeń upraszczających, oblicza się następujące wielkości (**B** y s t r o ń, 1999): — ciśnienie p_s i gęstość ϱ_s powietrza suchego w przepływie izentropowym odwracalnym:

$$p_{s} = p_{0} \left(1 - \frac{\kappa - 1}{\kappa} \frac{\varrho_{0}}{p_{0}} g\left(z - z_{0}\right) \right)^{\frac{\kappa}{\kappa - 1}}, \quad \varrho_{s} = \varrho_{0} \left(1 - \frac{\kappa - 1}{\kappa} \frac{\varrho_{0}}{p_{0}} g\left(z - z_{0}\right) \right)^{\frac{1}{\kappa - 1}}, \quad (2.1), \quad (2.2)$$

gdzie: $\kappa = 1,4$ — wykładnik izentropy powietrza suchego, g = 9,81 m/s² — przyspieszenie grawitacyjne, z_0, ϱ_0 i p_0 — wysokość geodezyjna oraz gęstość i ciśnienie powietrza suchego w przekroju 0 zrębu szybu wdechowego, z — wysokość geodezyjna w przekroju, dla którego przyjęto wielkości T, Φ_v oraz obliczono p_s i ϱ_s ,

— potencjał Φ , J/kg, oraz ciśnienie p i gęstość ϱ powietrza suchego odpowiednio:

$$\Phi = \frac{\Phi_v}{\varrho_s}, \quad p = p_s + \Phi_v, \quad \varrho = \frac{p}{R_a T}, \quad (2.3) - (2.5)$$

gdzie: $R_a = 287,04 \text{ J/(kg \cdot K)}$ — indywidualna stała gazowa powietrza suchego;

— spadek potencjału $\delta \Phi$, J/kg w bocznicy d-w

$$\delta \Phi = \Phi_d - \Phi_w, \tag{2.6}$$

gdzie: Φ_d i Φ_w — potencjały odpowiednio w przekrojach: dopływowym d i wypływowym w bocznicy,

— prace techniczne l_t i l_{ts} odpowiednio w przepływach: politropowym nieodwracalnym)_t i izentropowym)_{ts}:

$$l_t = \frac{m}{1-m} \frac{p_d}{\varrho_d} \left(\left(\frac{p_w}{p_d} \right)^{\frac{m-1}{m}} - 1 \right), \qquad l_{ts} = \frac{\kappa}{1-\kappa} \frac{p_d}{\varrho_0} \left(\frac{p_0}{p_d} \right)^{\frac{1}{\kappa}} \left(\left(\frac{p_w}{p_d} \right)^{\frac{\kappa-1}{\kappa}} - 1 \right), \quad (2.7), (2.8)$$

gdzie: m — wykładnik politropowy

$$m=\ln\frac{p_w}{p_d}\Big/\ln\frac{\varrho_w}{\varrho_d},$$

gdzie: ρ_d , ρ_w i p_d , p_w — gęstości i ciśnienia odpowiednio w przekrojach: dopływowym d i wypływowym w bocznicy d-w,

— spadek potencjału $\delta \Phi$ w bocznicy *d-w*, w której czynna jest stacja wen-tylatorowa:

$$\delta \Phi = q_f - e_n - e_{uR}, \qquad (2.9)$$

gdzie: e_n i e_{uR} — lokalny ciąg naturalny i energia użyteczna stacji wentylatorowej określone odpowiednio za pomocą wzorów:

$$e_n = l_t - l_{ts}, \quad e_{uR} = -l_t,$$
 (2.10), (2.11)

— dyssypacja energii mechanicznej q_f wzdłuż bocznicy *d*-w, w której nie ma stacji wentylatorowej ($e_{uR} = 0$):

$$q_f = \delta \Phi + e_n, \tag{2.12}$$

174

— dyssypacja energii mechanicznej q_f wzdłuż stacji wentylatorowej (zgodnie ze wzorami (2.9)–(2.11)):

$$q_f = \delta \Phi - l_{ts}, \tag{2.13}$$

— następujące sumy dotyczące oczek zewnętrznych o numerze j z bocznicami d-w o numerach i = 1, 2, 3...:

$$\sum_{(j)} \delta \Phi_i, \qquad \sum_{(j)} l_{ti}, \qquad \sum_{(j)} l_{tsi}, \qquad \sum_{(j)} e_{ni}, \qquad \sum_{(j)} q_{fi}.$$
(2.14)-(2.18)

Sumy (2.14)-(2.18) powinny spełniać następujące zależności:

$$\sum_{(j)} \delta \Phi_i = 0, \qquad \sum_{(j)} l_{ti} - \sum_{(j)} l_{tsi} = \sum_{(j)} e_{ni}, \qquad e_{uR} + \sum_{(j)} e_{ni} = \sum_{(j)} q_{fi}, \qquad (2.19) - (2.21)$$

gdzie: symbol $\sum_{(j)}$ oznacza sumowanie po zamkniętym obwodzie oczka zewnętrznego *j*.

Wzory (2.7) i (2.8) otrzymuje się na podstawie równania ciągu naturalnego $de_n = -dp/\varrho + dp/\varrho_s$ (B y st r o ń, 1998), równania Zeunera $p/\varrho^m = p_d/\varrho_d^m = p_w/\varrho_w^m$, równania Poissona $p/\varrho^\kappa = p_0/\varrho_0^\kappa$ oraz relacji $dl_t = -dp/\varrho$ i $dl_{ts} = -dp/\varrho_s$. Wzór $l_t = (m/(1-m)(\ln p_w/\varrho_w - \ln p_d/\varrho_d)$ jest równoważny z (2.7). Dla oczek sieci znamienne są: wzór (2.19) i wyrażenie $\sum_{\substack{(j) \ (j) \ (j)}} l_{tsi} = -\oint dp/\varrho_s = 0$, jak to ma miejsce na przykład w tablicach 1 do 5.

3. Główny ciąg naturalny

Dla sieci złożonej z trzech oczek zewnętrznych j = 1, 2 i 3, w których występują ciągi naturalne e_{n1} , e_{n2} i e_{n3} określone wzorem (1.3) — kierując się ich wartościami liczbowymi — zapisujemy nierówności:

$$e_{n3} > e_{n2} > e_{n1} \,. \tag{3.1}$$

Dla ciągów naturalnych figurujących w (3.1) dodajemy energię użyteczną e_{uR} wentylatora głównego w stanie równowagi układu i otrzymane sumy dzielimy przez kwadrat wydajności masowej \dot{m}_R^2 wentylatora. Otrzymujemy nierówności:

$$\frac{e_{uR} + e_{n3}}{\dot{m}_R^2} > \frac{e_{uR} + e_{n2}}{\dot{m}_R^2} > \frac{e_{uR} + e_{n1}}{\dot{m}_R^2}.$$
(3.2)

Wyrażenia figurujące w nierównościach (3.2) równe są odpowiednio oporom R_3 , R_2 i R_1 oczek zewnętrznych j = 1, 2 i 3, tj.

$$\frac{e_{uR} + e_{n3}}{\dot{m}_R^2} = R_3, \quad \frac{e_{uR} + e_{n2}}{\dot{m}_R^2} = R_2, \quad \frac{e_{uR} + e_{n1}}{\dot{m}_R^2} = R_1.$$
(3.3)

Na podstawie tych wyrażeń i nierówności (3.2) można zapisać:

$$R_3 > R_2 > R_1. (3.4)$$

Zgodnie z równaniami (1.2) współczynniki kierunkowe k_1 , k_2 i k_3 stycznych w punkcie równowagi układu do charakterystyk wypadkowych oczek zewnętrznych j = 1, 2, 3 określone są za pomocą związków:

$$k_3 = 2 R_3 \dot{m}_R, \quad k_2 = 2 R_2 \dot{m}_R, \quad k_1 = 2 R_1 \dot{m}_R.$$
 (3.5)

Związki te przekształcamy odpowiednio do postaci:

$$\frac{k_3}{2\dot{m}_R} = R_3, \quad \frac{k_2}{2\dot{m}_R} = R_2, \quad \frac{k_1}{2\dot{m}_R} = R_1.$$

Stąd zgodnie z (3.4) wynikają nierówności:

$$k_3 > k_2 > k_1 > 0. (3.6)$$

Jeśli punkt równowagi układu wentylator — sieć znajduje się na prawej opadającej części charakterystyki energii użytecznej wentylatora, to współczynnik kierunkowy b stycznej w punkcie R do tej charakterystyki jest ujemny

$$b < 0. \tag{3.7}$$

Odejmując współczynnik b od współczynników kierunkowych występujących w nierównościach (3.6), przekształcamy je do postaci:

$$k_3 - b > k_2 - b > k_1 - b > 0. (3.8)$$

Spośród nierówności (3.8) najmniejszą wartość liczbową ma lewa strona nierówności

$$k_1 - b > 0.$$
 (3.9)

Jeśli spełniona jest nierówność (3.9), to zachowane są również nierówności $k_3-b>0$ i $k_2-b>0$ figurujące w (3.8). Stąd wnosi się, że nierówność (3.9) jest kryterium statycznym stabilnej pracy rozważanego układu wentylator — trzyocz-kowa sieć (B y s t r o ń, 1998). Na podstawie nierówności (3.1), (3.2), (3.6), (3.8) i (3.9) wnioskuje się, że główny ciąg naturalny e_n w rozważanej trzyoczkowej sieci określony jest wzorem

$$e_n = \min(e_{n1}, e_{n2}, e_{n3}) = e_{n1}, \qquad (3.10)$$

który jest szczególnym przypadkiem wzoru (1.4).

W dalszym ciągu pracy wyznacza się główny ciąg naturalny i wtórne ciągi naturalne występujące odpowiednio w prostych lub złożonych sieciach o przewietrzaniu wznoszącym się lub o przewietrzaniu schodzącym.

4. Główny ciąg naturalny w prostej sieci wentylacyjnej

4.1. Sporządzamy schemat przestrzenny prostej sieci o przewietrzaniu wznoszącym się (rys. 1a) z szybami: wdechowym 0-1 i wydechowym 2-3, wyrobiskiem górniczym 1-2 i ssącym wentylatorem głównym 3-4. Szyby te, wyrobisko górnicze i wentylator traktujemy jako bocznice *d-w* sieci wentylacyjnej, przy czym bocznicę 0-4 uważamy za niedyssypatywną. Zgodnie z metodą termodynamiczną podaną w rozdziale 2 przyjmujemy dla przekrojów krańcowych bocznic *d-w*: wysokość

geodezyjną z, temperaturę T i potencjał Φ_v odniesiony do jednostki objętości (tabl. 1). W szczególności odnośnie do przekroju 0 zrębu szybu wdechowego zakładamy:

$$z_0 = 200$$
 m, $T_0 = 278,15$ K, $p_0 = 100\,000$ Pa, $\varrho_0 = 1,2525$ kg/m³,

przy czym gęstość ρ_0 obliczono za pomocą równania stanu (2.5). Korzystając z wielkości z_0 , p_0 i ρ_0 oraz wysokości geodezyjnych z, wyznaczono ciśnienie p_s

Rys. 1. Prosta sieć o przewietrzaniu wznoszącym się: a) schemat, b) charakterystyka wypadkowa, c) układ wentylator — główny ciąg naturalny, d) główny ciąg naturalny

TABLICA 1

Prze- krój	Wyso- kość geod.	Ciśnienie w przepły tropo	Gęstość wie izen- wym	Tempe- ratura	Poter aeroc mic	ncjały lyna- zne	Ciśnienie w przepły tropowym	Gęstość wie poli- nieodwr.	Bocz- nica sieci	Spadek poten- cjału	Wykład- nik politropy	Pr. techn	ace liczne	Lokalny ciąg na- turalny	Dyssy- pacja energii użyt.	Energia użytecz. wentyla- tora
Nr	Z	<i>p</i> _s	Qs	Т	Φ_v	Φ	р	Q	d-w	$\delta \Phi_i$	m	l _{ti}	l _{tsi}	e _{ni}	q_{fi}	e _{uR}
	m	Pa	kg/m ³	K	J/m ³	J/kg	Pa	kg/s	i	J/kg		J/kg	J/kg	J/kg	J/kg	J/kg
0	200	100 000	1,2525	278,15	0	0	100 000	1,2525	0-1	601	1,34639	-6257	-6264	7	608	0
1	-500	108 868	1,3309	283,75	-800	-601	108 068	1,3268	1-2	536	0,32104	1552	1520	32	568	0
2	-400	107 568	1,3195	295,20	-1500	-1137	106 068	1,2518	2-3	939	1,16274	7181	6839	342	1281	0
3	200	100 000	1,2525	291,70	-2600	-2076	97 400	1,1633	3-4	-2076	0,35657	-2154	-2095	- 59	19	2154
4	200	100 000	1,2525	293,50	0	0	100 000	1,2525	4-0	0	0	0	0	0	0	0
						Oczko	sieci 1 (0,	1, 2, 3,	4, 0):	0		322	0	322	2476	2154

Parametry powietrza w przekrojach pomiarowych, bocznicach i oczku prostej sieci kopalni o wznoszącym się przewietrzaniu (rys. 1a)

i gęstość ρ_s odpowiednio wzorami (2.1) i (2.2). Z kolei za pomocą (2.3)–(2.5) obliczono potencjał Φ odniesiony do jednostki masy, ciśnienie *p* oraz gęstość ρ (tabl. 1).

Korzystając z potencjałów Φ , ciśnienia p, gęstości ϱ i ϱ_s , obliczamy dla bocznic d-w: spadek potencjału $\delta \Phi$ oraz prace techniczne l_t i l_{ts} odpowiednio za pomocą (2.6)—(2.8). Z kolei wzorami (2.10)—(2.13) wyznaczamy odpowiednio lokalny ciąg naturalny e_{ni} , obie dyssypacje energii q_{fi} oraz energię użyteczną e_{uR} wentylatora w punkcie równowagi R układu wentylator — sieć (tabl. 1).

Dla oczka sieci 1 (0, 1, 2, 3, 4, 0) — zgodnie z (2.14)—(2.21) — otrzymujemy następujące sumy oraz energię użyteczną wentylatora (tab. 1):

$$\sum_{(1)} \delta \Phi_i = 0, \qquad \sum_{(1)} l_{ti} = 332, \qquad \sum_{(1)} l_{tsi} = 0, \qquad \sum_{(1)} e_{ni} = 322, \qquad \sum_{(1)} q_{fi} = 2476$$

oraz $e_{uR} = 2154 \text{ J/kg}$

i na ich podstawie stwierdzamy, że spełnione są zależności (2.19)-(2.21).

Ciąg naturalny w sieci (rys. 1a) wynosi $e_n = 322 \text{ J/kg}$, a parametrami punktu *R* równowagi układu wentylator — sieć są: $\dot{m}_R = 100 \text{ kg/s}$ i energia użyteczna $e_{uR} = 2154 \text{ J/kg}$ (rys. 1b). Zgodnie z równaniem (1.1) i wzorami (3.3) otrzymujemy następujący opór aerodynamiczny *R* sieci i równanie charakterystyki wypadkowej (rys. 1b).

$$R = \frac{2154 + 322}{100^2} = 0,2476 \text{ m}^2/\text{kg}^2, \ q_f = 0,2476 \text{ }\dot{m}^2 - 322.$$

Rys. 2. Główny ciąg naturalny $e_n = 322$ J/kg w prostej sieci (rys. 1a)

Współczynnik kierunkowy stycznej w punkcie R do tej charakterystyki — zgodnie z (3.5) wynosi $k = k_1 = 2 \cdot 0,2476 \cdot 100 = 49,52 \text{ m}^2/(\text{kg} \cdot \text{s})$. Zgodnie z (3.7) i (3.9) nierówność k-b > 0 jest kryterium statycznym stabilnej pracy rozważanego układu (rys. 1a). Dla tego układu wzór (1.4) jest zredukowany do

$$e_n = \sum_{(1)} e_{ni} = e_{n1} = 322 \text{ J/kg},$$
 (4.1)

a wzór (1.6) — do $e_{nw} = 0$ (rys. 1c, 1d). Na rysunku 2 podany jest prawobieżny cykl termodynamiczny, sporządzony na podstawie tablicy 1 dotyczącej sieci (rys. 1a). Pole tego cyklu ilustruje główny ciąg naturalny $e_n = 322$ J/kg.

4.2. W przypadku prostej sieci o przewietrzaniu schodzącym (rys. 3a) postępując zgodnie z metodą termodynamiczną analogicznie jak w podrozdziale 4.1, otrzymaliśmy

Rys. 3. Prosta sieć o przewietrzaniu schodzącym: a) schemat, b) charakterystyka wypadkowa, c) układ wentylator — główny ciąg naturalny, d) główny ciąg naturalny

TABLICA 2

Prze- krój	Wyso- kość geod.	Ciśnienie w przepływ tropow	Gęstość wie izen- wym	Tempe- ratura	Poter aeroc mic	icjały lyna- zne	Ciśnienie w przepły tropowym	Gęstość wie poli- nieodwr.	Bocz- nica sieci	Spadek poten- cjału	Wykład- nik politropy	Pra techn	ace iczne	Lokalny ciąg na- turalny	Dyssy- pacja energii użyt.	Energia użytecz. wentyla- tora
Nr	Z	p _s	Qs	Т	Φ_v	Φ	р	Q	d-w	$\delta \Phi_i$	m	l_{ti}	l _{tsi}	e _{ni}	q_{fi}	e _{uR}
_	m	Pa	kg/m ³	K	J/m ³	J/kg	Pa	kg/s	i	J/kg		J/kg	J/kg	J/kg	J/kg	J/kg
0	200	100 000	1,2525	278,15	0	0	100 000	1,2525	0-1	606	1,43701	- 5281	- 5278	-3	603	0
1	-400	107 568	1,3195	283,75	-800	-606	106 768	1,3109	1-2	521	0,13807	-448	-456	8	529	0
2	- 500	108 868	1,3309	274,00	-1500	-1127	107 368	1,3652	2-3	1268	1,14466	7936	8155	-219	1049	0
3	20	100 000	1,2525	270,50	- 3000	-2395	97 000	1,2493	3-4	-2395	1,47313	-2377	-2421	44	26	2377
4	20	100 000	1,2525	273,15	0	0	100 000	1,2754	4-0	0	0	0	0	0	0	0
	•					Oczko	sieci 1 (0,	1, 2, 3,	4, 0):	0		-170	0	-170	2207	2377

Parametry powietrza w przekrojach pomiarowych, bocznicach i oczku prostej sieci kopalni o przewietrzaniu schodzącym (rys. 3a)

181

wyniki zestawione w tablicy 2. Na jej podstawie dla oczka sieci 1 (0, 1, 2, 3, 4, 0) – zgodnie ze wzorami (2.14)–(2.21) otrzymujemy następujące sumy oraz energię użyteczną wentylatora (tabl. 2):

$$\sum_{(1)} \delta \Phi_i = 0, \qquad \sum_{(1)} l_{ii} = -170, \qquad \sum_{(1)} l_{isi} = 0, \qquad \sum_{(1)} e_{ni} = -170, \qquad \sum_{(1)} q_{fi} = 2207$$
oraz
$$e_{uR} = 2377 \text{ J/kg.}$$

Rys. 4. Główny ciąg naturalny $e_n = -170$ J/kg w prostej sieci (rys. 3a)

Na podstawie tych sum stwierdzamy, że zachowane są związki (2.19)-(2.21).

Ciąg naturalny w sieci (rys. 3a) wynosi $e_n = -170$ J/kg, a parametrami punktu R równowagi układu wentylator — sieć są: $\dot{m}_R = 100$ kg/s, $e_{uR} = 2377$ J/kg. Opór R sieci i równanie jej charakterystyki (rys. 3b) — odpowiednio zgodnie z (1.1) i (3.3) — wynoszą:

$$R = \frac{2377 - 170}{100^2} = 0,2207 \text{ m}^2/\text{kg}^2, \quad q_f = 0,2207 \text{ } \dot{m}^2 + 170.$$

Współczynnikiem kierunkowym stycznej w punkie R do tej charakterystyki jest $k = k_1 = 2 \cdot 0,2207 \cdot 100 = 44,14 \text{ m}^2/(\text{kg} \cdot \text{s})$. W tym przypadku wzór (1.4) jest zredukowany do

$$e_n = \sum_{(1)} e_{ni} = e_{n1} = -170 \text{ J/kg}.$$
 (4.2)

a wzór (1.6) — do $e_{nw} = 0$ (Rys. 3c, 3d). Na rysunku 4 przedstawiony jest lewobieżny cykl termodynamiczny sporządzony na podstawie tablicy 2 dla sieci (rys. 3a). Pole tego cyklu ilustruje główny ciąg naturalny $e_n = -170$ J/kg.

Prze- krój	Wyso- kość geod.	Ciśnienie w przepływ tropow	Gęstość wie izen- wym	Tempe- ratura	Potencjały aerodyna- miczne		Ciśnienie Gęstość w przepływie poli- tropowym nieodwr.		Bocz- nica sieci	Spadek poten- cjału	Wykład- nik politropy		Lokalny ciąg na- turalny	Dyssy- pacja energii użyt.	Energia użytecz. wentyla- tora	
Nr	Ζ	p _s	Q _s	Т	Φ_v	Φ	р	Q	d-w	$\delta \Phi_i$	т	l _{ti}	l _{tsi}	e _{ni}	q_{fi}	e _{uR}
	m	Pa	kg/m³	K	J/m ³	J/kg	Pa	kg/s	i	J/kg		J/kg	J/kg	J/kg	J/kg	J/kg
0	200	100 000	1,2525	278,15	0	0	100 000	1,2525	0-1	601	1,34639	-6257	-6264	7	608	0
1	-500	108 868	1,3309	283,75	-800	-601	108 068	1,3268	1-2	526	0,10928	544	530	14	540	0
2	-500	108 868	1,3309	299,20	-1500	-1127	107 368	1,2502	2-3	900	1,13671	7740	7289	451	1351	0
3	150	100 616	1,2580	295,95	-2550	-2027	98 066	1,1544	4-5	2027	0,93100	1560	1555	5	2032	0
4	200	100 000	1,2525	278,15	0	0	100 000	1,2525	5-6	0	0	0	0	0	0	0
5	150	100 616	1,2580	278,55	-2550	-2027	98 066	1,2265	3-6	0	0	0	0	0	0	0
6	150	100 616	1,2580	290,73	-2550	-2027	98 066	1,1751	6-7	89	-3,44811	609	581	28	117	0
7	200	100 000	1,2525	288,00	-2650	-2116	97 350	1,1776	7-8	-2116	1,62703	-2232	-2136	-96	20	2232
8	200	100 000	1,2525	291,00	0	0	100 000	1,1972	8-0	0	0	0	0	0	0	0
									8-4	0	0	0	0	0	0	0
Oczko sieci 1 (0, 1, 2, 3, 6, 7, 8, 0):										0	-	404	0	404	2636	2232
Oczko sieci 2 (4, 5, 6, 7, 8, 4):												-63	0	-63	2169	2232

Parametry powietrza w przekrojach pomiarowych, bocznicach i oczkach zewnętrznych prostej sieci ze stratami zewnętrznymi powietrza (rys. 5a)

3*

183

4.3. Sporządzamy schemat przestrzenny prostej sieci ze stratami zewnętrznymi powietrza (rys. 5a), szybami: wdechowym 0-1 i wydechowym 2-3-5-4, poziomym wyrobiskiem 1-2 oraz kanałem 6-7 ssącego wentylatora głównego 7-8, przy czym bocznice 3-6, 5-6, 8-0 i 8-4 traktujemy jako niedyssypatywne.

Postępując zgodnie z metodą termodynamiczną analogicznie jak w podrozdziale 4.1, otrzymujemy wyniki, które są zestawione w tablicy 3.

Rys. 5. Prosta sieć ze stratami zewnętrznymi powietrza: a) schemat, b) charakterystyki wypadkowe oczek zewnętrznych, c) układ wentylator — główny ciąg naturalny oraz wtórny ciąg naturalny, d) główny i wtórny ciągi naturalne

Złożona sieć (rys. 5a) ma dwa oczka zewnętrzne: oczko 1 (0, 1, 2, 3, 6, 7, 8, 0) i oczko 2 (4, 5, 6, 7, 8, 4). Dla tych oczek — zgodnie ze wzorami (2.14)—(2.21) — otrzymujemy następujące sumy oraz energię użyteczną wentylatora (tabl. 3):

$$\begin{split} \sum_{(1)} \delta \Phi_i &= 0, \quad \sum_{(1)} l_{ii} = 404, \quad \sum_{(1)} l_{isi} = 0, \quad \sum_{(1)} e_{ni} = 404, \quad \sum_{(1)} q_{fi} = 2636 \\ & \text{oraz} \quad e_{uR} = 2232 \,\text{J/kg}, \\ \sum_{(2)} \delta \Phi_i &= 0, \quad \sum_{(2)} l_{ii} = -63, \quad \sum_{(2)} l_{isi} = 0, \quad \sum_{(2)} e_{ni} = -63, \quad \sum_{(2)} q_{fi} = 2169 \end{split}$$

oraz $e_{uR} = 2232 \,\mathrm{J/kg}$.

Na podstawie powyższych sum stwierdzamy, że spełnione są zależności (2.17)–(2.19) oraz że w sieci (rys. 5a) – zgodnie ze wzorem (1.4) – występuje główny ciąg naturalny

$$e_n = e_{n2} = \min(-63; 404) = -63 \text{ J/kg}.$$
 (4.3)

Na rysunku 6 podany jest lewobieżny cykl termodynamiczny sporządzony na podstawie tablicy 3 dla oczka zewnętrznego 2 (4, 5, 6, 7, 8, 4) sieci (rys. 5a). Pole tego cyklu ilustruje główny ciąg naturalny $e_n = -63$ J/kg (Rys. 5c i 5d).

Równania charakterystyk wypadkowych wymienionych oczek 1 i 2 – zgodnie z równaniami (1.2) – mają postać:

$$q_{f1} = R_1 \dot{m}^2 - 404$$
 oraz $q_{f2} = R_2 \dot{m}^2 + 63$,

gdzie: R_1 i R_2 — opory oczek 1 i 2 określone odpowiednio wzorami (3.3), w których dla rozważanej sieci parametry punktu R pracy wentylatora głównego wynoszą: $\dot{m}_R = 100$ kg/s i $e_{uR} = 2232$ J/kg (rys. 5a). W wyniku obliczeń otrzymujemy opory oczek 1 i 2:

$$R_1 = \frac{2232 + 404}{100^2} = 0,2636, \quad R_2 = \frac{2232 - 63}{100^2} = 0,2169 \text{ m}^2/\text{kg}^2.$$

Współczynniki kierunkowe stycznych w punkcie równowagi R do charakterystyk wypadkowych oczek sieci 1 i 2 (rys. 5b), obliczone za pomocą wzorów (3.5), wynoszą odpowiednio:

$$k_1 = 2 \cdot 0.2636 \cdot 100 = 52.72$$
, $k_2 = 2 \cdot 0.2169 \cdot 100 = 43.38 \text{ m}^2/(\text{kg} \cdot \text{s})$.

Zatem w rozpatrywanym przypadku, korzystając z ujemnego współczynnika kierunkowego (3.7) charakterystyki wentylatora, zapisujemy:

$$k_1 > k_2 > 0$$
, $k_1 - b > k_2 - b > 0$.

Stąd wnosimy (rozdz. 3), że nierówność

$$k_2 - b > 0$$

jest kryterium statycznym stabilnej pracy rozważanego układu wentylator — sieć (rys. 5a).

Na rysunku 5b podane są charakterystyki wypadkowe wspomnianych oczek zewnętrznych 1 i 2. Charakterystyka oczka 2 o równaniu $q_{f2} = R_2 \dot{m}^2 - e_{n2}$ (rys. 5b) jest charakterystyką wypadkową sieci (rys. 5a).

5. Wtórny ciąg naturalny w prostej sieci ze stratami zewnętrznymi powietrza

Wtórny ciąg naturalny e_{nw1} występujący w bocznicy (0-1-2-3) oczka zewnętrznego 1 (0, 1, 2, 3, 6, 7, 8, 0) sieci (rys. 5c i 5d) obliczony za pomocą wzoru (1.6) — przy korzystaniu ze wzoru (4.3) i tablicy 3 — wynosi (rys. 5c i 5d):

$$e_{nw1} = e_{n1} - e_n = 404 - (-63) = 467 \text{ J/kg}.$$
 (5.1)

Na rysunku 6 suma pola prawobieżnego cyklu (0, 1, 2, 3, 6, 7, 8, 0) i pola lewobieżnego cyklu (4, 5, 6, 7, 8, 4) ilustruje wtórny ciąg naturalny $e_{nw1} = 467 \text{ J/kg.}$

Dla oczka (0, 1, 2, 3, 5, 4, 0) i oczka (0, 4, 5, 6, 7, 8, 0) (rys. 5c) — korzystając z II zasady Kirchhoffa — układamy odpowiednio równania:

Rys. 6. Główny ciąg naturalny $e_n = -63 \text{ J/kg}$ i wtórny ciąg naturalny $e_{nw1} = 467 \text{ J/kg}$ w prostej sieci ze stratami zewnętrznymi powietrza (rys. 5a)

$$e_{nw1} = R_w \dot{m}_1^2 - R_b \dot{m}_2^2, \quad e_{uR} + e_n = R_b \dot{m}_2^2 + R_z (\dot{m}_1 + \dot{m}_2)^2, \quad (5.2), \quad (5.3)$$

gdzie: R_b , R_w i R_z — opory aerodynamiczne bocznic: b (0-4-5), w (0-1-2-3) i z (6-7-8-0) (rys. 5c, tabl. 3) określone następująco:

$$R_b = \frac{q_f^{4-5}}{\dot{m}_2^2} = \frac{2032}{30^2} = 2,257778 \text{ m}^2/\text{kg}^2,$$

$$R_w = \frac{q_f^{0-1} + q_f^{1-2} + q_f^{2-3}}{\dot{m}_1^2} = \frac{608 + 540 + 1351}{70^2} = 0,510000,$$
$$R_z = \frac{q_f^{6-7}}{(\dot{m}_1 + \dot{m}_2)^2} = \frac{117}{(70 + 30)^2} = 0,011700 \text{ m}^2/\text{kg}^2.$$

Dzielimy stronami równanie (5.2) przez (5.3) i zapisujemy:

$$\frac{e_{nw1}}{e_{uR}+e_n} = \frac{R_w \dot{m}_1^2 - R_b \dot{m}_2^2}{R_b \dot{m}_2^2 + R_z (\dot{m}_1 + m_2)^2} < \frac{R_w \dot{m}_1^2}{R_z (\dot{m}_1 + m_2)^2} < \frac{R_w \dot{m}_1^2}{R_z \dot{m}_1^2}.$$

Stąd wynika następujący warunek zachowania prostego (nieodwróconego) kierunku przepływu strat zewnętrznych powietrza w bocznicy b(0-4-5) (rys. 5c).

$$\frac{e_{nw1}}{e_{uR}+e_n} < \frac{R_w}{R_z}.$$
(5.4)

Warunek (5.4) jest analogiczny do warunku zachowania prostego kierunku prądu bocznego

$$\frac{h_w}{h_z} < \frac{R_w}{R_z},\tag{5.5}$$

gdzie: h_w — wypadkowa depresja w części wewnętrznej systemu, h_z — wypadkowa depresja w części zewnętrznej (Budryk, 1956).

Do lewej strony warunku (5.4) podstawiamy energię użyteczną $e_{uR} = 2232$ J/kg wentylatora 7—8 (rys. 5c) oraz ciągi naturalne $e_n = -63$ i $e_{nw1} = 467$ J/kg określone wzorami (4.3) i (5.1):

$$\frac{e_{nw1}}{e_{uR}+e_n} = \frac{467}{2232-63} = 0,2153,$$

a do prawej strony warunku (5.4) — wyżej obliczone wartości oporów R_w i R_z :

$$\frac{R_w}{R_z} = \frac{0,510000}{0,011700} = 43,5897.$$

Zatem dla sieci (rys. 5a i 5c) spełniony jest warunek (5.4). Nadmieniamy, że w czasie pożarów w KWK "Ziemowit" i KWK "Jowisz" dymy i gazy pożarowe wypływały przez zręby szybów wydechowych do atmosfery (Bystroń, 1994). Wówczas niespełniony był warunek (5.4).

6. Główny ciąg naturalny w złożonej sieci o przewietrzaniu wznoszącym się

Wykonujemy schemat przestrzenny sieci o przewietrzaniu wznoszącym się (rys. 7a) z szybami: wdechowym 0-1 i wydechowym 6-7, poziomymi wyrobiskami 1-3 i 2-5, pochylniami 1-2 i 3-4 i ssącym wentylatorem głównym 7-8. Szyby te, poziome wyrobiska, pochylnie i wentylator traktujemy jako bocznice *d-w* sieci.

Rys. 7. Złożona sieć o przewietrzaniu wznoszącym się: a) schemat, b) charakterystyki wypadkowe oczek zewnętrznych, c) układ wentylator — główny ciąg naturalny oraz wtórny ciąg naturalny, d) główny i wtórny ciągi naturalne

Postępując zgodnie z metodą termodynamiczną analogicznie jak w podrozdziale 4.1, otrzymujemy wyniki zestawione w tablicy 4.

Złożona sieć (rys. 7a) ma dwa oczka zewnętrzne: oczko 1 (0, 1, 2, 5, 6, 7, 8, 0) i oczko 2 (0, 1, 3, 4, 6, 7, 8, 0). W ich skład wchodzą niedyssypatywne bocznice: 4-6, 5-6, i 8-0. Dla tych oczek — zgodnie ze wzorami (2.14)—(2.21) — wyznaczamy następujące sumy oraz energię użyteczną wentylatora (tabl. 4):

TABLICA 4

Prze- krój	Wyso- kość geod.	Ciśnienie w przepływ tropow	Gęstość wie izen- wym	Tempe- ratura	Potencjały C aerodyna- miczne tr		Ciśnienie Gęstość w przepływie poli- tropowym nieodwr.		Bocz- nica sieci	Spadek poten- cjału	Wykład- nik politropy	Prace techniczne		Lokalny ciąg na- turalny	Dyssy- pacja energii użyt.	Energia użytecz. wentyla- tora
Nr	Ζ	p _s	Q _s	Т	Φ_v	Φ	р	Q	d-w	$\delta \Phi_i$	т	l _{ti}	l _{tsi}	e _{ni}	q_{fi}	e _{uR}
—	m	Ра	kg/m ³	К	J/m ³	J/kg	Pa	kg/s	i	J/kg	—	J/kg	J/kg	J/kg	J/kg	J/kg
0	200	100 000	1,2525	278,15	0	0	100 000	1,2525	0-1	751	1,16542	-6080	-6113	33	784	0
1	-500	108 868	1,3309	281,15	-1000	-751	107 868	1,3366	1-2	396	0,81697	2352	2361	-9	387	0
2	-300	106 279	1,3082	283,00	-1500	-1147	104 779	1,2899	1-3	752	0,18421	767	759	8	760	0
3	-500	108 868	1,3309	293,00	-2000	-1503	106 868	1,2707	3-4	408	17,73325	2433	2377	56	464	0
4	- 300	106 279	1,3082	285,00	-2500	- 1911	103 779	1,2686	2-5	764	0,57593	782	775	7	771	0
5	-300	106 279	1,3082	285,00	-2500	-1911	103 779	1,2686	5-6	0	0	0	0	0	0	0
6	-300	106 279	1,3082	285,00	-2500	- 1911	103 779	1,2686	4-6	0	0	0	0	0	0	0
7	200	100 000	1,2525	282,80	-3400	-2714	96 600	1,1900	6-7	803	1,12077	5842	5725	117	920	0
8	200	100 000	1,2525	285,00	0	0	100 000	1,2224	7-8	-2714	1,28771	-2819	-2748	-71	34	2819
									8-0	0	0	0	0	0	0	0
Oczko sieci 1 (0, 1, 2, 3, 6, 7, 8, 0):										0	—	77	0	77	2896	2819
Oczko sieci 2 (4, 5, 6, 7, 8, 4):										0		143	0	143	2962	2819

Parametry powietrza w przekrojach pomiarowych, bocznicach i oczkach zewnętrznych złożonej sieci kopalni o przewietrzaniu wznoszącym się (rys. 7a)

190

(

$$\sum_{i=1}^{n} \delta \Phi_i = 0, \qquad \sum_{i=1}^{n} l_{ii} = 77, \qquad \sum_{i=1}^{n} l_{isi} = 0, \qquad \sum_{i=1}^{n} e_{ni} = 77, \qquad \sum_{i=1}^{n} q_{fi} = 2896$$

oraz $e_{uR} = 2819 \,\mathrm{J/kg}$,

$$\sum_{(2)} \delta \Phi_i = 0, \qquad \sum_{(2)} l_{ti} = 143, \qquad \sum_{(2)} l_{tsi} = 0, \qquad \sum_{(2)} e_{ni} = 143, \qquad \sum_{(2)} q_{fi} = 2962$$
oraz
$$e_{uR} = 2819 \text{ J/kg}.$$

Na podstawie powyższych sum wnosimy, że spełnione są zależności (2.17)–(2.19) oraz że w złożonej sieci (rys. 7a) – zgodnie ze wzorem (1.4) – występuje główny ciąg naturalny

$$e_n = \min(77; 143) = 77 \text{ J/kg}.$$
 (6.1)

Na rysunku 8 przedstawiony jest prawobieżny cykl termodynamiczny sporządzony dla oczka zewnętrznego 1 (0, 1, 2, 5, 6, 7, 8, 0) sieci (rys. 7a). Pole tego cyklu ilustruje główny ciąg naturalny $e_n = 77$ J/kg.

Rys. 8. Główny ciąg naturalny $e_n = 77 \text{ J/kg}$ i wtórny ciąg naturalny $e_{nw2} = 66 \text{ J/kg}$ w złożonej sieci (rys. 7a)

Równania charakterystyk wypadkowych wspomnianych oczek zewnętrznych 1 i 2 sieci (rys. 7a) — zgodnie z równaniami (1.2) — mają postać:

$$q_{f1} = R_1 \dot{m}^2 - 77$$
 oraz $q_{f2} = R_2 \dot{m}^2 - 143$,

gdzie: $R_1 i R_2$ — opory aerodynamiczne oczek 1 i 2 określone odpowiednio wzorami (3.3), w których dla rozpatrywanej sieci parametry punktu R pracy wentylatora

głównego wynoszą: $\dot{m}_R = 100 \text{ kg/s}$ i $e_{uR} = 2819 \text{ J/kg}$ (Rys. 7a i 7b). W wyniku obliczeń za pomocą wymienionych wzorów otrzymujemy:

$$R_1 = \frac{2819 + 77}{100^2} = 0,2896, \ R_2 = \frac{2819 + 143}{100^2} = 0,2962 \ \text{m}^2/\text{kg}^2.$$

Współczynniki kierunkowe stycznych w punkcie R do charakterystyk wypadkowych oczek 1 i 2 (rys. 7b), obliczone odpowiednio za pomocą (3.5), wynoszą:

$$k_1 = 2 \cdot 0,2896 \cdot 100 = 57,24, \quad k_2 = 2 \cdot 0,2962 \cdot 100 = 59,24 \text{ m}^2/(\text{kg} \cdot \text{s}).$$

Zatem w rozważanym przypadku korzystając z ujemnego współczynnika kierunkowego (3.7) charakterystyki wentylatora, zapisujemy nierówności:

$$k_2 > k_1 > 0$$
, $k_2 - b > k_1 - b > 0$.

Stąd wnosimy (rozdz. 3), że nierówność

$$k_1 - b > 0$$

jest kryterium statycznym stabilnej pracy rozważanego układu wentylator - sieć (rys. 7a).

Na rysunku 7b podane są charakterystyki wypadkowe wspomnianych oczek 1 i 2, przy czym charakterystyka oczka 1 o równaniu $q_{f1} = R_1 \dot{m}^2 - e_{n1}$ (rys. 7b) jest charakterystyką wypadkową sieci (rys. 7a).

7. Wtórny ciąg naturalny w złożonej sieci o przewietrzaniu wznoszącym się

Wtórny ciąg naturalny e_{nw2} występujący w oczku zewnętrznym 2 (0, 1, 3, 4, 6, 7, 8, 0) sieci (rys. 7c i 7d) wyznaczony za pomocą wzoru (1.6) przy korzystaniu ze wzoru (6.1) i tablicy 4 wynosi

$$e_{nw2} = e_{n2} - e_n = 143 - 77 = 66 \text{ J/kg}.$$
(7.1)

Na rysunku 8 różnica pola prawobieżnego cyklu termodynamicznego (0, 1, 3, 4, 6, 7, 8, 0) i pola prawobieżnego cyklu (0, 1, 2, 5, 6, 7, 8, 0) ilustruje wtórny ciąg naturalny $e_{nw2} = 66$ J/kg.

Korzystając z II zasady Kirchhoffa, układamy następujące równania dla oczka wewnętrznego (1, 3, 4, 5, 2, 1) i oczka zewnętrznego 1 (0, 1, 2, 5, 6, 7, 8, 0) (rys. 7c):

$$e_{nw2} = R_w \dot{m}_2^2 - R_b \dot{m}_1^2, \quad e_{uR} + e_n = R_b \dot{m}_1^2 + R_z (\dot{m}_1 + \dot{m}_2)^2, \quad (7.2), (7.3)$$

gdzie R_b , R_w , $R_z = R_{z1} + R_{z2}$ — opory bocznic: *b* (1-2-5), *w* (1-3-4), z_1 (0-1) oraz z_2 (6-7) (rys. 7c, tabl. 4) wynoszące odpowiednio:

$$R_{b} = \frac{q_{f}^{1-2} + q_{f}^{2-5}}{\dot{m}_{1}^{2}} = \frac{387 + 771}{60^{2}} = 0,321667,$$

$$R_{w} = \frac{q_{f}^{1-3} + q_{f}^{3-4}}{\dot{m}_{2}^{2}} = \frac{760 + 464}{40^{2}} = 0,765000,$$

$$R_z = \frac{q_f^{0^{-1}} + q_f^{6^{-7}}}{(\dot{m}_1 + \dot{m}_2)^2} = \frac{784 + 920}{(60 + 40)^2} = 0,170400 \text{ m}^2/\text{kg}^2.$$

Dzieląc stronami równanie (7.2) przez (7.3) i postępując analogicznie jak w rozdziale 5, otrzymuje się następujący warunek prostego kierunku przepływu powietrza od węzła 1 do 5 w bocznicy b (1-2-5) (rys. 7c)

$$\frac{e_{nw2}}{e_{uR}+e_n} < \frac{R_w}{R_z}.$$
(7.4)

Również warunek (7.4) jest analogiczny do (5.4).

Do lewej strony warunku (7.4) podstawiamy energię użyteczną wentylatora $e_{uR} = 2819$ J/kg oraz ciągi naturalne $e_n = 77$ i $e_{nw2} = 66$ J/kg określone wzorami (6.1) i (7.1):

$$\frac{e_{nw2}}{e_{uR} + e_n} = \frac{66}{2819 + 77} = 0,02279$$

a do prawej strony warunku (7.4) — wyżej obliczone wartości oporów R_w i R_z :

$$\frac{R_w}{R_z} = \frac{0.765000}{0.170400} = 4.48944.$$

Zatem dla sieci kopalni (rys. 7a i 7c) spełniony jest warunek (7.4).

8. Główny ciąg naturalny w złożonej sieci o przewietrzaniu schodzącym

Wykonujemy schemat przestrzenny złożonej sieci o przewietrzaniu schodzącym (rys. 9a) z szybami: wdechowym 0-1 i wydechowym 6-7, poziomymi wyrobiskami 1-2 i 3-4, upadowymi 1-3 i 2-5 i ssącym wentylatorem głównym 7-8. Szyby te, poziome wyrobiska, upadowe i wentylator traktujemy jako bocznice *d-w* sieci.

Postępując analogicznie jak w podrozdziale 4.1, otrzymujemy wyniki, które są zestawione w tablicy 5.

Złożona sieć (rys. 9a) ma dwa oczka zewnętrzne: oczko 1 (0, 1, 2, 5, 6, 7, 8, 0) i oczko 2 (0, 1, 3, 4, 6, 7, 8, 0). W ich skład wchodzą niedyssypatywne bocznice: 4-6, 5-6 i 0-8. Dla wymienionych oczek zewnętrznych 1 i 2 — zgodnie ze wzorami (2.14)—(2.21) — wyznaczamy następujące sumy oraz energię użyteczną wentylatora (tabl. 5):

$$\begin{split} \sum_{(1)} \delta \Phi_i &= 0, \quad \sum_{(1)} l_{ti} = -239, \quad \sum_{(1)} l_{tsi} = 0, \quad \sum_{(1)} e_{ni} = -239, \quad \sum_{(1)} q_{fi} = 2056 \\ &\text{oraz} \quad e_{uR} = 2295 \,\text{J/kg}, \\ \sum_{(2)} \delta \Phi_i &= 0, \quad \sum_{(2)} l_{ti} = -294, \quad \sum_{(2)} l_{tsi} = 0, \quad \sum_{(2)} e_{ni} = -294, \quad \sum_{(2)} q_{fi} = 2001 \\ &\text{oraz} \quad e_{uR} = 2295 \,\text{J/kg}. \end{split}$$

192

Na podstawie powyższych sum wnosimy, że spełnione są zależności (2.17)–(2.19) oraz że w złożonej sieci (rys. 9a) – zgodnie ze wzorem (1.4) – występuje główny ciąg naturalny

$$e_n = \min(-294; -239) = e_{n2} = -294 \text{ J/kg}.$$
 (8.1)

Rys. 9. Złożona sieć o przewietrzaniu schodzącym: a) schemat, b) charakterystyki wypadkowe oczek zewnętrznych, c) układ wentylator — główny ciąg naturalny oraz wtórny ciąg naturalny, d) główny i wtórny ciągi naturalne

Prze- krój	Wyso- kość geod.	Ciśnienie w przepływ tropow	Gęstość wie izen- wym	Tempe- ratura	Potencjały aerodyna- miczne		Ciśnienie Gęstość w przepływie poli- tropowym nieodwr.		Bocz- nica sieci	Spadek poten- cjału	Wykład- nik politropy	Pra techn	ace iczne	Lokalny ciąg na- turalny	Dyssy- pacja energii użyt.	Energia użytecz. wentyla- tora
Nr	Ζ	p _s	Qs	Т	Φ_v	Φ	р	Q	d-w	$\delta \Phi_i$	т	l _{ti}	l _{tsi}	e _{ni}	q_{fi}	e _{uR}
	m	Ра	kg/m ³	K	J/m ³	J/kg	Pa	kg/s	i	J/kg		J/kg	J/kg	J/kg	J/kg	J/kg
0	200	100 000	1,2525	278,15	0	0	100 000	1,2525	0-1	382	1,55103	-4531	-4522	-9	373	0
1	-300	106 279	1,3082	283,75	- 500	-382	105 779	1,2987	1-2	382	-0,17817	380	384	-4	378	0
2	-300	106 279	1,3082	275,00	-1000	-764	105 279	1,3337	1-3	745	-0,62326	-1238	-1212	-26	719	0
3	-500	108 868	1,3309	295,00	-1500	-1127	107 368	1,2680	3-4	751	-0,11816	758	761	-3	748	0
4	-500	108 868	1,3309	270,00	-2500	-1878	106 368	1,3725	2-5	1114	0,358850	-805	-835	30	1144	0
5	-500	108 868	1,3309	270,00	-2500	-1878	106 368	1,3725	4-6	0	0	0	0	0	0	0
6	-500	108 868	1,3309	270,00	-2500	-1878	106 368	1,3725	5-6	0	0	0	0	0	0	0
7	200	100 000	1,2525	260,00	-3000	-2395	97 000	1,2997	6-7	517	1,69162	7012	7394	- 382	135	0
8	200	100 000	1,2525	265,00	0	0	100 000	1,3146	7-8	-2395	2,67210	-2295	-2421	126	26	2295
									8-0	0	0	0	0	0	0	0
Oczko sieci 1 (0, 1, 2, 5, 6, 7, 8, 0):										0	_	-239	0	-239	2056	2295
Oczko sieci 2 (0, 1, 3, 4, 6, 7, 8, 0):										0		- 294	0	- 294	2001	2295

Parametry powietrza w przekrojach pomiarowych, bocznicach i oczku złożonej sieci kopalni o przewietrzaniu schodzącym (rys. 9a)

Na rysunku 10 przedstawiony jest lewobieżny cykl termodynamiczny sporządzony dla oczka zewnętrznego 1 (0, 1, 3, 4, 6, 7, 8, 0) sieci (rys. 9a). Pole tego cyklu ilustruje główny ciąg naturalny $e_n = -294$ J/kg.

Równania charakterystyk wypadkowych wspomnianych oczek zewnętrznych 1 i 2 – zgodnie z równaniami (1.2) – mają postać:

$$q_{f1} = R_1 \dot{m}^2 + 2.39$$
 oraz $q_{f2} = R_2 \dot{m}^2 + 294$,

gdzie: R_1 i R_2 — opory tych oczek 1 i 2 określone odpowiednio wzorami (3.3), w których dla rozważanej sieci parametry punktu R pracy wentylatora głównego wynoszą: $\dot{m}_R = 100$ kg/s i $e_{uR} = 2295$ J/kg (rys. 9a i 9b). W wyniku obliczeń za pomocą tych wzorów otrzymujemy:

$$R_1 = \frac{2295 - 239}{100^2} = 0,2056, \quad R_2 = \frac{2295 - 294}{100^2} = 0,2001 \text{ m}^2/\text{kg}^2.$$

Współczynniki kierunkowe stycznych w punkcie R do charakterystyk wypadkowych oczek zewnętrznych 1 i 2 (rys. 9b), obliczone odpowiednio za pomocą (3.5), wynoszą:

$$k_1 = 2 \cdot 0.2056 \cdot 100 = 41.12, \quad k_2 = 2 \cdot 0.2001 \cdot 100 = 40.02 \text{ m}^2/(\text{kg} \cdot \text{s}).$$

Zatem w rozważanym przypadku, korzystając z ujemnego współczynnika kierunkowego (3.7) charakterystyki wentylatora, zapisujemy nierówności:

$$k_1 > k_2 > 0$$
, $k_1 - b > k_2 - b > 0$.

Stąd wnosimy (rozdz. 3), że nierówność

$$k_2 - b > 0$$

jest kryterium statycznym stabilnej pracy rozważanego układu wentylator — sieć (rys. 9a).

Na rysunku 9b podane są charakterstyki wypadkowe wspomnianych oczek zewnętrznych 1 i 2, przy czym charakterystyka oczka 2 o równaniu $q_{f2} = R_2 \dot{m}^2 - e_{n2}$ (rys. 9 b) jest charakterystyką wypadkową sieci (rys. 9a).

9. Wtórny ciąg naturalny w złożonej sieci o przewietrzaniu schodzącym

Wtórny ciąg naturalny e_{nw1} występujący w oczku zewnętrznym 1 (0, 1, 2, 5, 6, 7, 8, 0) sieci (rys. 9c i 9d) wyznaczony za pomocą wzoru (1.6) — przy korzystaniu ze wzoru (8.1) i tablicy 5 — wynosi

$$e_{nw1} = e_{n1} - e_n = -239 - (-294) = 55 \,\text{J/kg}.$$
 (9.1)

Na rysunku 10 przedstawiony jest prawobieżny cykl termodynamiczny dla oczka wewnętrznego (1, 3, 4, 5, 2, 1) sieci (rys. 9a). Pole tego cyklu ilustruje wtórny ciąg naturalny $e_{nw1} = 55 \text{ J/kg}$.

Rys. 10. Główny ciąg naturalny $e_n = -294$ J/kg i wtórny ciąg naturalny $e_{nw1} = 55$ J/kg w złożonej sieci (rys. 9a)

Korzystając z II zasady Kirchhoffa, układamy dla oczka wewnętrznego (1, 3, 4, 5, 2, 1) i oczka zewnętrznego 2 (0, 1, 3, 4, 6, 7, 8, 0) (rys. 9c) równania:

$$e_{nw1} = R_b \dot{m}_2^2 - R_w \dot{m}_1^2, \quad e_{uR} + e_n = R_b \dot{m}_2^2 + R_z (\dot{m}_1 + m_2)^2, \quad (9.2), \quad (9.3)$$

gdzie R_b , R_w , $R_z = R_{z1} + R_{z2}$ — opory bocznic: b (1-3-4), w (1-2-5), z_1 (0-1) oraz z_2 (6-7) (rys. 9c, tabl. 5) wynoszące odpowiednio:

$$R_{b} = \frac{q_{f}^{1-3} + q_{f}^{3-4}}{\dot{m}_{2}^{2}} = \frac{719 + 748}{50^{2}} = 0,5868,$$

$$R_{w} = \frac{q_{f}^{1-2} + q_{f}^{2-5}}{\dot{m}_{1}^{2}} = \frac{378 + 1144}{50^{2}} = 0,6088,$$

$$R_{z} = \frac{q_{f}^{0-1} + q_{f}^{6-7}}{(\dot{m}_{z} + \dot{m}_{z})^{2}} = \frac{373 + 135}{(50 + 50)^{2}} = 0,0508 \text{ m}^{2}/\text{kg}^{2}$$

Dzielimy stronami równanie (9.3) przez (9.2) i zapisujemy:

$$\frac{e_{uR} + e_n}{e_{nw1}} = \frac{R_b \dot{m}_2^2 + R_z (\dot{m}_1 + m_2)^2}{R_b \dot{m}_2^2 - R_w \dot{m}_1^2} > \frac{R_b \dot{m}_2^2 + R_z \dot{m}_2^2}{R_b \dot{m}_2^2},$$

Stąd wynika następujący warunek zachowania prostego (nieodwróconego) kierunku przepływu powietrza od węzła 1 poprzez 2 do 5 w bocznicy w (1-2-5) (rys. 9c)

$$\frac{e_{uR} + e_n}{e_{nw1}} > 1 + \frac{R_z}{R_b}.$$
(9.4)

196

$$\frac{h_z}{h_w} > 1 + \frac{R_z}{R_h}.\tag{9.5}$$

Również z konfrontacji warunków (9.4) i (9.5) wynika, że wzór (1.6) określający wtórny ciąg naturalny można uznać za zweryfikowany.

głównego w części wewnętrznej sieci o przewietrzaniu schodzącym (B u d r y k, 1956)

Do lewej strony warunku (9.4) podstawiamy wartości liczbowe energii użytecznej wentylatora $e_{uR} = 2295$ oraz ciągów naturalnych $e_n = -294$ i $e_{nw1} = 55$ J/kg określonych wzorami (8.1) i (9.1):

$$\frac{e_{uR} + e_n}{e_{nw1}} = \frac{2295 - 294}{55} = 36,3818,$$

a do prawej strony warunku (9.4) — wyżej obliczone wartości oporów R_b i R_z :

$$1 + \frac{R_z}{R_b} = 1 + \frac{0.0508}{0.5868} = 1.0866.$$

Zatem dla sieci kopalni (rys. 9a i 9c) spełniony jest warunek (9.4).

10. Wnioski

Przedstawiona w pracy metoda termodynamiczna oparta na polu potencjału aerodynamicznego (B y s t r o ń, 1999) przydatna jest do wyznaczania parametrów powietrza suchego w przekrojach pomiarowych, bocznicach i oczkach zewnętrznych prostej lub złożonej sieci odpowiednio o przewietrzaniu wznoszącym się i przewietrzaniu schodzącym. Korzystając z ciśnień i objętości właściwych powietrza wyznaczonych tą metodą, można sporządzić cykle termodynamiczne dla odnośnych oczek zewnętrznych sieci.

Otrzymano pozytywny wynik weryfikacji wzoru (1.4) określającego główny ciąg naturalny opartej na kryterium statycznym stabilnej pracy układu wentylator — sieć (B y s t r o ń, 1998). Również pozytywny jest wynik weryfikacji wzoru (1.6) określającego wtórny ciąg naturalny opartej na konfrontacji warunków (5.4) i (9.4) z warunkami (5.5) i (9.5) B u d r y k a (1956) zachowania prostych kierunków odpowiednio prądu bocznego w części wewnętrznej dwuoczkowej sieci o przewietrzaniu wznoszącym się i prądu głównego w części wewnętrznej dwuoczkowej sieci o przewietrzaniu schodzącym.

Z porównania średnioważonego ciągu naturalnego (1.5) z głównym ciągiem naturalnym (1.4) (tabl. 6) wynika, że dla złożonych sieci (rys. 5a, 7a i 9a) procentowa różnica między wymienionymi ciągami wynosi odpowiednio: $\delta e_{nm} = 100$ $(e_{nm} - e_n)/e_n = -519,0$; 33,8 i — 9,5%. Zatem przy wyznaczaniu oporu aerodynamicznego złożonej sieci i jej charakterystyki wypadkowej należy korzystać

Sieć wen- tylacyjna, rysunek	Tab-	Główny ciąg naturalny	Ciągi na w ocz zewnęt	aturalne zkach rznych	Strun ma	nienie Isy	Średnio- ważony ciąg naturalny	Procen- towa różnica	
		e _n	e _{n1}	e _{n2}	\dot{m}_1	\dot{m}_2	e _{nm}	δe_{nm}	
		J/kg	J/kg	J/kg	kg/s	kg/s	J/kg	%	
5a	3	-63	404	-63	70	30	264	-519,0	
7a	4	77	77	143	60	40	103	33,8	
9a	5	-294	-239	-294	50	50	-266	-9,5	

Porównanie średnioważonego ciągu naturalnego z głównym ciągiem naturalnym

z głównego ciągu naturalnego (1.4), w szczególności w badaniu stabilności pracy układu wentylator — sieć (podsieć) generująca ciągi naturalne.

Wykonanie publikacji dofinansowane przez Komitet Badań Naukowych, Warszawa.

LITERATURA

Aliechiczew S. P., Kałabin G. W., 1974. Jestiestwiennaja tjaga i tiepłowoj reżim rudnikow. "Nauka", Leningrad.

Budryk W., 1929. Depresja cieplna. Przegl. Górn.-Hutn. 11-12, 291-309.

Budryk W., 1933. Nomogramy dla obliczania przewietrzania kopalń. Zakład Górn. I. AG, Kraków.

Budryk W., 1951, Wentylacja kopalń. Cz. I. Przewietrzanie wyrobisk. PWT, Katowice.

B u d r y k W., 1953. Depresja pożaru podziemnego i miejsca jej występowania . Arch. Górn. i Hutn. 1, 3–4, 239–255.

Budryk W., 1956. Pożary i wybuchy w kopalniach. Cz. 1. Pożary podziemne. WG.-H, Katowice.

Burczakow A. S., Mustiel P. J., Uszakow K. Z., 1971. Rudnicznaja Aerołogija. "Niedra", Moskwa.

Bystroń H., 1983. Wpływ depresji naturalnej na pracę wentylatora głównego w podsystemie przewietrzania kopalni. Arch. Górn. PAN, 28, 2, 221-262.

Bystroń H., 1994. Badanie podstawowych parametrów pracy kopalnianych stacji wentylatorowych w warunkach eksploatacyjnych. Prace Nauk. GIG, Nr 798, Katowice.

B y s t r o ń H., 1998. Stability of operation of the main fan stations in a mine network generating natural ventilation pressure, treated as a system with lumped parameters. Arch. Górn. PAN, 43, 3, 351-418.

B y s t r o ń H., 1999. Potencjały aerodynamiczne oraz wyznaczanie ich pól w sieciach wentylacyjnych, podsieciach i rejonach. Arch. Górn. PAN, 44, 1, 23-69.

Ochęduszko St., 1974. Termodynamika stosowana. WNT, Warszawa.

REVIEW BY: PROF. DR HAB. INŻ. JÓZEF WACŁAWIK, KRAKÓW

Received: 10 November 1999.